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Nöthnitzer Strasse 38, D-01187 Dresden, Germany

(Dated: July 18, 2011)

Inter-site interactions play a crucial role in polar gases in optical lattices even in the absence
of hopping. We show that due to these long-range interactions a destabilized stack of quasi-one
dimensional Bose-Einstein condensates develops a correlated modulational instability in the non-
overlapping sites. Interestingly, this density pattern may evolve spontaneously into soliton fila-
ments or a crystal of solitons that can be so created for the first time in ultra-cold gases. These
self-assembled structures may be observed under realistic conditions within current experimental
feasibilities.
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Recent experiments are opening new avenues for
the study of the fascinating physics of dipolar gases
[1, 2]. These gases present a significant electric or
magnetic dipole-dipole interactions, which being long-
range and anisotropic differ significantly from the short-
range isotropic interactions usually dominant in quantum
gases. Ultra-cold polar gases in optical lattices are par-
ticularly interesting. Contrary to the non-dipolar case,
polar lattice gases are characterized by significant non-
local inter-site interactions that result in a rich variety of
novel physical phenomena [2, 3]. Remarkably, the inter-
site interactions play a crucial role even in deep lattices
where hopping is negligible. In particular, dipolar Bose-
Einstein condensates (BECs) in non-overlapping lattice
sites share common excitations modes. This collective
character enhances roton-like features in the excitation
spectrum [4] and modifies the BEC stability, as recently
shown experimentally [5].

Quasi-1D geometries allow for the existence of BEC
solitons and hence modulational instability in these sys-
tems leads to the formation of 1D patterns, so-called
soliton trains [6]. On the contrary, dynamical instabil-
ity in higher-dimensional BECs is typically followed by
condensate collapse [7]. In consequence, solitons patterns
in higher dimensions, as e.g. 2D crystals of solitons, are
fundamentally prevented in non-polar BECs.

In this Letter we show that the destabilization of
a dipolar BEC confined in a stack of non-overlapping
quasi-1D tubes may be followed by the spontaneous self-
assembly of stable soliton filaments or a 2D crystal of
solitons, providing a route for the first realization of self-
sustained 2D arrangements of BEC solitons. This dy-
namical self-assembly stems from the correlated charac-
ter of the corresponding modulational instability. While
for non-dipolar condensates the instability in each lattice
site would develop independently, the non-local dipolar
interactions couple the non-overlapping BECs to form a
density pattern shared by all sites. As we show, corre-

lated modulational instability may be observable in cur-
rent Chromium experiments.

The dynamically formed soliton filaments resemble
dipolar chains of classical dipoles [8], as well as chains
predicted for polar molecules [9, 10]. However, compared
to the latter, soliton filamentation is expected to occur
for smaller dipole moments due to the many-body charac-
ter of each soliton. Remarkably, inverting the sign of the
dipolar interactions results in the development of an anti-
correlated density pattern followed by the spontaneous
formation of a stable crystal of solitons. This 2D soli-
ton crystal resembles the Wigner-like crystal predicted
for polar molecules [11, 12]. However, contrary to the
latter, it is dynamically formed and self-maintained by
a non-trivial interplay between intra-tube attractive and
inter-tube repulsive dipolar interactions.

We study below a dipolar BEC confined in a stack
of quasi-1D tubes formed by an optical lattice (Fig. 1).
The lattice is assumed to be sufficiently deep to suppress
inter-site hopping. In each of the Nm lattice sites the
xy-confinement is approximated by a harmonic poten-
tial with frequency ω⊥, whereas for simplicity we assume
no confinement along z direction. We consider atoms

FIG. 1. (Color online) Scheme of the stack of disjoint quasi-
1D dipolar BECs.
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with a magnetic dipole moment µ (the results are equally
valid for electric dipoles, as e.g. polar molecules) ori-
ented along y direction by an external magnetic field.
The dipoles interact with each other via the dipole-dipole
potential Vd (r− r′) = gd

(
1− 3 cos2 θ

)
/ |r− r′|3, where

gd = µ0µ
2/4π, with µ0 being the vacuum permeability

and θ the angle formed by the vector joining the two
interacting particles and the dipole moment direction.

We assume the chemical potential much smaller than
~ω⊥ (this assumption is self-consistently verified in our
calculations). Hence, we can factorize the BEC wave
function at each site j, Ψj (r) = φj (x, y)ψj (z), with
φj (x, y) the ground-state wave function of the xy har-
monic oscillator. Treating the dipolar potential in the
Fourier space [13] we arrive at a system of Nm coupled
1D Gross-Pitaevskii equations describing the BEC stack:

ı~∂tψj (z) =

[
− ~2

2m
∂2
z +

g

2πl2⊥
|ψj (z)|2

+
gd
3

Nm−1∑
m=0

∫
dkz
2π

eıkzzn̂m (kz)Fmj (kz)

]
ψj (z) , (1)

where n̂m (kz) is the Fourier transform of the axial den-
sity nm(z) at site m,

Fmj (kz) ≡
∫
dkxdky
π

(
3k2
y

k2
x + k2

y + k2
z

− 1

)
× e−

1
2 (k2x+k2y)l2⊥−ıky(m−j)∆, (2)

l⊥ =
√
~/mω⊥ is the xy oscillator length, ∆ is the lattice

spacing, and g = 4πa~2/m.
Starting from a homogeneous on-site linear density n0

we are interested in the dynamics that follows the desta-
bilization of the condensate after an abrupt change of the
scattering length a. A substantial insight into the first
stages of the post-instability dynamics is provided by the
analysis of the elementary excitations of the condensate.

FIG. 2. (Color online) Bogoliubov spectrum for a Chromium
BEC with a density 1014 cm−3 and a = −8.5a0 (a0 is the
Bohr radius), occupying Nm = 10 sites of a lattice with the
inter-site spacing ∆ = 512 nm and a lattice depth of 13.3ER

(recoil energy), which results in the ω⊥ = 2π · 26.7 kHz, and
l⊥ = 85.3 nm. Here, qc = 0.07/l⊥.

FIG. 3. (Color online) (top) BEC wave function’s density
plot after 200 ms of the time evolution for the same param-
eters as in Fig. 2. For plotting purposes the y-width of the
tubes has been magnified. (bottom) Dynamics of the Fourier
transform of the associated column density Σ(z, t). The dom-
inating q = 0 peak has been removed for clarity and the re-
maining distribution has been normalized to the maximum.
The arrows indicate the harmonics of qc.

To this end we introduce a perturbation of the homo-
geneous solution, ψj (z, t) =

[√
n0 + χj (z, t)

]
e−ıµjt/~,

with χj (z, t) = uje
ı(zq−ωt) + v∗j e

−ı(zq−ωt), where µj is
the chemical potential in a site j, and q and ω are the
z-momentum and the frequency of the elementary exci-
tations, respectively. Employing this ansatz in Eq.(1) we
arrive at the corresponding Bogoliubov-de Gennes equa-
tions yielding the excitation spectrum and the Bogoli-
ubov coefficients uj and vj . Interestingly, even in ab-
sence of hopping, dipolar inter-site interactions result in
a collective character of the excitations that are shared
among all sites. In consequence, the excitation spectrum
acquires a band-like character [4] as depicted in Fig. 2.

Modes with imaginary frequency are associated with
dynamical instability. For non-dipolar gases, inter-
site interactions are negligible and hence all transversal
modes remain degenerated. As a result, modulational in-
stability develops independently in each site and no cor-
related density pattern occurs during the post-instability
dynamics. The situation dramatically changes for suffi-
ciently large dipole moment, as the inter-site interactions
lift the degeneracy between transversal modes. In partic-
ular, the most unstable mode becomes significantly more
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unstable than other modes, as shown in Fig. 2, govern-
ing the BEC dynamics within the linear regime. Cru-
cially, this most unstable mode is not only characterized
by a z-momentum qc (associated with the minimum of
ω2 in Fig. 2) setting the modulational instability in each
wire, but also by a transversal dependence along the y
direction locking the density pattern between sites. As
a result, during the first stages of the post-instability
dynamics a correlated modulational instability develops.
Interestingly, our numerical simulations predict that this
phenomenon may be observed in existing Chromium ex-
periments.

Fig. 3 (top) depicts the case of a Chromium BEC
destabilized by an abrupt change of a > 0 into a suf-
ficient a < 0 by means of a Feshbach resonance. The
numerical solution of Eq. (1) shows that a correlated den-
sity pattern develops, in spite of the absence of inter-site
hopping. As shown in Fig. 3 (top) this instability pat-
tern survives well into the non-linear regime where the
density modulation cannot be considered any more as a
perturbation of the original homogeneous on-site BECs.
In typical experiments the density alignements may be
more easily monitored investigating the column density
Σ(z) ≡

∑
m nm(z). Contrary to the uncorrelated case,

for which Σ(z) would show no clear structure, the corre-
lated instability results in periodically modulated Σ(z).
Fig. 3 (bottom) shows the dynamics of the Fourier trans-
form of Σ(z, t) that is clearly characterized by the ap-
pearance of harmonics of qc (compare Fig. 2 and Fig. 3
(bottom)).

The density modulation evolves into a correlated pat-
tern of solitons, as seen in Fig. 3 (top). Solitons are
created in an excited state, with both internal breathing
excitation and center-of-mass motion. As a result, for
small dipolar interactions the correlated density modula-
tion is destroyed during the subsequent non-linear evolu-
tion and the positions of solitons at different sites become
uncorrelated, not differing qualitatively from the case of
non-polar gases. Sufficiently large inter-site interactions
crucially change this picture, since correlated solitons at
neighboring sites experience an attractive inter-site po-
tential. The effective binding energy for a soliton dimer
acquires the form

Eb = (−2gd/∆
3)G(δ/∆) (3)

where we have approximated the solitons by Gaussians
of width δ, such that l⊥ � δ,∆. Note that the binding
energy between solitons differs from that of point-like
distributions (−2gd/∆

3) by the regularization function

G(x)' e1/4x2

4
√

2πx3

[
(x2+1)K0

(
1

4x2

)
+(x2−1)K1

(
1

4x2

)]
(4)

with Kn the modified Bessel function of second kind.
As a result of this inter-site soliton attraction, and al-
though the initial periodicity of the modulation (as that

of Fig. 3 (top)) is in general lost, self-assembled soliton
filaments form spontaneously (Fig. 4) when the center-of-
mass kinetic energy of the solitons acquired in the post-
instability dynamics cannot overcome the binding energy
given by Eq. (3). This occurs for a sufficiently large value
of the dipole moment that depends non-trivially on g and
the initial density n0.

Fig. 4 shows our results for three distinct filamentation
regimes governed by a value of the dipole moment µ. In
order to compare these different cases for the same initial
configuration we choose for each value of µ the appropri-
ate value of a that results in the same value of qc and so
in the same initial number of solitons in all of the cases.
For the parameters considered, no filamentation is ob-
served for µ = µCr (Chromium dipole moment). On the
contrary, the case of 1.5µCr already shows the formation
of a gas of filaments that can be easily tracked from an
analysis of the time evolution of the system. These fila-
ments of different lengths present a highly non-trivial dy-
namics, including filament-filament interactions, string-
like excitations, soliton breathing, and filament center-of-
mass motion (although their mobility is handicapped by

FIG. 4. (Color online) BEC density distribution after 500 ms
of the time evolution in Nm=20 lattice sites for µ=µCr (top
left), µ =1.5µCr (top right) and µ = 3.0µCr (bottom) with
a= −16.1a0, a= −20.1a0 and a= −41.7a0, respectively (see
text). The remaining parameters are chosen as in the case
of Fig. 2. Ellipses in the top right figure indicate filaments
trackable in the dynamics. For comparison purposes, we use
the maximum density in the top-left figure as the saturation
threshold for all density plots.
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FIG. 5. (Color online) Spontaneous crystallization of solitons
in the case of negative gd. Here, a = 306a0, µ = 6µCr and
the other parameters as in Fig. 2. (left) Density plot after
2500 ms without ramping of a. (right) Density plot after
200 ms applying the ramping of a withai =306a0,af =275a0,
t0 = 50 ms, r = 0.0095 (see [14]). We normalize the density
plot to the maximum value of the right panel.

their enlarged effective mass). Ultimately, for µ = 3µCr

strongly bound filaments of the maximum possible length
Nm form spontaneously.

Interestingly, the sign of gd may be inverted by means
of transversal magnetic fields [15] or microwave dress-
ing in the case of polar molecules [16]. Note that, al-
though we consider this case for its theoretical simplicity,
qualitatively the same results may be obtained orienting
the dipoles along the tubes. In both of these cases, the
most-unstable Bogoliubov mode presents a staggered y-
dependence that results in an anti-correlated density pat-
tern with maxima in a given site aligned with minima in
the neighboring ones. Strikingly, for a sufficiently strong
dipole moment, this structure acts as a seed for the dy-
namical formation of a permanent 2D crystal of solitons
as shown in Fig. 5.

While purely repulsive interactions sustain the 2D
Wigner-like crystals proposed for polar molecules [11, 12],
the crystal of solitons is self-maintained by a subtle inter-
play of dipolar inter-tube repulsion and intra-tube attrac-
tion. Due to the anti-correlated character of the density
modulation, solitons in neighboring sites provide an effec-
tive potential barrier that prevents mutually attracting
solitons in the same tube to come together, hence keeping
the crystal stable.

Typically, however, this repulsive barrier is initially in-
sufficient to prevent solitons from merging. As a result
the initial number of solitons decreases. This process
ceases when the effective barriers maintain the solitons
at an equilibrium distance and the soliton crystal settles.
The equilibration time may be shortened by a smooth
ramping of a down, starting when the soliton number
predicted by the Bogoliubov analysis is reached [14]. As a
result of the ramping, the width of the solitons is reduced,
which in turn makes the potential barriers more effective,
allowing the crystal to reach its final form faster.

Finally, we note that polar molecules, as KRb [17], pos-

sess typically dipole moments larger than 0.5 Debye, i.e.
an effective µ > 5µCr. Large dipole values may be also at-
tained in atomic species. In particular, Dysprosium pos-
sesses a dipole moment µ = 1.7µCr [18]. Hence, dynami-
cal filamentation and crystallization should be observable
in those systems under realistic experimental conditions.

In conclusion, the dipolar inter-site interactions in a
destabilized dipolar BEC confined in a stack of quasi-
1D tubes induce an interesting dynamics characterized
by the development of a correlated modulational insta-
bility in the non-overlapping sites. For a sufficiently
large dipole moment this density modulation seeds the
spontaneous self-assembly of soliton filaments or a soli-
ton crystal, depending on the sign of the dipolar inter-
actions. Contrary to filaments and crystals of individual
molecules, filaments and crystals of solitons self-assemble
spontaneously just by simply destabilizing the conden-
sate. Moreover, we expect that due to the many-body
character of the constituent solitons the dipole moment
necessary for observing these structures may be signif-
icantly reduced and that they may be attainable with
partially polarized polar molecules or highly magnetic
atoms, paving a promising route towards the first real-
ization of 2D patterns of solitons in ultra-cold gases and,
to the best of our knowledge, in nonlinear optics as well.

We acknowledge the support of the Center of Excel-
lence QUEST and the German-Israeli Foundation.
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