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We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at
room-temperature. Transitions from a metastable state to Rydberg states with principal quantum
numbers of 25 to 30 have 200 times larger fractional frequency sensitivities to blackbody radiation
than the Strontium clock transition. We demonstrate that magic wavelength lattices exist for
both Strontium and Ytterbium transitions between the metastable and Rydberg states. Frequency
measurements of Rydberg transitions with 10−16 accuracy provide 10mK resolution and yield a
blackbody uncertainty for the clock transition of 10−18.
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Blackbody radiation (BBR) at room temperature lim-
its the accuracy of optical and microwave atomic clocks.
The root-mean-square electric field of BBR is 832V/m
at 300K and this produces problematic Stark shifts of
atomic levels. Two currently promising candidates for
future optical frequency lattice clocks are Sr and Yb[1–6]
(see review [7]). For Sr clocks, the fractional BBR fre-
quency shift is δν/ν = 5.49×10−15(T/300K)4 [8], giving
a sensitivity of 7.3 × 10−17K−1. Thus, achieving an ac-
curacy goal of 10−18 [4] requires a temperature accuracy
of 10 mK near 300 K. In current Cs clocks, the best tem-
perature accuracies are±0.2K, averaged over the relevant
clock volume [9]. Cs and Rb microwave clocks have a
comparable BBR sensitivity to Sr, as does Yb; all are
within factors of 3 [10]. The BBR shift can be dramat-
ically reduced by cooling clocks with liquid nitrogen, to
near 77 K [4, 11]. This reduces the BBR shift by a factor
of 200, but still, the required temperature uncertainty
of ±0.6 K for 10−18 clock accuracy may be difficult [4].
For some applications, especially space clocks, cryogens
may be prohibitive. One alternative being pursued is
to use clock transitions that are fortuitously much less
sensitive to BBR, such as the Al+ ion, and the Cd, Hg,
Mg, and Zn clock transitions [10, 12, 13]. Here we show
how to use transitions to Rydberg states for accurate in

situ thermometry (Fig. 1(a)). Rydberg states have large
BBR Stark shifts, 200 times greater sensitivity to BBR
than the Sr clock states. We also describe a magic wave-
length lattice for Rydberg transitions for which the dipole
approximation is not valid. Rydberg lattices may be im-
portant for a variety of applications, including quantum
information and computation [14].

Optical lattice clocks have the potential to achieve
unprecedented frequency stability. Optical lattices can
naturally trap up to 106 atoms, giving a high signal-to-
noise ratio on an optical frequency transition of 1015Hz
with a sub-Hertz width. A lattice at the magic wave-
length [1] does not perturb the frequency of the clock

a)

FIG. 1: (Color online) (a) Rydberg atoms trapped in an
optical lattice can be sensitive thermometers. (b) Energy
levels for Sr. Transitions from the metastable 3P0 state to
high Rydberg states (dashed) have a frequency sensitivity
of 16 Hz/K, which can enable a temperature accuracy of
±10mK. To achieve this accuracy using transitions between
Rydberg levels (inset, solid), only a modest fractional fre-
quency accuracy of 10−13 is required but, for Sr, the transi-
tion linewidths would require lines to be split by more than
106. For l ≤ 4 states, transitions between 3P0 and 3D1 states
have the largest sensitivity, ≈ 1Hz/K; their precise energies
are not known.

transition and suppresses important systematic errors
such as Doppler shifts. Here we show that applying
this high-resolution spectroscopic capability to Rydberg
atoms in a magic wavelength lattice can provide accurate
thermometry. Highly excited Rydberg states have a BBR
energy shift which asymptotes to that of a free electron,
π(kBT )

2/3c3 ≈ 2.4 kHz at 300 K [15]. It corresponds
to a temperature sensitivity of 16Hz/K and therefore a
spectroscopic accuracy of 0.16 Hz can yield an in situ

temperature uncertainty of ±10mK.

The BBR Stark shift is given by the dipole strength
of the nearby transitions and their energies. All atoms
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have the same Rydberg spectrum for highly excited states
(n > 30 in Fig. 1(b)). Since the transition energies are
much less than the mean BBR photon energy, all high
Rydberg states have the same energy shift so the fre-
quencies of transitions between them have a negligible
sensitivity to BBR. An exception is transitions between
Rydberg states and excited inner shell states or multiple
electron excitations [16]. However, these states are not
Rydberg states and therefore have short lifetimes that do
not provide a sufficiently precise temperature resolution.
Relatively low-lying Rydberg states, where the energy

of nearby transitions is comparable to the BBR photon
energy, can give a large temperature sensitivity (Fig. 1(b)
inset, solid) because the energy splittings are slightly dif-
ferent for different angular momentum. We show that
transitions from relatively low-energy metastable states
to moderately high Rydberg states are better candidates
(Fig. 1(b) dashed). Here the sensitivity arises because
low-energy states, with their large energy splittings to all
other states, have much smaller BBR shifts than Rydberg
states. A metastable state requires less energetic photons
to reach the Rydberg state than the ground state, mak-
ing the laser technology easier and more reliable, and the
metrology of the transition and BBR temperature more
accurate. We next discuss transitions from the lowest
metastable state to high Rydberg states and later tran-
sitions between intermediate Rydberg states.
The general AC Stark shift of an atomic state due to

BBR is

∆EBBR
n (T ) = −

1

4

∞
∫

0

E2(ω, T )αn(ω)dω (1)

in atomic units, where αn(ω) is the AC polarizability and
the BBR spectral density is

E2(ω, T ) =
8ω3

πc3 (exp(ω/kBT )− 1)
. (2)

The BBR shift can be expressed as a sum over all dipole
allowed transitions by integrating over the BBR spectrum

∆EBBR
n

(T ) = −
2

πc3
(kBT )

3
∑

n′

|〈n′|z|nl〉|2F

(

ωn′n

kBT

)

.

(3)
Here, the Farley-Wing function [17] F(y),

F (y) = −2y

∞
∫

0

x3dx

(x2 − y2)(ex − 1)
, (4)

is plotted in Fig. 2, where the integral is the Cauchy prin-
cipal value. For highly excited Rydberg states, nearby
states give the largest dipole matrix elements, the energy
splittings ωn′n go to zero, and F → −(π2/3)y. Summing
over all states gives [17]:

∆EBBR
n

(T ) ≈
π

3c3
(kBT )

2 , (5)
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FIG. 2: (Color online) The Farley-Wing function [17]is plot-
ted versus normalized transition frequency y = ωn′n/kBT .
It gives the blackbody radiation shift of state n due to n′,
Eq.(3).
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FIG. 3: (Color online) BBR Stark shifts of the (a) triplet and
(b) singlet 5snℓ Rydberg states of Sr. The shifts asymptote
to 2.4 kHz for high principal quantum numbers n.

which is 2.4 kHz at 300 K.
We use a single-electron, model-potential method [18]

to calculate the BBR shifts for the lowest angular mo-
mentum states of Sr in Fig. 3. When the principal quan-
tum number exceeds 25, all states have essentially the
same BBR shifts. D states with n < 9 have negative
BBR shifts because the transitions with the largest dipole
moments have energies of order kBT .
For the ground and the first excited states, the tran-

sition energies are much greater than kBT . To lowest
order,

∆EBBR
n

(T ) ≈ −
2π3αn(0)

15c3
(kBT )

4 , (6)

which scales as T 4, instead of T 2 as for highly excited Ry-
dberg states, since all transitions are far detuned. The
difference of the static polarizabilities of the ground and
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excited clock states, 5s2 1S0 and 5s5p 3P0, give most of
the sensitivity of the clock’s frequency to BBR. The shifts
are [8] -1.7 and -3.9 Hz respectively at 300K, with sensi-
tivities of −0.011 and 0.04K−1. Thus, the BBR shifts of
transitions from the ground or lowest metastable state to
Rydberg states are dominated by the BBR shifts of the
Rydberg states.

The advantage of probing n > 25 states from a
metastable state, as opposed to the ground state, is clear.
The Sr transition wavelengths are shorter than 319 nm
for the metastable state whereas they must be less than
219 nm for the ground state. Higher n are preferred be-
cause they have longer lifetimes, facilitating precise spec-
troscopic resolution, but this is tempered by a larger
sensitivity to inter-atomic interactions and stray static
electric fields. The Sr 5snd 3D1 states have significantly
longer lifetimes than L 6= 2 states. The natural linewidth
of the 5s25d 3D1 state is 1 kHz and its BBR broaden-
ing [15] is 2.5 kHz. A temperature accuracy of 10mK re-
quires the transition frequency to be known to 5 × 10−5

of the linewidth, well less than the routine 10−6 line-
splitting of microwave atomic clocks [19]. The fractional
frequency accuracy must be 1.7 × 10−16 to allow 10−18

accuracy of the clock transitions BBR shift, giving an
accuracy leverage of more than 100.

The DC Stark shifts of Rydberg levels from stray elec-
tric fields is a systematic error for BBR thermometry
that has to be evaluated experimentally. Asymptoti-
cally, the static polarizability of Rydberg states scales
as n7. The 5snd 3D1 state has a scalar polarizability
of −100Hzm2/V2 for n = 25 and −440Hzm2/V2 for
n = 30. Thus, by using more than one transition in this
range, both the temperature and the magnitude of any
stray electric fields can be determined.

Inter-atomic interactions between highly excited Ry-
dberg states are large, even useful for Rydberg block-
ades [14]. For large energy shifts, as in effective block-
ades, the interactions are R−3 where R is the distance
between atoms. Here, the high requisite precision dic-
tates that the atoms interact weakly, and therefore the
interactions are small compared to the Rydberg spacings
(van der Waals regime) and the interactions scale as R−6

and n11. This limits the maximum viable n. For n = 25,
the mean spacing must be 4µm for a 1 Hz shift, which
could be satisfied in a three dimensional lattice with unity
occupation and a large lattice spacing. If the lattice vol-
ume is (100µm)3, more than 104 atoms can be trapped.
The shot-noise limited signal-to-noise would be 100, en-
abling a frequency resolution of 0.16 Hz in less than 103

measurements of a 3.5 kHz wide transition.

A magic-wavelength optical lattice is needed for Ryd-
berg transitions just as it is for the high-accuracy spec-
troscopy of the clock transition. A lattice slashes the
systematic errors from photon recoils and Doppler shifts.
However, the size of Rydberg atoms can easily be larger
than the periodicity of optical lattices [21]. Therefore,

the dipole approximation may not be valid and Rydberg
atoms could be untrapped. Here we show that Sr and
Yb magic wavelength lattices do exist for Rydberg tran-
sitions, with n as large as 40, from the 3P0 metastable
states.
We begin with the full interaction potential for the

electromagnetic field,

V (re, t) =
A2(re, t)

2c2
−

1

c
(A(re, t) · p̂e), (7)

where p̂e and re are the momentum operator and the
coordinate of the Rydberg electron. The vector potential
of a standing wave is, in the Coulomb gauge

A(r, t) = −
2cE0
ω

ez sin [km(X0 + xe)] sin(ωmt), (8)

where we separate out the nuclear coordinate X0. Break-
ing the atom-lattice interaction (7) into two terms is par-
ticularly useful for Rydberg states. The dominant con-
tribution is given by the first term if there is not an
accidental resonance for the lower state. The second
term only gives a correction, smaller by approximately
(n2ωm)−2 ≪ 1. Thus, the Stark shift of a Rydberg tran-
sition is

δEn =
E2
0

ω2
m

[

sin2(kmX0)(1− 2〈n| sin2(kmxe)|n〉)

+ 〈n| sin2(kmxe)|n〉
]

. (9)

For the metastable 3P0 state, the dipole approximation
is well satisfied giving the familiar Stark shift

δE3P0
= −E2

0α3P0
(ωm) sin2(kmX0). (10)

Comparing (9) and (10), we see that the lattice potential
for the nuclear position terms (X0) is the same if

α3P0
(ωm) = −

1

ω2
m

[

1− 2〈n| sin2(kmxe)|n〉
]

. (11)

Thus, the polarizability of the metastable state has to be
negative, α3P0

(ωm) < 0, so the magic wavelength must be
blue-detuned from a metastable states dipole resonance.
The atoms are then confined at the intensity minima of
a repulsive lattice.
The matrix element in the right-hand sides of (9) and

(11) can be evaluated analytically in the limit of small
(kman ≪ 1) and large (kman ≫ 1) Rydberg orbits, of
radius an ∝ n2:

(i) 〈n| sin2(kmxe)|n〉 ≈ 1
3
k2
m
〈n|r2|n〉 ≈ 5

6
k2
m
n4

(kman ≪ 1) This correction is much less than one
when λ > 1µm and n < 40.

(ii) 〈n| sin2(kmxe)|n〉 ≈ 1/2 (kman ≫ 1), In this limit,
the first term in the square brackets in (9) goes to
zero. The second term is independent of the nuclear
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TABLE I: Magic optical lattice wavelengths λm for Yb tran-
sitions between the metastable 6s6p 3P0 and Rydberg states
6snp 3P0, 15 ≤ n ≤ 40. The corresponding polarizability
α(ωm) gives the lattice depth, Ulat = α(ωm)Ilat and we also
list two-photon transition wavelength λi.

n λm α(ωm) λi

nm kHz/(kW/cm2) nm
15 1209 32.8 620.2
20 1207 32.2 611.1
25 1203 31.1 607.8
30 1194 28.8 606.2
35 1178 25.1 605.3
40 1142 18.8 604.8

position so, when the Rydberg orbit is much larger
than the lattice wavelength, kman ≫ 1, the Ryd-
berg atom cannot be trapped in a lattice. However,
if the lattices beams do not counterpropagate, the
lattice spacing can be arbitrarily large - km may be
much less than ωm.

Eq. (11) gives a smooth dependence of the magic
frequency on n. While the position independent term
can be significant, it is supressed for large lattice spac-
ings. For n = 25 and a 4µm spacing, this term is
5.6× 10−4E2

0/ω
2
m. We note that higher-order multipoles

(magnetic dipole M1 and electric quadrupole E2) [22, 23]
give a similar atom-position-independent term in (10) for
the metastable state. These are negligible in comparison
with those for the Rydberg state, which are automati-
cally included in the form of (7).
For Sr atoms, a range of magic wavelengths exists from

2379 nm (for n = 40) to 2392 nm (for n = 15). Here the
polarizabilities range from 120 to 129 kHz/(kW/cm2).
Calculations for Yb give magic wavelengths of 1142 nm
(n = 40) to 1209 nm (n = 15), and polarizabilities from
18.8 to 32.8 kHz/(kW/cm2), for two-photon transitions
to 6snp 3P0 states (see table I). A 3D lattice generally
produces problematic vector and tensor light shifts. One
way to control these is to use three pairs of linearly po-
larized ”independent” beams that have slightly different
frequencies, which gives an effective linear polarization
throughout the lattice [24].
BBR thermometry can also be performed with tran-

sitions between Rydberg levels. The energy shifts in
Fig. 3(a) show that there are large differences around
n = 10, where the energy splittings are comparable to
kBT at 300K. However, the transition linewidths in this
region are broad, of order 100 kHz, limiting the reso-
lution. Nonetheless, a difference in sensitivity, albeit
smaller, extends up to high n and a number of transi-
tions are sensitive. For example, at n = 40, the BBR
shifts and sensitivities for the 3P0 and 3D1 are (2,713 Hz,
17.06 Hz/K) and (2,415 Hz, 16.14 Hz/K). The natural
linewidths are 8,334 and 233 Hz, and the BBR broad-

enings are 1.9 kHz. To achieve 10 mK temperature res-
olution, the line has to be split by a challenging factor
of more than 106. The advantage is that the transition
frequencies are small, less than 60 GHz, and therefore re-
quire an effortless fractional frequency accuracy of only
1 × 10−13. Because the linewidth is large, and because
neither state is metastable, optical transitions from the
metastable 3P0 to Rydberg states appear more promising
for Sr.

To summarize, blackbody radiation at room tempera-
ture poses a limit to the accuracy of Sr and Yb optical-
frequency atomic clocks. Transitions from a metastable
state to low-lying Rydberg states, n = 25−30, have frac-
tional frequency sensitivities to blackbody radiation that
are 200 times larger than the Sr clock transition. In situ

measurements of these Rydberg transition with an accu-
racy of 10−16 would give the temperature to ±10mK and
enable clock accuracies of 10−18. We show that magic
wavelength lattices exist near 2.3 and 1.2 µm for these
Rydberg transitions in Sr and Yb. Systematic errors such
as Stark shifts from patch electric fields can be evalu-
ated by probing several Rydberg transitions. Interac-
tions between atoms limit the maximum density to less
than 1010 cm−3 for the Rydberg spectroscopy, which is
still high enough to give sufficient signal-to-noise. While
transitions between two Rydberg levels around n = 40
could also be used for thermometry, the temperature sen-
sitivity for these would require a highly accurate splitting
of the transition linewidths, better than 106. Rydberg
thermometry may be particularly useful for clock appli-
cations where cryogens are prohibitive, including optical-
frequency space clocks.
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We note that another theoretical analysis of trapping
Rydberg states in lattices, to generate atomic entangle-
ment, has recently appeared [25].
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