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We construct a network of N globally coupled phase oscillators with a designed energy landscape. The
oscillator dynamics is derived as gradient dynamics of this energy function. The network can store N -
component binary patterns in cluster partitions of oscillators that synchronize to phase-locked motion. The
phase relations of the cluster partitions correspond to the minima of the energy landscape. We can modulate
the energy landscape via suitably chosen external fields in a way that the selected pattern for retrieval
becomes the only minimum of the energy function. The phase oscillator dynamics then evolves the system
to this minimum and retrieves the required pattern independently of the initial condition, one pattern at a
time. When, in addition, our network of phase oscillators is driven by a suitably coupled pacemaker, the
whole system performs in analogy to a central pattern generator of neural networks, provided that the time
dependence of the external fields is accordingly tuned.
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Pattern retrieval is an important issue in the context of artificial neural networks. In particular

patterns can be encoded in phase differences of oscillators. Usually, models of associative memory

are static in the sense that a whole set of possible patterns can in principle be retrieved at a given

time; which pattern is actually selected depends on the choice of initial conditions. So the patterns

are encoded in static couplings. Also in our approach we encode the patterns in phase differences, but

differently from the usual approach, we retrieve only a single pattern at a time, but from an arbitrary

initial condition. Retrieving a new pattern requires a new choice of couplings. So our couplings will

be time dependent in general. Given a static input that contains information about the required order

and the labels for the required patterns, we shall show how a pacemaker can convert this static input

into a temporal sequence of binary patterns, retrieved via Kuramoto-like dynamics from a storage

device. The storage device is given by a designed energy landscape, on which the selected patterns

of phase differences are imposed as local minima. The choice of couplings makes the selected pattern

to be the only minimum of this energy landscape. This way our combined system of pacemaker and

retrieval dynamics performs in an analogous way to a central pattern generator.

I. INTRODUCTION

Phase oscillators are studied in a variety of applications in physics, biology and information science. A paradigm
of coupled phase oscillators is the Kuramoto model1 (for a review see Acebron2). Among many applications to
synchronization phenomena in biological systems, phase oscillators were studied in particular to represent the behavior
of systems of neurons. The reason is that information in neural networks is not only encoded in the average activities
of the neurons, but also in temporal features such as the relative phases of spikes3; therefore phase oscillators were
supposed to individually represent the behavior of whole groups of neurons. These models for associative memory,
based on temporal coding of information, consists of coupled oscillators, mutually interacting with a Hebbian learning
rule; patterns are then stored as phase locked motion. Such models are generalizations of the Hopfield4 model towards
phase oscillators rather than spins as basic dynamical variables. They finally amount to modifications of the original
Kuramoto model with a specific coupling matrix and with synaptic delay. Such an example for retrieving information
about the phases in a network of neural oscillators is given by Aoyagi5. Here the author uses synaptic prescriptions
that recover the Hebbian rule as a special case. In these generalized Kuramoto models, solutions, which correspond to
error-free retrieval, are usually unstable so that the memory capacity is even smaller than the capacity of the Hopfield
model. An improved model as considered by Nishikawa et al.

6 uses the second-order Fourier mode in the interaction
between the oscillators in order to have a similar capacity as in the original Hopfield model.
On the one hand, such models serve to unfold possible mechanisms for memory and pattern retrieval in natural

neural networks like the brain. On the other hand, nowadays the engineering aspect of networks plays also a prominent
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role. For example, complex dynamical structures in populations of N phase oscillators were engineered by means of
nonlinear time-delayed feedback that is implemented in the interactions of the oscillators7–9. In a similar spirit we
engineer the energy landscape in which a system of phase oscillators moves in a controlled way due to an appropriate
choice of the couplings between the oscillators (below we shall call the couplings external fields). Therefore, differently
from previous models, in our case the mode of encoding patterns in the couplings is primarily realized as external
signal which points to the state that is needed at a time, so that for a whole temporal sequence of states the couplings
will become time dependent.
It is well known that coupled phase oscillators may converge to a synchronized state which is characterized by all

oscillators sharing the same frequency, but differing by their individual phases, so that the state can be characterized
by a phase-locked motion. If we gather all labeled oscillators sharing the same phase difference with respect to some
reference oscillator into one cluster, the synchronized state can be described by a cluster partition of the oscillators. In
this paper we shall choose the system of phase oscillators such that it assumes only two possible values for the phase
difference, 0 or π, so that the maximal number of possible cluster partitions is 2N−1 in the state of phase-locked motion
of a globally coupled system. A cluster partition ξ of N phase oscillators is then characterized by an N−1-component
vector of phase differences, which take the values ξi = 0 or π. Such a vector will be called “pattern” or configuration
in the following. (Obviously these patterns are immediately mapped to binary sequences with N − 1 components.)
Now our goal is to retrieve sequences of these 2N−1 patterns in a controlled way starting from an arbitrary initial
condition. In view of that, we design an energy-landscape over configuration space such that the minima in this
landscape correspond to the 2N−1 patterns, all of which are of the same height initially. What we call “energy” plays
the role of a potential in a gradient dynamics that drives our phase oscillators to a local minimum of this potential
(if there were several minima, the minimum approached by the dynamics would be the one with a basin of attraction
that includes the given initial condition).
Now, in order to retrieve a selected pattern out of the 2N−1 possible ones that are in principle available, we apply

external fields which modulate the energy landscape in a way that the selected pattern becomes the only minimum.
For the selection of another pattern, the external fields would be appropriately changed. This way it becomes possible
to retrieve a whole temporal sequence of patterns. We shall illustrate how we can retrieve a cyclic sequence of patterns
and point on parallels to central pattern generators. Central pattern generators usually are considered in the context
of neuroscience as explanation of how nervous systems produce movement. They are autonomous neural networks
that can endogenously produce rhythmically patterned output like breathing, walking, or heartbeat10. For a review
on how central pattern generators for locomotion can be driven by pacemaker cells we refer to Brocard et al.

11.
The paper is organized as follows. In section II we present the model and the rules for choosing the external fields.

Section III gives the results for the energy landscape of four oscillators, and the retrieval within a system of eleven
oscillators with 210 patterns. We also show first results on the performance of our device in analogy to a central
pattern generator. The conclusions are drawn in section IV.

II. MODEL

At a first place we construct an effective energy landscape. The energy landscape is chosen as the function L (′L′

shall remind to its role as Lyapunov function) that enters the dynamics like a potential. It depends on N oscillator
phases in the following way:

L = −
K

4N

N
∑

i,j=1,i6=j

(

cos(Φj − Φi)− fij

)2

(1)

with Φi ∈ [0, 2π[, i = 1, ..., N the phase variables and K a coupling that finally determines the speed of convergence
of the associated dynamics towards the stationary state, see Eq. 2 below. Here we just consider an all-to-all coupled
system, but similar considerations apply for other topologies like oscillators with nearest neighbor couplings only. Out
of the maximally N(N − 1)/2 different phase differences, only N − 1 are independent. We choose the phase of the
Nth oscillator as reference, and ∆ΦiN = Φi −ΦN ≡ xi, i = 1, ..., N − 1 as independent variables. With fij we denote
the external fields, fij ∈ R, i, j ∈ {1, ..., N}.

For vanishing fij , L has obviously 2N−1 minima given by the vectors ξ(k), k = 1, ..., 2N−1 of equal height with

components ξ
(k)
i ∈ {0, π}. So the meaning of ξ

(k)
i = ∆Φ

(k)
iN is the value that the phase difference between oscillator

i and the reference oscillator N takes in the selected pattern k. In general, the fij are constant external fields
appropriately chosen to modulate the energy function L, as we shall explain below. It is these 2N−1 local minima
which are our candidates for retrieval. The label k of the state ξ(k) is determined by interpreting the pattern of
0s and πs as binary sequence in decimal representation. Local extrema of L are considered as function of N − 1
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independent phase differences. Candidates are all combinations of ∆Φij being either zero or π, for an arbitrary pair
i, j ∈ {1, ..., N}. Other zeros of the first derivative of L occur at values of ∆Φij = arccos fij as long as |fij | ≤ 1,
or, given a choice of fij , when the sum in the first derivative of L vanishes due to the cancelation of terms with
alternating sign.
The oscillator dynamics is chosen to be the gradient dynamics of L according to

Φ̇i = −
K

N

N
∑

j=1,j 6=i

sin(∆Φji)
(

cos(∆Φji)− fji

)

. (2)

At this place a remark is in order why we call fij external fields rather than couplings although they enter the
dynamics of (Eq. 2) also in a multiplicative way. The reason is to stress that their choice (like usual external fields)
is externally controlled, here via the required pattern for retrieval. First we shall choose these fields independently
of time, later their time dependence will be controlled via a pacemaker, by the externally required (so far arbitrarily
chosen) sequence of patterns. Thus the dynamics of Eq.2 serves only as a tool for pattern retrieval. It is not supposed
to model a concrete natural system of oscillators. For vanishing external fields we get back the Kuramoto model with
twice the usual frequency in the interaction of oscillators. Similarly to the Kuramoto dynamics the interaction of the
oscillators depends only on phase differences ∆Φij , and due to the choice of trigonometric functions the interaction
terms are bounded as in the Kuramoto dynamics. The natural eigenfrequencies of the oscillators in our case are all
set to zero. Due to the gradient dynamics the phase differences will evolve to a fixed point which is the minimum of
the energy function L that is closest to the initial conditions. The reason is that the time derivative of L is negative.
It is given as

L̇ =
N
∑

i=1

∂L

∂Φi
Φ̇i = −

N
∑

i=1

(

∂L

∂Φi

)2

< 0 . (3)

A similar set to our dynamic equations (Eq. 2) and to the energy function Eq. 1 was used by Nishikawa et al.
6,

who added a stabilizing term (second-order Fourier mode) to the interaction of Kuramoto phase oscillators in order
to overcome the shortage in the capacity for error-free retrieval of the associative memory. This way the authors
succeeded in improving the capacity to become as high as that of the Hopfield model. Our model corresponds to theirs
in the special case when only one pattern ξ is stored in the network, and our external fields are equal to the Hebbian
couplings for that pattern. Under these conditions, we have an associative memory with error-free retrieval of just
one pattern ξ, but our generic motivation is a very different one. We want to error-free retrieve only one pattern at
a time, but from an arbitrary initial condition, possibly far away from the final minimum, which by choice of the
external fields is the only minimum in the system; many patterns shall be retrieved only in a time sequence which
is controlled by a pacemaker, therefore our couplings (external fields) are in general time dependent. Differently, in
Nishikawa et al.

6, N/ logN patterns can be stored with N neurons at a given time, but the associative memory in
the network of Nishikawa et al. is static. The general implementation of patterns in our case is, however, quite different.

Choice of external fields A sufficient condition for a local minimum reads that the Hessian matrix of L is positive
definite, i.e., all eigenvalues being larger than zero, due to an appropriate choice of fij . Now let us select one pattern

ξ(s) with s ∈ {1, ..., 2N−1}.

Conjecture Let the external fields modulate the interaction between oscillator pairs according to

fij(α, s) = α

(

2

π
|ξ

(s)
i − ξ

(s)
j | − 1

)

(4)

for i, j ∈ {1, ..., N, i 6= j} with ξ
(s)
N ≡ 0, α any real number with α > 1 and s the index of the selected pattern.

The conjecture then is that the selected configuration remains the only local minimum when these external fields are
applied, while all other former local minima become saddles in at least one direction or local maxima. (For α < 1 it
can be shown that all local minima remain stable, but the selected one becomes the deepest.) The gradient dynamics
will then retrieve the local minimum from any initial condition, not necessarily close to the selected minimum. In the
appendix we shall show that for this choice of external fields the Hessian is positive definite for each configuration
that is selected from the 2N−1 patterns, and not positive definite for all other 2N−1 − 1 configurations, which were
formerly also minima for vanishing external fields.
We cannot analytically exclude that local minima occur for phase configurations at intermediate values between

0 and π, but our numerical calculations do not show any such evidence for systems up to 11 phase oscillators with
210 = 1024 patterns, for which we have checked the feasibility of an appropriate retrieval.
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III. RESULTS

A. Energy landscape

An application is shown in Fig. 1 for three mutually coupled phase oscillators with four patterns (0, 0), (0, π), (π, 0), (π, π),
corresponding to local minima of equal height, since the external fields are set to zero. Fig. 2 a-d shows modulated
energy landscapes with only one local minimum at (0, 0) (a), (0, π) (b), (π, 0) (c), and (π, π) (d), and a choice of
fij according to Eq. 4 with α = 2, cf. Table I. Note that cases (b), (c) and (d) in Table I result from a cyclic
permutation, so that the dynamics is identical, but the binary patterns to be retrieved are different.

 0  0.5  1  1.5  2  2.5  3  0
 0.5

 1
 1.5

 2
 2.5

 3

-1

 0

L

∆φ13

∆φ23

L

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2

FIG. 1. (Color online) Energy landscape without external fields. Energy function L over configuration space spanned by the
phase differences ∆Φ13 and ∆Φ23. L has four local minima of equal height at (0, 0), (0, π), (π, 0), and (π, π).

TABLE I. Choice of external fields

Fig.2 f12 f13 f23
(a) -2 -2 -2
(b) +2 -2 +2
(c) +2 +2 -2
(d) -2 +2 +2

Choice of external fields for three mutually coupled oscillators to modulate the energy L according to Eq.4 for the different
panels of Fig. 2 (a-d) with α = 2.
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FIG. 2. (Color online) Modulated energy landscape. Modulated energy function L over configuration space after application of

external fields such that the only local minimum occurs at ξ(0) = (0, 0) (a), ξ(1) = (0, π) (b), ξ(2) = (π, 0) (c), and ξ(3) = (π, π)
(d). For the choice of external fields see Table I.

B. Retrieval of a pattern out of a large set

We studied larger systems of 11 phase oscillators with 210 = 1024 patterns, which are local minima as long as the
external fields are kept zero. The external fields were chosen according to our rule Eq.4, α = 2 was kept throughout
all simulations, and each of the randomly selected patterns was found within a few time units, (with one time unit
composed of 100 integration steps, since the integration step size was chosen as 0.01). As a typical example, let us
retrieve the pattern ξ(682) = (π, 0, π, 0, π, 0, π, 0, π, 0) using the dynamics of Eq. 2. We integrate this dynamics using
a second order stochastic Runge-Kutta method12 with white noise. As initial conditions we choose the phases of all
other corners of the hypercube in configuration space, corresponding to the 1023 patterns which are not selected, and
a set of 105 randomly chosen initial phases Φi ∈ [0, 2π[ in between. Throughout the simulations we keep the white
noise at a low level with an amplitude of T = 0.001. This intensity is sufficiently small to let the system evolve to
the selected minimum; on the other hand it is needed to give the system a kick towards one of the directions which
is now unstable for the initial condition that corresponds to one of the non-selected corners. We find that in all
these cases the dynamics retrieves the selected pattern ξ(682). This is the numerical evidence that there is only one
local minimum in the landscape. For the retrieval of other patterns we proceeded in the same way and never found
numerical evidence for another local minimum than the selected pattern.
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C. Time dependent external fields and pattern generators

Obviously we can extend our dynamics to sequential pattern retrieval via time dependent external fields. We
choose the external fields constant over a time interval that exceeds the typical transient time for retrieval of a state
which starts from an arbitrary initial condition. Let us first label the 2N−1 states by decimal labels s as before
(that correspond to the dual representation of s which is obtained by interpreting the pattern of 0s and πs of s as
binary sequence). Out of these states we want to retrieve a subset of P patterns rξs(r), r = 1, ..., P , s(r) is then the
associated decimal label of the state that is selected as the rth state in the sequence. For cyclic sequences we choose
now a pacemaker with constant frequency ωR and phase ψ, whose time derivative is given by

ψ̇ = ωR. (5)

It is the phase ψ of this pacemaker that points to the selected pattern r, r ∈ {1, ..., P} over some period τr, chosen
as τr = 2π

ωR

1
P (r − 1). For simplicity we choose the time intervals between different patterns to be the same, namely

∆τr = τr − τr−1 for all r ∈ {1, ..., P}. When the instantaneous phase ψ reaches a value ψr = τr, external fields are
switched on that guarantee the retrieval of pattern r according to the following dynamical equations

Φ̇i = −
K

N

N
∑

j=1,j 6=i

sin(∆Φji)
(

cos(∆Φji)− fji(ψ)
)

(6)

with

fij(ψ) =

P
∑

r=1

α

(

2

π
|rξ

s(r)
i − rξ

s(r)
j | − 1

)

gr(ψ) (7)

and

gr(ψ) = Θ(ψ − ψr)−Θ(ψ − ψr −B). (8)

This means that the function gr(ψ) controls the external signal to be given as α
(

2
π |

rξ
s(r)
i − rξ

s(r)
j | − 1

)

over the

phase interval [ψr, ψr +B], with Θ the Heavyside function and B the duration of the application of fij for the given
choice. In general we should have τr ≥ B > τtrans, that is, both the time interval between two pattern retrievals and
the time of application of the constant external fields to reach the new pattern should be larger than the transient
time τtrans that the system needs to go from one pattern to the next.
An example is shown in Fig. 3. Out of the 1024 pattern we randomly select the sequence 1ξ672, 2ξ0, 3ξ942, 4ξ477,

5ξ1023 in the indicated order. The external fields are changed at time ψr = 0, 2π/5, 4π/5, 6π/5 and 8π/5. At these
instances we see in Fig. 3a that the energy function L jumps from its minimal value at L ≈ −500 to some larger value
around L ≈ −300, where it remains as long as the system of oscillators searches the new minimum, corresponding
to the new choice of external fields. When the new minimum is found, L drops to the minimal value again. During
such an interval of duration τr, the Euclidean distance D(t) in configuration space between the actual state and the
closest pattern has a peak at an intermediate time interval where the system is moving from one to the next selected
state. We see these peaks in Fig. 3b. For about half of the period τr this distance is zero, indicating that the system
is in the required pattern. In Fig. 3c we plot the states which are closest to the instantaneous states of the system
as function of time. Obviously the closest states are just the selected ones, but this does not mean that the actual
states (evolving with time) are identical with the selected ones over the whole duration of the plateau; as mentioned
before, the distance to the selected states vanishes only for roughly half of the period as it is seen from Fig. 3b.
The width of the peaks in the distance from the closest states can be tuned by the coupling parameter K, large K
accelerates the convergence to a new pattern, once the external fields are changed; also the strength of the external
fields, parameterized by α, determines the speed of convergence.
In Fig. 4 we show three permutations of the same subset of five out of 210 patterns. Indicated are the five plateaus in

time where a certain pattern remains the closest to the current state and where this pattern agrees with the system’s
state over roughly half of the period (the analogous figures to Fig. 3b are not displayed here). It should be noticed
that a change in the pattern sequence from Fig. 4a to 4b and 4c only amounts to a permutation of {rξs(r)}r∈{1,...,5}

to {π(r)ξs(π(r))}π(r)∈{1,...,5}, where π(r) denotes a permutation of the original order.
If a certain sequence of patterns would code a certain sequence of locomotion, a switch from one to another mode

in locomotion amounts to a mere permutation of the order in which the pointer of the pacemaker clock addresses the
pattern of external fields, but the “hardware” of patterns, stored in the energy function L along with the retrieval
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FIG. 3. Sequential pattern retrieval of a sequence s1 = {ξ672, ξ0, ξ942, ξ477, ξ1023}. (a) Energy L(t) as function of time.
(b) Euclidean distance of the actual state of the system to the closest state (corresponding to patterns on the corners of the
hypercube). It vanishes for roughly half of the period B, so that the system then has retrieved the desired state. (c) Closest
states to the current evolving state as function of time. As seen from the figure, the closest states themselves vary with time.
The set of closest states agrees with the set of selected states. The states carry their decimal labels. The external fields are
time-dependent as explained in the text. The parameters are chosen as K = 10, N = 11, P = 5, B = 2π/P , α = 2 and ωR = 1.
The dynamical equations of the pattern generator are integrated with the second order stochastic Runge-Kutta method with
white noise with ∆t = 0.01 and noise intensity T = 0.001.

rules, stored in fij , remains the same. So the energy landscape would play the role of a “multi-item working memory
buffer”, while the pacemaker would select the patterns from the memory at the required time instants. In our model
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the very choice of external fields fij is externally designed in view of the pattern that we want to retrieve. In an
extended dynamics the choice may be internally determined.
In our former example the static input would consist of the sequence {rξs(r)}r∈{1,...,5}, by which the time ordering is

specified via the order of the sequence and the patterns to be retrieved are coded as decimal numbers. The pacemaker
clock then transforms this input into a temporally ordered retrieval of patterns, labeled by s(r). Our device may
therefore be regarded as a stylized version of the central pattern generator of the leeches’ heartbeat. According to
Hooper10, the central pattern generator of the leech heartbeat can be divided into two sets, the rhythm generator
(corresponding to our pacemaker), and the pattern generator (corresponding to our phase-oscillator dynamics). The
pattern generator there generates the actual motor pattern in response to driving input from the rhythm generator
(in our case in response to the driving input of external fields from the pacemaker). A detailed description of the
leech heartbeat central pattern generator can be found in Hooper10.

IV. CONCLUSIONS

We store binary patterns or, equivalently, sequences of zeros and πs in the phase differences of synchronized phase
oscillators. The 2N−1 patterns are vectors of length N−1. Differently from other retrieval mechanisms, our procedure
can start from an arbitrary configuration of oscillator phases. Due to the gradient dynamics the system will converge
to the next local minimum of the energy landscape, and due to our choice of external fields there is only one such
local minimum. Our external fields play also the role of (in general) time dependent couplings, and in common with
other approaches of implementing memory in phase oscillators or neural networks, the information about the required
patterns is stored in these couplings. Retrieval of a different pattern at another instant of time would amount to
another adapted choice of external fields. The external fields should be kept constant over a time interval that is
larger than the transient dynamics of the phase oscillators to approach the required pattern. Otherwise we may choose
them as function of time to retrieve a whole temporal sequence of patterns. We have illustrated sequential pattern
retrieval for a cyclic sequence via a pacemaker whose pointer controls the appropriate choice of external fields. So we
consider our device as a possible building block in a larger (artificial) network. The fields fij would then no longer
be external, and their time evolution would be controlled by the inherent pacemaker dynamics in such a larger unit.
This way our retrieval device may then function in an analogous way to a central pattern generator.
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VI. APPENDIX

Consider the energy function for an all-to-all coupled system of N phase oscillators:

L = −
K

4N

N
∑

ij,i6=j

(cos(Φj − Φi)− fij)
2. (9)

From now on we set the coupling K = 1. Let the external fields be chosen according to

fij(α, s) = α

(

2

π
|ξsi − ξsj | − 1

)

for i, j ∈ {1, ..., N, i 6= j} (10)

with ∆Φij = xi − xj , ξ
s
N = xN ≡ 0, α any real number with α > 1 and s the index of the selected pattern. We

now prove a sufficient condition that the Hessian matrix with respect to the N − 1 independent phase differences is
positive definite for the selected pattern and not positive definite for all other 2N−1−1 patterns, provided we choose the
external fields fij according to Eq.4. From the first derivative ∂L/∂xi we immediately see that candidates for extrema
are xi ∈ {0, π}, where xi was defined as ∆ΦiN = Φi − ΦN , while for fiN > 1 the individual cos-dependent terms are
different from zero. For a particular given choice of fij , fiN with possibly alternating signs the first derivatives can
vanish also at intermediate values of xi which we project on [0, 2π[ that can lead to further extrema. This part we
treat numerically in order to exclude that these extrema compete with the selected minimum that shall be retrieved.
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Next let us consider the Hessian of L as function of the phase differences. Apart from the normalization factor, its
diagonal elements are given as:

∂2L

∂x2k
= − sin2(xk) + cos(xk)

(

cos(xk)− fkN
)

−
N−1
∑

j=1,j 6=k

(

sin2(xk − xj)− cos(xk − xj) (11)

·
(

cos(xk − xj)− fjk
)

)

,

its off-diagonal elements are:

∂2L

∂xk∂xl
= sin2(xk − xl)− cos(xk − xl)

(

cos(xk − xl)− flk
)

. (12)

For a choice of the external fields fij according to the rule (4), the matrix simplifies to

∂2L

∂x2k
= −

{

∓ 1
(

± 1− fkN
)

+
N−1
∑

j=1,j 6=k

(

∓ 1
(

± 1− fjk
)

)

}

(13)

for the diagonal elements and k = 1, ..., N − 1, and to

∂2L

∂xk∂xl
= ∓1

(

± 1− flk
)

(14)

for the off-diagonal elements, with k, l ∈ {1, ..., N − 1}, k 6= l. The upper (lower) sign in front of the the bracket with

flk stands for the case that the difference of components |xsk − xsl |, read off from the selected configuration ~ξs, is zero
(π), respectively.
Next we study the positive definiteness of this matrix for all 2N−1 configurations which may be selected for retrieval.
Here it is convenient to classify the configurations in terms of their Hamming distance from the selected pattern, i.e.

the number of mismatches of components between ~ξ and ~ξs, which varies between zero and N − 1. By a suitable
permutation of the coordinate axis in configuration space we can always achieve that the k mismatches occur in
the first k coordinates of ξ so that the corresponding Hessian H is chosen as representative for all patterns with k
mismatches.

H with no mismatches According to our choice of fij , their signs are opposite to those of cos(∆Φs
lk), that is

∆Φs
lk = 0 or (π), so that cos∆Φs

lk = 1 or (−1) and flk = −α (or +α), α > 1, respectively. The diagonal elements
then simplify to ∂2L/∂x2k = (N − 1)(1+α), the off-diagonal elements to ∂2L/∂xk∂xl = −(1+α). The Hessian there-
fore takes the form of an (N − 1)× (N − 1) dimensional circulant matrix, whose eigenvalues turn out to be λ1 = 1+α
with multiplicity 1 and λ2 = N(1 + α) with multiplicity (N-2). (Here we have used the following: Eigenvalues of an

n× n circulant matrix, specified by the vector (c0, c1, ..., cn−1), are known to be given as c′j =
∑n−1

k=0 e
2πijk/nck with

j = 0,−1,−2, ...,−(n− 1). In our case the Hessian has a particularly simple form, for which one element in each row
is (N − 1)(1 + α), while all other N − 2 elements are −(1 + α). Using these values and the fact that the sum over all
n roots of the unit circle adds up to zero leads to our results for the eigenvalues.) Now, since for α > 1 all eigenvalues
are positive, the selected configuration corresponds to a local minimum in configuration space, whatever pattern has
been chosen for retrieval. (In order to have only a local minimum at the selected configuration, obviously α > −1
would be sufficient, but at the same time, the other patterns should become saddles or local maxima, and in view of
that we shall need α > 1, see below.)

H with one mismatch Next we evaluate the Hessian for a configuration that differs from the selected pattern
in a single phase difference. Without loss of generality we assume the mismatch to happen in the first coordinate,
affecting the Hessian in the first column and the first row according to H11 = (N − 1)(1 − α), H1j = (α − 1) = Hj1

for j = 2, ..., N − 1, while the remaining (N − 2)(N − 2) submatrix remains circulant. The Sylvester criterion,
applied to the positive definiteness of the overall (N − 1)× (N − 1) matrix, is now violated due to the first element
H11 = (N − 1)(1−α) < 0 for α > 1, so that the configuration with one mismatch is no longer a local minimum of the
energy function L. (As necessary and sufficient condition for a Hermitian matrix to be positive definite, the Sylvester
criterion requires that all leading principal minors of the matrix are positive.)
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H with k > 1 mismatches Now the configuration has k mismatches with the selected configuration which we
arrange to occur in the first k coordinates. Here it should be noticed that fiN will have the “wrong” sign with respect
to ∆ΦiN , i = 1, .., k, but fil will have the “right” sign with respect to ∆Φil for i, l ∈ {1, ..., k}, since two mismatches
compensate in the relative phase differences (“wrong” (or “right”) refer to the feature which prevents (or ensures)
the property of becoming a local minimum, respectively.) This explains why the components of the k × k submatrix
Sk(H) in the upper left corner of the Hessian are given by

Sk(ii) = (N − 1)− α(N − 2k + 1), i = 1, ..., k (15)

for the diagonal elements and

Sk(ij) = −(1 + α) i, j = 1, ..., k, , i 6= j (16)

for the off-diagonal elements. The submatrix Sk(H) is again circulant and has eigenvalues λ1 = (N − k)(1− α) with
multiplicity 1 and λ2 = N − α(N − 2k) with multiplicity k − 1, so that the determinant of this submatrix reads

|Sk(H)| = λ1λ
k−1
2 . Now we have to distinguish the following cases:

1. k odd. For k odd, λk−1
2 is always positive while λ1 < 0 for α > 1, so that |Sk(H)| < 0 for odd k and α > 1 and the

Sylvester criterion for H being positive definite is violated as it should be for any positive number of mismatches.
2. k even. For k even, both eigenvalues may be negative so that |Sk(H)| > 0. In order to see that the Sylvester
criterion is still violated, we have to distinguish the following cases:
(i) For α > 1 and k > N/2 we have λ1 < 0 and λ2 > 0, so that the Sylvester criterion is violated.
(ii) For α > 1 and k < N/2, λ2 < 0 for α > N/(N − 2k), so that |Sk(H)| < 0 only for 1 < α < N/(N − 2k).
(iii) To finally see what happens for α > 1 and α > N/(N − 2k) let us consider the determinant of the submatrix
of size l = k − 1 in the upper left corner of H. This matrix has eigenvalues σ1 = (N − k + 1) − α(N − k − 1) and
σ2 = N − α(N − 2k) with even algebraic multiplicity (k − 2), so that again the sign of λ1 determines the sign of this
subdeterminant. Now σ1 < 0 for 1 < N−k+1

N−k−1 < α, but this is certainly satisfied, since in the considered case k ≥ 2

and α was even larger than N/(N − 2k) by assumption. So this (k− 1)× (k− 1)-dimensional subdeterminant violates
the Sylvester criterion for H to be positive definite.
In particular, for the maximal number of mismatches k = N−1, λ1 = 1−α < 0 for α > 1 and λ2 = N+α(N−2) > 0

for N > 2, and for N = 2, λk−1
2 = λN−2

2 = 1 > 0, so that the corresponding pattern again ceases to be a local minimum
of the energy function.
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2Acebrón J A, Bonilla L L, Pérez Vicente C J, Ritort F and Spigler R (2005) The Kuramoto model: A simple paradigm for synchronization
phenomena Rev Mod Phys 77:137-185.

3O’Keefe, J and Recce, M L (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3,
317-330.

4Hopfield J J (1982) Neural networks and physical systems with emergent collective computational abilities, Proc Nat Acad Sci USA

79(8):2554-2558.
5Aoyagi T (1995) Network of neural oscillators for retrieving phase information Phys Rev Lett 74(20):4075-4078.
6Nishikawa T, Lai Y-C and Hoppensteadt FC (2004) Capacity of oscillatory associative-memory networks with error-free retrieval. Phys.
Rev. Lett. 92:108101.

7Hansel D, Mato G and Meunier C (1993) Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E 48(5):
3470-3477.

8Kiss I Z, Rusin C G, Kori H, and Hudson JL (2007) Engineering complex dynamical structures: sequential patterns and desynchronization
Science 316:1886-1889.

9Manrubia S C, Mikhailov A S and Zanette D H (2004) Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems
World Scientific Lecture Notes in Complex Systems, Vol. 2. World Scientific, Singapore.

10Hooper SL (2000) Central pattern generators Current Biology 10(5):R176-R177.
11Brocard F, Tazerart S, and Vinay L (2010) Do pacemakers drive the central pattern generator for locomotion in mammals?, The

Neuroscientist 16(2):139-155.
12Honeycutt R L (1992) Stochastic Runge-Kutta algorithms. I. White noise. Phys. Rev. A 45(2):600-603.



11

0 6.2832 12.566
Time

0

500

1000

1500
C

lo
se

st
 s

ta
te

 ξ
k (t

)

0 6.2832 12.566
Time

0

500

1000

1500

C
lo

se
st

 s
ta

te
 ξ

k (t
)

0 6.2832 12.566
Time

0

500

1000

1500

C
lo

se
st

 s
ta

te
 ξ

k (t
)

a)

b)

c)

ξ0

ξ1023

ξ942

ξ672

ξ477

ξ942 ξ1023

ξ0

ξ477
ξ672

ξ1023

ξ672

ξ942

ξ0

ξ477

FIG. 4. Sequential pattern retrieval of different sequences with the same states. (a) Time evolution of the sequence s2 = {ξ0,
ξ1023, ξ942, ξ672, ξ477}. (b) Time evolution of the sequence s3 = {ξ942, ξ1023, ξ0, ξ477, ξ672}. (c) Time evolution of the sequence
s4 = {ξ1023, ξ672, ξ942, ξ0, ξ477}. In all cases we show only the states which are closest to the current evolving state. For
roughly half a period the distance between the closest state and the actual state of the system vanishes, which is interpreted
as pattern retrieval.
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