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Abstract

We examine a naming game on an adaptive weighted network. A

weight of connection for a given pair of agents depends on their com-

munication success rate and determines the probability with which the

agents communicate. When the preference toward successfully com-

municating agents is not so strong, the model behaves similarly to the

naming game on a complete graph. In particular, it quickly reaches

a single-language state, albeit some details of the dynamics are dif-

ferent from the complete-graph version. Much different behaviour ap-

pears when the preference toward successfully communicating agents

is stronger and the model gets trapped in a multi-language regime. In

this case gradual coarsening and extinction of languages lead to the

emergence of a dominant language, albeit with some other languages

still being present. A comparison of distribution of languages in our

model and in the human population is discussed.
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1 Introduction

Language is based on a certain set of conventions socially shared by a group
of users. Recently, increasing scientific efforts have been made to understand
mechanisms that are responsible for the emergence and subsequent evolution
of language [16, 9, 23, 5]. Processes that underlie these mechanisms are
very complex and to a great extent spontaneous. They result from cultural
interactions between users and it seems that the most promising approach
to model them is computational simulations [12, 25, 26, 13, 27], especially
those based on the so-called multi-agent systems [6, 24] .

An important class of such models originates from the naming game in-
troduced by Steels to describe processes leading to the establishment of a
shared vocabulary, i.e., a set of mappings between words and meanings [28].
In the naming game, agents are involved in pairwise interactions, which direct
the model to a state of linguistic synchronization, i.e., to the conformance
of agents’ vocabularies. Let us emphasize that while conversations of agents
take place strictly locally (each involves only two agents) and go on without
any central control, nevertheless the final result of these processes, i.e., a
common vocabulary shared by all agents, emerges globally.

To specify the naming game model, one has to define the topology of in-
teractions between agents. For mathematical and computational simplicity,
a complete-graph topology is often assumed, where each agent can interact
with any other agent [3]. Another possibility is to place agents at sites of a
regular lattice and allow interactions only between the nearest neighbours [2].
However, real networks of social interactions seem to be much more complex
than the above mentioned graphs [31, 33, 1]. To take into account the hetero-
geneous nature of social interactions, the naming game on scale-free networks
and on small-world networks were also studied. Although some quantitative
differences in the dynamics were observed, the overall behaviour, namely a
relatively fast convergence to the monolingual state, was predominantly the
same [11, 10, 22].

Such a behaviour is in contrast with the multi-language structure of the
human population. Indeed, despite gradual extinction, there are thousands
of languages still in use, and at a time scale of tens or hundreds of years, many
languages, especially those relatively common ones, seem to be very stable.
In the present paper, we show that the naming game defined on an adaptive
weighted network allows us to examine such stable multi-language structures.
Interactions in our model try to mimic certain features of social interactions.
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In particular, the weights of connections between agents differentiate the
probabilities of their mutual communication. Moreover, these weights are
adaptive and depend on the success rate of past communication attempts of
agents. Let us notice that the formation of multi-language states has already
been observed by Dall’Asta et al. for complex networks with a community
structure [11]. However, their networks are a bit artificial with a community
structure imposed ”by hand”. In our opinion, the multi-language structure
of human population is a result of a certain dynamic process, which, we hope,
is to some extent captured in our model.

2 Model and numerical method

In the original formulation [28], the naming game describes cultural trans-
mission within a single generation of agents. Agents are involved in pairwise
negotiations and try to establish a common vocabulary for a certain number
of objects present in their environment. Most of the research, however, is
limited to a single-object case (for a recent review see [21]) since it seems to
be sufficient to capture the essence of the dynamics also in a more general
case. Multi-object [17, 30, 20] as well as evolutionary [19, 18] versions of
the naming game were also studied.

The naming game is also related to models used to describe opinion for-
mation, with the voter model being the prime example [7]. Let us stress
again that the main emphasis in the naming game model is on the cultural
(single-generation) transmission of language. An alternative approach to the
language evolution, where inter-generational interactions play an important
role, is called Iterated Learning Model and was used in some other con-
texts [15, 29].

In our model we consider a population of N agents playing the single-
object naming game. Each agent has its lexicon, i.e., a list of words (initially
empty). Basic steps of the game are as follows:

1. First, a speaker i and a hearer j are selected (i 6= j). Then the speaker
selects randomly one of the words from its lexicon (if the lexicon is
empty, the agent generates a word randomly) and communicates this
word to the hearer.

2. The game ends successfully when the hearer has the word in its lexicon;
in such a case both agents retain only the communicated word in their

3



lexicons.

3. The game fails when the hearer does not have the word in its lexicon;
in this case the word is added to the hearer’s lexicon.

After the game, both the number of successes the pair of agents (i, j) have
achieved so far as well as the number of all their communication attempts are
updated and the communicative success rate for this pair of agents sij = sji
is calculated as the ratio of these two numbers (of course, initially sij = 0 for
all pairs of agents).

The above definition corresponds to the so-called minimal version of the
naming game [3]. To complete the definition of our model, we have to specify
how we select the speaker and the hearer. Our intention is to simulate an
important, in our opinion, criterion: we talk most preferably with those with
whom we already have communicated successfully. This is implemented as
follows:

• The speaker i is selected randomly.

• The hearer j is selected using the roulette rule, with the probability

pij =
wij

∑N
k=1wik

, (1)

where the weights

wij =

{

sij + ǫ for i 6= j
0 for i = j

(2)

for i, j = 1, 2, . . . , N . The (positive and typically small) parameter ǫ
ensures that a speaker can sometimes play the naming game also with
such agents with which its up-to-now communicative success rate is
very small or even equals zero.

From the above rules, it follows that our model constitutes an adaptive
weighted network. The weights of links, which depend on the success rates
that pairs of agents have achieved so far, change in time and control the
intensity of their subsequent interactions. Generally, the bigger the success
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rate, the more frequent communication attempts, however, due to the pa-
rameter ǫ, there is always a possibility to communicate also with such an
agent with which there have not been scored any successes so far.

Obviously, the characteristics of our model change during simulation. To
examine their time dependence and compare results for different numbers
of agents N , we have defined a unit of time as N communication attempts
(which corresponds to a single on average communication attempt per agent).
We have monitored a number of time-dependent observables in the system,
in particular:

• s – the communicative success rate defined as a fraction of all successes
during the last N communication attempts, i.e., within the last unit
of time. Let us emphasize that s is calculated for N most recent com-
munication attempts in the entire system of N agents while sij, i.e.,
the communicative success rate of a pair of agents i and j, which de-
termines the weight wij (2) of the connection between them, stores the
entire history of their interactions.

• L – the number of different words in lexicons of all agents. At later
stages of simulations, when most of agents have only one word in their
lexicons, L could be interpreted as the number of languages the agents
use at this moment of the evolution of the system.

• Nd – the number of agents that have the most common word in their
lexicons, i.e., the word that appears in the largest number of lexicons.
In some cases we measured also the number of users of less common
words.

To smooth-out statistical fluctuations, the measured quantities s, L, and Nd

were averaged over independent runs. Some other observables are described
in the following text.

3 Numerical results

Initially, all weights wij = ǫ for i 6= j and thus the selected speaker chooses
any agent as a hearer with equal probability. As the evolution of the model
progresses, some pairs of agents (i, j) might successfully communicate and
that increases the weight wij. Consequently, an agent will communicate with
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some agents more often than with others and after some time clusters of such
agents will be formed, with communication taking place mainly within these
clusters. Hence, linguistic synchronization is quickly reached inside clusters
and all agents in a cluster eventually use the same language, i.e., they have
the same (and only one) word in their lexicons. One should keep in mind,
however, that the structure of the network set by the collection of the weights
wij is dynamic and even strong connections (wij ≈ 1) might become weak
later on (and also weak connections might get stronger). The details of the
dynamics and the final state of the model depend on the parameters N and ǫ,
as discussed below.

3.1 Single-language regime

Although communication between agents takes place mainly within clusters,
some outside-cluster communication attempts are also made. This is because
the weight (2) is positive even for agents with (so far) zero success rate. As a
result of such attempts, some agents might change the cluster they belong to;
eventually, some clusters might even disintegrate. Such a process resembles
the coarsening dynamics and the order/disorder transition found in other
versions of the naming game [3].

Obviously, the larger ǫ, the greater the intensity of the outside-cluster
communication. The number of agents N is yet another factor that increases
the intensity of such processes. This is because for largeN an agent belonging
to a cluster of a given size has so many more candidates to communicate
with (albeit of very small weights ∼ ǫ). One might expect that it is the
combination of ǫ and N , rather than those parameters taken separately,
which is the control parameter of the model. Although we cannot provide
a rigorous derivation, some arguments (Figure 1) suggest that in our model,
some important processes, which most likely underlie the coarsening, take
place at a rate that scales as Nǫ2. The numerical results presented below are
collected in sets corresponding to constant Nǫ2 and their reasonably good
convergence (for increasing N) seems to support the suggestion that Nǫ2

indeed is the control parameter of the model.
Our simulations show that when Nǫ2 is sufficiently large, the outside-

cluster communication is sufficiently frequent and the model behaves simi-
larly to the naming game on a complete graph, where it is known to reach
a state of complete synchronization [3]. Numerical results confirm basically
such a behaviour but exhibit some important differences as well. In Figure 2
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Figure 1: In the final stage of the coarsening process, almost all agents form a
single-language cluster (black circles). To include a given (grey) agent which
belongs to a certain small cluster into the main cluster, one needs two steps:
(i) a black speaker selects a grey hearer, which results in failure, and the
grey agent adds to its lexicon the word used by black agents (the rate of this
processes scales as ǫN/N = ǫ); (ii) the grey agent as a speaker selects a black
hearer and the word it chooses to communicate is the one acquired in step (i)
(the rate Nǫ

Nǫ+1
≈ Nǫ for small Nǫ). Because the second step is a success,

all words but the communicated one are removed from agents’ lexicons, and
the grey agent becomes black. The combined rate of steps (i) and (ii) should
scale as Nǫ2.
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Figure 2: The time dependence of the success rate s calculated for several
values of N and for Nǫ2 = 10−5.

we present the success rate s calculated for Nǫ2 = 10−5. One can notice
that after an initial interval, agents reach the state where they communicate
with a large success rate s ∼ 1. Interestingly, this initial interval is almost
the same (t ∼ 750) for all examined systems even though their sizes N differ
substantially.

Since the number of languages L diminishes in time (Figure 3), we con-
clude that indeed the system evolves toward the single-language state. The
inset of Figure 3 shows that at the same time when the success rate s ap-
proaches unity (t ∼ 750, Figure 2), the normalized number of languages
L/N drops to 0. Let us also note that the crossing point around t = 900
in Figure 3 suggests that in the limit N → ∞ for t > 900, there is only
one language in the system. Figure 4, where the ratio of users of the most
common language Nd/N is plotted, shows that for t > 750 almost all agents
use the same language.

As it is already known, a characteristic time τ to reach a single-language
state in the naming game increases with the system size N . For example, it is
found that on a complete graph τ ∼ N1.5 [3]. To compare this result with the
behaviour of our model, we calculated τ for several values ofN and the results
are presented in Figure 5. They show that τ does not diverge for increasing N
but most likely converges to a finite value ≈ 1050, which is approximately
consistent with the time scale seen in the behaviour of s, Nd/N , and L.
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Figure 4: The time dependence of the ratio of agents that use the most com-
mon language Nd/N calculated for several values of N and for Nǫ2 = 10−5.
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made. The inset shows the size dependence of the averaged maximum number
of words M in agents’ lexicons (log-log scale). The fitted dashed line has the
slope 0.45 and the dotted line corresponds to the complete graph (slope 0.5).

An additional comparison with a complete-graph version can be obtained
from the analysis of the number of words kept in the lexicons of agents.
Typically, this number (as a function of time t) first gradually increases and
then decreases as the single-language state is being approached. It is known
that the averaged maximum number of words (per agent) M on a complete
graph increases asymptotically as N0.5 [3]. Numerical results for our model,
shown in the inset of Figure 5, suggest that M increases asymptotically as
N0.45. Such a discrepancy is yet another indication that the dynamics of
our model, despite qualitative similarities, differs from the complete-graph
version.

3.2 Multi-language regime

When Nǫ2 is sufficiently small, the outside-cluster communication attempts
are very rare, which results in a much different behaviour of our model. In the
inset of Figure 6, one can notice that the success rate s reaches unity around
t = 103, however, at that time the ratio of agents using the most common
language Nd/N is much smaller than unity. Only after t ≈ 3 · 104, this
fraction significantly increases, which suggests the emergence of a dominant
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Figure 6: The time dependence of the ratio of agents that use the most com-
mon language Nd/N calculated for several values of N and for Nǫ2 = 10−9.
The inset shows the time dependence of the success rate s.

language (for largeN the fractionNd/N for large tmost likely exceeds 0.5 and
thus there would be only one dominant language). However, the dominant
language only partially invades the system, since some other languages also
persist, apparently for an arbitrarily long time (Figure 7). Indeed, around
t = 105 the number of languages saturates at L ∼ 10 and does not seem
to diminish even up to t = 106. Although there are several languages for
t > 105, their number is only a small fraction of the number of agents N
(inset in Figure 7).

In the multi-language regime one can thus distinguish three phases. The
first one (t < 103) can be called pre-linguistic, since the success rate remains
relatively low. Next (103 < t < 3 · 104) there is a phase with many languages
but without a dominant language (Nd/N ≪ 1). In this phase the number
of languages gradually decreases. In the third phase (t > 3 · 104) several
languages exist but one of them emerges as a dominant one and is used by a
large fraction of agents. Let us notice that for increasing N , the emergence
of a dominant language becomes more and more abrupt.

To get some insight into a possible mechanism that stabilizes the multi-
language state, we calculated the numbers of users of the 50 most common
languages. We made only a single run (no averaging over independent runs)
and Figure 8 shows how these numbers change in time. Initially, one can
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Figure 7: The time dependence of the number of languages L calculated for
several values ofN and for Nǫ2 = 10−9. The inset shows the time dependence
of the normalized number of users L/N .

observe a gradual increase in the numbers of users of the most common
languages at the expense of the less prevalent ones. Around t = 105 only 12
languages are left and at t = 3 · 105 the least common one (among these 12)
becomes extinct. One can notice that there are virtually no other changes
between the data at t = 105 and t = 3 · 105. Let us also observe that the
remaining languages are relatively prevalent and even the least frequently
used one has more than 20 users (2% of the population). For comparison, we
present analogous data from the single-language regime (Figure 9). Although
transiently a number of relatively common languages are formed in this case,
eventually only one of them survives. Thus it is not a sheer number of users
that determines whether a language will survive or not but also the value of
the control parameter Nǫ2, which plays an important role.

We are tempted to think that the behaviour of our model in the multi-
language regime bears some similarity to the evolution of human languages.
If so, some very basic characteristics of human languages could be reproduced
within our model. In Figure 10, we present the distribution of users of the 20
most common existing languages [32] compared with analogous distributions
obtained for our model. We made a simulation for N = 103 and ǫ = 10−6,
which corresponds to the multi-language regime. The simulation time was
chosen in such a way that the percentage of users of the most common lan-
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Weber’s statistical data [32]. The first three languages according to Weber
are Chinese (20.7% of the population, i.e., 1.1 · 109 speakers), English (6.2%,
3.2 · 108), and Spanish (5.6%, 3.0 · 108).

guage was equal to 20.7%, i.e., the percentage of speakers of Chinese. Let us
notice that there is a reasonably good agreement even for less common lan-
guages and perhaps by modifying the value of Nǫ2 (within a multi-language
regime), a still better fit could be achieved. However, taking into account
the complexity of the evolution of human language, such an agreement is to
some extent accidental and should be considered with great care.

4 Remarks and Conclusions

In the present paper we examined the naming game on an adaptive weighted
network. When the preference due to successful communication in the past is
not so strong, the model behaves similarly to the naming game on a complete
graph. In particular, it quickly reaches the state of complete synchronization
where all agents use the same language. However, the average time needed
to reach such a state does not diverge as the number of agents N increases
— contrary to the naming game on complete graphs. Moreover, the average
maximum number of words in the lexicons of agents increases as N0.45, which
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is close but different than the N1/2 increase that is expected for the naming
game on a complete graph.

Quite different and perhaps more interesting behaviour of our model ap-
pears when the preference due to successful communication in the past is
stronger. In this case our model does not reach complete synchronization
but remains trapped in a multi-language state. Three phases can be distin-
guished in the evolution of our model. In the first one, the average success
rate of communicating agents is rather low and most likely this phase cor-
responds to a prelinguistic phase. In the next phase, although the average
success rate is close to unity, many languages exist in the system and none
of them dominates. At a certain moment, however, the model enters the
third phase where many languages still exist but one of them becomes dom-
inant. Since languages are dynamically equivalent, the emergence of the
dominant language might be considered as some kind of spontaneous sym-
metry breaking. Interesting issues of broken ergodicity or stability of the
resulting structures are however omitted in the present paper.

One can speculate about the possibility that human languages evolved
similarly to the multi-language scenario. Such an idea gets some support
from the comparison of Weber’s distribution of the 20 most common lan-
guages and the analogous distribution in our model. An interesting, in
our opinion, question is whether the rapidly progressing extinction of less
widespread ethnic languages will lead to the emergence of a dominant lan-
guage and if so, when such a situation occurs. With this respect, our work
is, of course, inconclusive. Let us notice, however, that the users of the most
common language currently constitute about 20% of the human population
and according to Figure 6, we might be very close to the transition where
the dominant language will emerge.

For models on adaptive networks, there is a subtle point concerning the
time scales that govern the evolution of the network itself and of the model
(in our case, the naming game). In principle, these processes might have
two independent time scales, which in some cases might even be well sepa-
rated [14, 4]. In our model, however, evolution of weights is strongly coupled
with agreeing dynamics of the naming game. Since the success rate stores
the entire history of communication between agents, the weights (2) typically
lag behind the agreeing dynamics. In particular, these weights will evolve
even when the naming game has already reached the single-language state
(in such a case, the weights will gradually evolve toward wij = 1+ ǫ for every
i 6= j). It would be desirable to analyse the interplay of these two time scales
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in more detail, for example, in the case when the success rate stores only a
limited number of last communication attempts. It would also be interesting
to have a better understanding of the strong stability and long lifetimes of
languages in the multi-language regime. One can consider multi-language
states as metastable states of the dynamics and perhaps there is some anal-
ogy with metastable states in a certain voter model on complex networks
with a strong community structure [8]. Further studies on this subject as
well as a more detailed analysis of the structure of the adaptive network is,
however, left for the future.
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