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Prediction of equilibrium Li isotope fractionation between minerals and aqueous
solutions at highP andT : an efficientab initio approach
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Abstract

The mass-dependent equilibrium stable isotope fractionation between different materials is an important geochemical
process. Here we present an efficient method to compute the isotope fractionation between complex minerals and
fluids at high pressure,P, and temperature,T , representative for the Earth’s crust and mantle. The method is tested by
computation of the equilibrium fractionation of lithium isotopes between aqueous fluids and various Li bearing miner-
als such as staurolite, spodumene and mica. We are able to correctly predict the direction of the isotope fractionation
as observed in the experiments. On the quantitative level the computed fractionation factors agree within 1.0h with
the experimental values indicating predictive power ofab initio methods. We show that withab initio methods we are
able to investigate the underlying mechanisms driving the equilibrium isotope fractionation process, such as coordi-
nation of the fractionating elements, their bond strengthsto the neighboring atoms, compression of fluids and thermal
expansion of solids. This gives valuable insight into the processes governing the isotope fractionation mechanisms on
the atomic scale. The method is applicable to any state and does not require different treatment of crystals and fluids.
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1. Introduction

The fractionation of stable isotopes between var-
ious materials is of importance in geoscience, as
the variation in isotope content provides valuable in-
formation on processes and interaction between at-
mosphere, biosphere, geosphere and hydrosphere.
Although there is substantial analytical work per-
formed in this area, reliable computational meth-
ods to predict isotope fractionation factors have been
available only recently, proving that they can con-
tribute towards understanding geochemical mecha-
nisms responsible for production of isotope signatures
(Driesner, 1997; Yamaji et al., 2001; Schauble, 2004;
Domagal-Goldman et al., 2008; Hill & Schauble, 2008;
Meheut et al., 2009; Schauble et al., 2009; Zeebe, 2009;
Hill et al., 2010; Rustad et al., 2010a; Rustad et al,
2010b; Zeebe, 2009, 2010).

Ab initio calculations of equilibrium isotope frac-
tionation between minerals have received considerable
attention recently. Previous studies, however, were
mostly limited to simple crystals containing just a few
atoms in the unit cell such as quartz, kaolinite or carbon-
ate minerals (Meheut et al., 2007; Rustad et al., 2010a),

as the methods used require considerable computational
resources. Only very recently, the calculations have
been extended to more complex crystalline solids con-
taining up to 80 atoms in the unit cell by Schauble
(2011). There are different approaches used in the com-
putation of the mass-dependent stable isotope equilib-
rium fractionation factors of minerals, but all methods
require knowledge of the vibrational spectrum of the
considered system, which is usually computed usingab
initio methods. Meheut et al. (2007) performed full nor-
mal mode analysis of the solid phases accounting for
the phonon dispersion in reciprocal space. Because of
the huge computational requirements, this method, al-
though correct, can be only applied to the computation
of stable isotope fractionation between simple phases.
On the other hand, in order to derive the frequencies
required for the computation of the fractionation fac-
tors Rustad et al. (2010a) approximated the solids by
small clusters and treated them as large molecules. This
approach is based on well established theories of sta-
ble isotope fractionation (Bigeleisen & Mayer, 1947;
Kieffer et al., 1982; Chacko et al., 2001) showing that
the major contribution to the mass-dependent fraction-
ation comes from the local vibrational motion of the
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Table 1: Lattice parameters of the investigated Li-bearingsilicates.Natoms is the number of atoms in the modeled supercell. The units areÅ and
degrees.

staurolite spodumene mica 1M mica 2M1 mica 2M2 mica 3T
a 7.848 9.463 5.20 5.209 9.04 5.200
b 16.580 8.392 9.01 9.053 5.22 5.200
c 5.641 10.436 10.09 20.053 20.2100 29.760
α 90 90 90 90 90 90
β 90 110.15 99.38 95.74 99.58 90
γ 90 90 90 90 90 120
ref. 1 2 3 3 4 5

Natoms 81 80 44 88 88 66
References:1Comodi et al. (2002),2Cameron et al. (1973),3Sartori (1976),4Sartori et al. (1973),5Brown (1978)

fractionating element. In line with this finding Schauble
(2011) has found that considering the phonon spectrum
on a single phonon wave vector only is sufficient for
modeling of26Mg/24Mg isotope fractionation between
magnesium bearing crystal phases.

As fluid-rock interactions are a major cause that
alter the isotopic signature of a mineral in a rock,
understanding the equilibrium isotope fractionation
processes between minerals and aqueous fluids is of
great importance in petrology. Although there has
been considerable work on stable isotope fractiona-
tion between various minerals and the computational
techniques are well established, the question of
treating fluids, namely aqueous solutions remains
open. Most of theab initio calculations of iso-
tope fractionation in fluids use the cluster approach
(Domagal-Goldman et al., 2008; Hill & Schauble,
2008; Zeebe, 2009; Rustad et al, 2010b; Rustad et al.,
2010a; Hill et al., 2010; Yamaji et al., 2001; Zeebe,
2010), in which the considered species (ions or molec-
ular complexes such as Fe, Mg, H3BO3) are surrounded
by a hydration shell and the whole structure is relaxed
assumingT = 0 K. This approach is based on the
computation of static atomic configurations and is valid
at low temperatures only. In case of Li in aqueous
solution at high temperatures (T ∼ 1000 K), frequent
exchange between particles of the hydration shell
surrounding Li cation with the fluid is observed on time
scales as short as picoseconds (10−12 s, Jahn & Wunder
(2009)). Distribution of cation coordination and
cation-O bond lengths, effects that are expected to
affect the isotope fractionation (Bigeleisen & Mayer,
1947), also change with pressure (Jahn & Wunder,
2009; Wunder et al., 2011). These features are difficult
to account for by using the cluster approximation for a
compressible fluid at high temperature. The impact of
the dynamical behavior of particles and compressibility

of fluid must be investigated in order to properly
compute the isotope fractionation in aqueous fluids.
The only recentab initio work that accounts for the
dynamical effects on the isotope fractionation in fluid
is by Rustad & Bylaska (2007) who considered boron
isotope fractionation between B(OH)3 and B(OH)−4 in
aqueous solution. They performedab initio molecular
dynamics simulations of this system and tried to use the
vibrational density of states derived through the Fourier
transform of the velocity auto-correlation function
as an input for the calculation of the11B/10B isotope
fractionation coefficient. The resulting fractionation
factor α = 0.86 is much lower than the experimental
valueα = 1.028. Interestingly, the discrepancy between
experiment and theory is cured by quenching the
selected configurations along the molecular dynamics
trajectory and computing the harmonic frequencies.
The fractionation factor derived using these frequencies
exactly reproduces the experimental value.

In this contribution we present an efficient approach
to the computational prediction of equilibrium isotope
fractionation between complex minerals and fluids at
high P and T . Both solids and fluids are treated as
extended systems by application of periodic bound-
ary conditions in all three spacial directions. We will
demonstrate that atT > 600 K the fractionation factor
can be computed by considering the force constants act-
ing on the fractionating element only. Both solid and
fluid supercells should be big enough to avoid signif-
icant interaction between atoms and their periodic im-
ages. In our investigation we use cells at least 5 Å wide
in each spacial dimension. A representative distribution
of relevant coordination environments in the fluid struc-
ture is obtained by performing Car-Parrinello molecu-
lar dynamics simulations (Car & Parrinello, 1985). For
the calculation of the fluid fractionation factors, several
random snapshots from this simulation are chosen. The
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Figure 1: Theβ factors for staurolite and spodumene. The lines represent the results using Eq. 3 (solid lines) and Eq. 1 with the full frequency
spectrum (dotted lines).

force constants acting on the fractionating element and
the resulting fractionation factors are then obtained for
each configuration and the fractionation factor for the
considered element in the fluid is computed as an aver-
age over the whole set of geometries.

As a test case for our approach, we have computed the
fractionation factors between Li bearing aqueous fluids
and three minerals, mica, staurolite and spodumene. For
these systems, recent experimental data are available for
comparison (Wunder et al., 2006, 2007). Furthermore,
lithium as one of the lightest elements with two stable
isotopes produces strong isotope signatures. It strongly
fractionates into aqueous fluids during fluid-rock inter-
action processes and is used as a tracer of mass trans-
fer in the subduction cycle (Wunder et al., 2006). The
two stable isotopes,7Li and 6Li, have respective abun-
dances of 92.5% and 7.5%. The large mass difference
of 7.016003/6.015121= 16.6% results in a prominent
fractionation of at least a fewh even at high temper-
aturesT ∼ 1000 K. The experimental data on Li iso-
topes indicate a significant influence of the Li coordi-
nation and the Li-O bond length on the fractionation
of Li isotopes. The heavier isotope preferentially occu-
pies the lower coordinated sites and phases with shorter
bond distance (Wunder et al., 2011), which is expected
also from the theoretical point of view (Schauble et al.,
2009). We will show that the application ofab ini-
tio methods to Li-bearing silicates and fluids provides
unique insight into the mechanisms driving equilibrium
Li-isotope fractionation on the atomic scale.

2. Theoretical model

The mass-dependent equilibrium isotope fractiona-
tion is driven by the change in the molecular and crys-
talline vibration frequencies resulting from the different
mass of the isotopes. The fractionation between species
and an ideal atomic gas is called theβ factor or the re-
duced partition function ratio (RPFR) and in the har-
monic approximation is given by the formula:

β =

Ndo f∏

i=1

u∗i
ui

exp
(ui − u∗i )

2
1− exp(−ui)
1− exp(−u∗i )

, (1)

whereu = ~ωi/kBT , ~ = h/2π is the reduced Planck
constant,ωi the vibrational frequency of thei-th de-
gree of freedom,kB is the Boltzmann constant,Ndo f

is the number of degrees of freedom, which for theN
being the number of atoms in the considered system
(molecule, mineral or fluid) is equal to 3N − 5 for a
diatomic molecule, 3N − 6 for multiatomic molecules
and 3N for crystals, and a star symbol marks the heav-
ier isotope. Despite requiring only the knowledge of
the vibrational frequency spectrum, the above formula
accounts also for the translational and rotational mo-
tions of a molecule (Chacko et al., 2001). Because of
the Redlich-Teller product rule, equation 1 is also valid
for minerals (but with the product running to 3N), if the
crystal is represented as a big molecule (Chacko et al.,
2001). The fractionation factor between two substances
A and B,αA−B is computed as the ratio of the relevantβ
factors, which for (β − 1) ∼ 10−3 is well approximated

3



Table 2: Theβ factors for mica (columns 2-5) and fractionation factors between mica and spodumene (last column) computed atT = 650 K for
various mica polytypes and Li substitution sites. All values are given inh. The measured value is that of Wunder et al. (2007).

Mineral Li1 Li2 Li3 Average ∆7Limc.−spd.

1M 13.9 14.9 - 14.6 +4.7±0.9
occupation 0.3 0.97 -
2M1 13.9 13.6 - 13.7 +3.8±0.9
occupation 0.38 0.92 -
2M2 13.8 13.4 - 13.6 +3.7±0.9
occupation 0.37 0.95 -
3T 12.2 14.9 12.1 13.6 +3.7±0.9
occupation 0.7 0.89 0.14
exp. +2.5±1.0

by its differences:

αA−B = βA/βB ≃ ∆A−B = βA − βB. (2)

The calculation of theβ factor requires only the knowl-
edge of the vibrational properties of the considered sys-
tem computed for the two different isotopes. How-
ever, computation of the whole vibrational spectra of
complex, multiparticle minerals or fluids requires sub-
stantial computational resources and is currently lim-
ited to systems containing a few dozens of atoms.
Any approach that would allow for a substantial re-
duction of computational time and computationally ef-
ficient treatment of complex systems is highly desired.
Bigeleisen & Mayer (1947) have shown that in case of
u < 2 the isotope fractionation can be computed from
the knowledge of the force constants acting on the atom
of interest. Theβ factor (Eq. 1) can then be approxi-
mated by:

β ≃ 1+
Ndo f∑

i=1

u2
i − u∗2i

24
= 1+

∆m
mm∗

~
2

24k2
BT 2

3∑

i=1

Ai (3)

whereAi are the force constants acting on the isotopic
atom in the three perpendicular spacial directions (x, y
and z),∆m = m∗ − m andm is the mass of the frac-
tionating element. For clarity we will call the formula 3
the single atom approximation through the paper. The
validity criterion,u = ~ω/kBT < 2, restricts the usage
of the formula to frequenciesω [cm−1] < 1.39T [K]. As
it is rare thatω >> 1000 cm−1 (with the exception of
the vibrations involving hydrogen), the formula is usu-
ally valid for high temperaturesT > 600 K. In the case
of Li, ω < 600 cm−1 and the formula is valid down to
T ∼ 450 K. This gives us the opportunity to simplify
the calculations by considering the force constants act-
ing on one atom of interest instead of all atoms consti-
tuting the considered system. For large systems con-
taining hundreds of atoms the speed up in the calcula-

tions can be significant as the full normal mode analysis
of anN-atoms system requiresN times more computa-
tions than computing a single atom. For instance for a
system containing 100 atoms the calculations using the
single atom approximation are 100 times faster. We will
show that the computation of isotope fractionation fac-
tors from the knowledge of the force constants acting
upon the element of interest allows for efficient calcu-
lation of Li isotope fractionation between complex sil-
icates, such as spodumene, Li-micas and Li-staurolite,
and aqueous solutions.

One important aspect of the method is its usage for
the calculation of isotope fractionation in crystals. In
principle in order to compute theβ factors for crystals
one has to account for dispersion. In a solid the phonon
frequencies are identified by aq-vector in a reciprocal-
space, which requires extension of the product in Eq.
1 beyond the number of atoms and adding multiplica-
tion over theq-vector grid (see Eq. 16 of Meheut et al.
(2007)). However, considering the26Mg/24Mg frac-
tionation in Mg-bearing minerals Schauble (2011) has
shown recently that for minerals of multiatomic struc-
ture (N > 20) considering a single phonon wave-vector
is sufficient for getting very accurateβ factors even at
T = 300 K (error of 0.1h). At T = 1000 K the error
is negligible and in the order of 0.01h. This finding
and the computation ofβ factors considering the sin-
gle atom approximation reduce the computational load
required to compute the fractionation factors to calcu-
lation of only the force constants acting upon fraction-
ating element. This allows for computer-aided investi-
gation of isotope fractionation in complex minerals and
fluids containing hundreds of atoms.

3. Computational approach

The calculations ofβ factors of crystals and aque-
ous solutions were performed by applying density func-
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Figure 2: Theβ factor for various polytypes of mica. The lines represent the results for isotope substituted on different Li sites: Li1 (solid lines),
Li2 (dotted lines) and Li3 (dashed line).

tional theory (DFT) methods, which are currently the
most efficient methods allowing for treating extended
many particle systems quantum-mechanically. For that
purpose we used the CPMD code (Marx & Hutter,
2000), which is especially suited forab initio simula-
tions of fluids. In order to reach consistency with previ-
ous work on Li-bearing aqueous fluids (Jahn & Wunder,
2009), we used the BLYP exchange-correlation func-
tional (Becke, 1988; Lee et al., 1988), a plane wave
basis set and an energy cut-off of 70 Ryd for geom-
etry relaxations and molecular dynamics simulations
and of 140 Ryd for computation of vibrational frequen-
cies and force constants. The much higher cut-off

used for derivation of the vibrational frequencies and
force constants was essential to obtain the convergedβ

factors. Norm-conserving Goedecker pseudopotentials
were applied for the description of the core electrons
(Goedecker et al., 1996). For both crystalline solids and
aqueous solutions, periodic boundary conditions were
applied. The solids were represented by large cells con-
taining at least 40 atoms. The number of atoms used

in the crystal calculations together with the lattice pa-
rameters of modeled crystals are summarized in table 1.
The lattice constants used in our calculations resemble
those determined by Wunder et al. (2006, 2007). The
atomic positions of the crystal structure were relaxed to
the equilibrium positions to minimize the forces acting
on the atoms. The aqueous solution was represented
by a periodically repeated box containing up to 64 wa-
ter molecules and one Li atom. The Li+ cation in the
fluid was charge balanced by an F− anion. The pres-
sure and temperature conditions were chosen to be close
to the experimental conditions of Wunder et al. (2006,
2007). The pressure of aqueous solution for a given
temperature and volume was calculated according to
the equation of state of Wagner & Pruss (2002). The
ab initio molecular dynamics simulations (AIMD) were
preformed for fixed temperature and volume using Car-
Parrinello scheme (Car & Parrinello, 1985). The tem-
perature during each run was controlled by a Nosé–
Hoover chain thermostat (Nosé & Klein, 1983; Hoover,
1985). For eachT −V conditions at least 10 ps long tra-
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Figure 3: The structures of [Li(H2O)n]+ clusters.

jectories have been generated with an integration step of
0.12 fs. The sum of the force constants needed for com-
putation of theβ factors from equation 3 was computed
using finite displacement scheme by fixing the positions
of all the atoms except the fractionating element. The
full normal mode analyses were performed using the
same method, but displacing all the atoms constituting
the considered system. The frequencies were obtained
through the diagonalization of the full dynamical ma-
trix (Schauble, 2004) as implemented in CPMD code.
In case of solids the atomic structures taken for compu-
tations ofβ factors were those obtained after relaxation
of atomic positions to minimize the forces for given lat-
tice constants. For fluids theβ factors were computed on
the ionic configuration snapshots extracted uniformly in
0.1 ps intervals along the 10 ps long molecular dynam-
ics trajectories. The calculations were performed with
the positions of water molecules fixed to the molecular
dynamics configurations and the Li cation was relaxed
to the equilibrium position. The effect of the continuous
medium on the derived fractionation factors was studied
by additional computations of Li(H2O)+n isolated clus-
ters. For that purpose we used a large, isolated simula-
tion box of the length of 16 Å, forcing the charge density
to be zero at the boundary, as implemented in CPMD
code.

The error in the computed value of theβ − 1 and∆
fractionation factors we estimate from an average error
of vibrational frequencies computed using chosen DFT
method. Finley & Stephens (1995); Menconi & Tozer
(2002) estimated the errors made in calculations of vi-
brational frequencies of small molecules using differ-
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Figure 4: Theβ factors for [Li(H2O)n]+ clusters. The lines represent
the results for n=3,4,5 and 6 (from top to bottom) of this work (solid
lines) and using frequencies computed in Yamaji et al. (2001) (dashed
lines). The results for n=3 and n=4 are nearly identical and hardly
resolved in the figure.

ent DFT functionals. According to these works BLYP
functional systematically overestimates the frequencies
by ∼ 3.5 % with the deviation from the mean value of
∼ 1 %. Therefore, we expect that using BLYP func-
tional theβ − 1 and∆ values are systematically over-
estimated by 7 % and that in addition there is 2 % error
in derivedβ − 1 factors. We notice that in order to cor-
rect for the systematic errors some authors (for exam-
ple Schauble (2011)) scale the DFT vibrational frequen-
cies usually by a frequency independent scaling factor,
which could be derived from the match to the experi-
mental measurements. We decided not to use such a
scaling as we intent to test the ability of DFT methods
to predict the stable isotope fractionation factors from
first principles without introducing free parameters, or
making constraints to the experimental data.

4. Results and discussion

4.1. Solids

4.1.1. Representation of the silicates
The lattice parameters of the modeled crystalline

solids are the experimental values found in the liter-
ature. For staurolite, the refined crystal structure of
Comodi et al. (2002) was used. As in the experiment
of Wunder et al. (2007) Mg-staurolite was used instead

6
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of Fe-staurolite, in order to reproduce closely the ex-
perimental conditions we replaced all the Fe atoms in
the modeled structure with Mg atoms. In staurolite
Li is a trace species. Following the assignment of
Wunder et al. (2007) we assumed that it occupies one
of the T2 sites, i.e. the 4-fold coordinated site occu-
pied by Mg atoms, and that there is only one substitution
site. The constructed model contains a single unit cell of
chemical composition Al[6]

18(Li1Mg3)[4]Si[4]
8 O45(OH)3,

where in square brackets we denote the coordination
number. The chosen composition and lattice parameters
closely resembles the ones determined for Mg-staurolite
by Wunder et al. (2007).

Spodumene is the simplest crystal investigated here.
The modeled structure is that of Cameron et al. (1973).
The chemical composition of the unit cell used in the
investigation is (Li8Al8)[6]Si[4]

16O48, which is exactly the
chemical compositions of spodumene synthesized and
used in the isotopic measurements by Wunder et al.
(2006).

Comparing with staurolite and spodumene the
Li-bearing mica obtained in the experiments by
Wunder et al. (2007) is a complex silicate system con-
taining different polytypes with relative abundances
varying significantly between different samples (see ta-
ble 3 of Wunder et al. (2007)). Following structure
determination of Wunder et al. (2007) in our investi-

gation we consider four mica polytypes: 1M, 2M1,
2M2 and 3T. The structural parameters and litera-
ture sources are given in table 1. In order to model
the minerals synthesized in Wunder et al. (2007) ex-
periment we represent the different mica polytypes
by the supercells of the following chemical compo-
sitions: K2(Li4Al2)[6]Si[4]

8 O20(OH)4 for 1M mica, by
K4(Li8Al4)[6]Si[4]

16O40(OH)8 for 2M1 and 2M2 micas,
and K3(Li6Al3)[6]Si[4]

12O30(OH)6 for 3T mica.

4.1.2. Li isotope fractionation between minerals

Staurolite and spodumene have a single Li occupation
site. In staurolite, Li substitutes for Mg in a four-fold
coordinated site, while in spodumene Li occupies the
six-fold coordinated M2 site of pyroxenes. In both cases
Li is bounded to oxygen atoms only. The computedβ
factors for both silicates are given in figure 1. We give
the results of two sets of calculations: (1) considering
force constants acting upon Li atom only using Eq. 3
and (2) performing full normal mode analysis, i.e. com-
puting full phonon spectrum at the gamma point and us-
ing Eq. 1. This provides an explicit test of the single
atom approximation outlined in section 2. Theβ factors
derived using both methods are essentially identical and
only deviate slightly at low temperatures, which is ex-
pected. Wunder et al. (2007) and Wunder et al. (2006)
measured the Li isotope fractionation between these two
minerals and the aqueous solution. According to their
measurements the fractionation between staurolite and
spodumene is 2.7± 1.0h at 1200 K and 3.7± 1.0h at
1000 K. The calculated values, which are given by the
differences betweenβ factors at the considered temper-
atures are∆7Li str.−spd. = βstr. − βspd. = 3.7± 0.5h and
4.6 ± 0.5h respectively and therefore in good agree-
ment with the experiment. We will show that because
of thermal expansion effect and different experimental
pressures (3.5 GPa with staurolite and 2.0 GPa in exper-
iments with spodumene), the computed∆7Li str.−spd. is
overestimated by 1.1h, bringing the prediction to even
better agreement with the measured data.

The case of mica is more complex as it contains dif-
ferent polytypes and Li substitution sites. In the exper-
iment of Wunder et al. (2007) the measured mica sam-
ples contained various combinations of 1M, 2M1, 2M2
and 3T polytypes. To account for that we have com-
puted theβ factors for all the outlined polytypes and Li
substitutions sites. The results are given in figure 2. It is
clearly visible that both the polytype and Li substitution
sites impact slightly the value of computedβ factors.
This is because the different structural environments re-
sult in slightly different Li-O bond lengths, although the

7



Table 3: The distribution of coordination number of Li in aqueous
solutions computed by Jahn & Wunder (2009).

P[GPa] 3 4 5 6
0.28 0.68 0.30 0.02 0.00
0.52 0.41 0.52 0.07 0.00
0.75 0.31 0.53 0.15 0.01
1.2 0.25 0.54 0.21 0.01
1.5 0.15 0.60 0.24 0.01
1.9 0.10 0.58 0.29 0.03
3.3 0.04 0.47 0.38 0.11
4.4 0.03 0.35 0.45 0.17
6.0 0.02 0.29 0.49 0.20

Li coordination is the same in all cases. The largest dif-
ference is visible in case of 3T polytype, whereβ factor
computed for Li2 site is higher than for the other Li sites
and polytypes. This is because even after atomic relax-
ation this particular site exhibits the shortest Li-O bonds
with the strongest Li-O bond shorter by∼ 0.05− 0.1 Å
comparing to other Li sites and polytypes. Wunder et al.
(2007) showed that at approximatelyT = 650 K the
fractionation between mica and spodumene minerals is
2.5± 1h. The results of our calculations for that tem-
perature are reported in table 2. Here we derived theβ
factors for the different mica polytypes by taking the sta-
tistical average over theβ factors computed for each Li
site. The contribution of each site is weighted according
to the occupation of the particular site by Li atom, which
is also given in table 2. The calculations predict the cor-
rect fractionation direction, i.e.∆7Limica−spd. > 0 and
the experimental fractionation factor within uncertain-
ties of the calculations (which we estimate at∼ 0.9h

at considered temperature) but slightly overestimate the
measured value. We will show later in the discussion of
the fractionation between solids and fluid that account-
ing for thermal expansion of the crystals the reported
computed values decrease by∼ 0.3h further improv-
ing the agreement with the experiment.

4.2. Fluid

4.2.1. Cluster approach
In most of the recent work onab initio computa-

tion of the stable isotope fractionation in aqueous so-
lutions the isolated cluster approach is used in which
a considered species is surrounded by the hydration
shell and the whole structure is optimized assuming
T = 0 K (Yamaji et al., 2001; Domagal-Goldman et al.,
2008; Hill & Schauble, 2008; Schauble et al., 2009;
Zeebe, 2009; Hill et al., 2010; Rustad et al., 2010a;
Rustad et al, 2010b; Zeebe, 2009, 2010). However, at
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Figure 6: The pressure dependence of theβ factor for Li in the
fluid computed based on the cluster approach using the vibrational
frequencies of Yamaji et al. (2001) (circles), the full frequency spec-
trum computed for clusters in this work (diamonds) and usingthe
Bigeleisen & Mayer (1947) approximation (their Eq. (21)) together
with Li-O symmetric stretching frequencies of Yamaji et al.(2001)
(squares). The bars represent theβ factors computed along theab ini-
tio molecular dynamics trajectories and their width representthe un-
certainties in computed values. The dotted lines connecting the data
points are added to visualize the trend.

high temperatures and pressures the hydration shell sur-
rounding lithium ion is not static but exhibits strong dy-
namical character (Jahn & Wunder, 2009) and compres-
sion impacts its structure (Wunder et al., 2011). The
important questions are on the impact of these effects
on the equilibrium isotope fractionation and how well
these effects can be described with the widely used clus-
ter approach. In order to address these problems we per-
formed set of calculations involving [Li(H2O)n]+ clus-
ters. The clusters used in the investigation are illustrated
in figure 3. Following the work of Yamaji et al. (2001)
we computed theβ factors for isolated [Li(H2O)n]+

clusters for n = 3, 4, 5, 6, relaxing the structures to
equilibrium positions and computing the full frequency
spectra. The spectra were then used to computeβ
factors according to Eq. 1. In the same way we
also computed theβ factors using frequencies derived
by Yamaji et al. (2001) obtained with the restricted
Hartree-Fock method (RHF). Both results are given in
figure 4. Theβ factors computed with the frequencies
of Yamaji et al. (2001) are higher than the ones derived
with DFT frequencies except in then = 5 case, for
which both calculations predict the same values. This
may be related to different cluster structures used in the
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Figure 7: The dependence of theβ factor of fluid on the size of the
simulation cell. The thick and thin dashed lines represent the aver-
age value and the uncertainty limits ofβ factor computed on system
containing 62 H2O molecules.

calculations as positions of hydrogen atoms are not pro-
vided in details by Yamaji et al. (2001). An interesting
observation is illustrated in figure 5, where theβ fac-
tor is plotted as a function of Li-O bond length. With
increasingn the Li-O bond length increases, as the wa-
ter shell containing more water molecules has to relax
outwards creating more space for additional molecules.
The increase in the bond length results in a decrease of
the β factor. This has an important implication on the
pressure dependence of theβ factors derived using the
cluster approach.

Having both results for clusters we attempted to in-
vestigate the pressure effects on theβ factors. We do
that by averaging theβ factors over the statistical distri-
bution of [Li(H2O)n]+ complexes in aqueous solution,
which is pressure dependent. Jahn & Wunder (2009)
have shown that in the pressure range from 1 to 6 GPa,
the Li coordination by oxygens increases smoothly from
preferentially four-fold to five-fold coordination. At
2 GPa, which corresponds to the experimental condi-
tions of Wunder et al. (2006, 2007), the mean Li co-
ordination is about 4.2. We took the probability dis-
tribution of Jahn & Wunder (2009), which is given in
table 3, and derived the pressure-dependentβ factors
as a statistically weighted average of theβ factors de-
rived for [Li(H2O)n]+ clusters. The results are given
in figure 6. Both results derived on the twoβ fac-
tor estimations predict decrease of the Li isotope frac-
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Figure 8: Theβ factors for Li+ aqueous solution at 1.9 GPa obtained
by [Li(H2O)n]+ cluster approach and AIMD simulations. The lines
represent the results of this work (solid line) and theβ factors ob-
tained using frequencies of Yamaji et al. (2001) (dotted line). The
dashed line represents the fit to theβ factors given by bars, which
indicate the uncertainty in the computed values, and computed at dif-
ferent temperatures as an average over the AIMD trajectories.

tionation with increase in pressure. This is because at
higher pressure the more coordinated and with longer
Li-O bond lengths [Li(H2O)n]+ structures are preferred,
which results in lowerβ factors. This finding is counter
intuitive, as one should expect that the compression
of the fluid should lead to the shortening of the Li-O
bonds, elevated vibrations and resulting higherβ fac-
tors. In figure 6 we also give the estimation ofβ fac-
tors computed from the knowledge of the Li-O totally
symmetric stretching frequencies using rough approx-
imation of Bigeleisen & Mayer (1947) (their Eq. 21)
with the relevant frequencies of Yamaji et al. (2001)
and the [Li(H2O)n]+ clusters probability distribution
of Jahn & Wunder (2009). In the Bigeleisen & Mayer
(1947) approximation theβ factor is proportional to the
square of the totally symmetric stretching frequency,
νs, and the cluster size, i.e.β ∼ ν2sn. As with in-
creasing the cluster size,νs decreases by∼ 20%, the
largest effect on the isotope fractionation computed us-
ing the Bigeleisen & Mayer (1947) method comes from
the coordination (cluster size). The resulting pressure-
dependentβ factor shows the desired tendency. It in-
creases with the size of the cluster, which causes the
increase in pressure as is seen in figure 6. We will show
that the simulation of continuous media is required for
proper investigation of the effect of the compression and
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Figure 9: The average Li-O distance between Li and the three closest
O atoms in aqueous fluid as a function of pressure.

to obtain realistic isotope fractionation signature of high
P fluids.

4.2.2. Molecular dynamics approach
In order to fully account for the pressure effects, spa-

cial continuity of the fluid and its dynamical motion
we produced 10 ps long molecular dynamics trajecto-
ries of systems consisting of 64 H2O molecules and
one Li ion for differentT = 1000 K, 800 K and 600 K
and pressure of 1.9 GPa, which closely resembles the
experimental conditions of Wunder et al. (2006, 2007).
The corresponding simulation box length is 12.17 Å at
T = 1000 K. We note that the thermal effects on the
pressure will require to use a supercell of∼ 1 % smaller
box length forT = 600 K, a small effect which we omit-
ted. As the oxidation state of Li in the aqueous solution
is +1, following Jahn & Wunder (2009) we added a F
atom to the system as a charge compensator. An inter-
esting question is on the impact of the system size on the
computedβ factors. In order to investigate this problem
we computed 10 ps length trajectories also for simula-
tion boxes containing 8, 16 and 32 H2O molecules for
T = 1000 K and pressure of 1.9 GPa. The resultingβ
factors are given in figure 7. Within the accuracy of
the calculation theβ factor is system size independent
and in principle small systems containing 8 H2O atoms
can be used in the investigation. This substantially re-
duces the required computational time. As the current
implementations of plane-wave DFT methods scale as
N2
−N3, with N being the number of particles in the sys-

tem (number of electrons), the computation time gained
reducing the number of particles in the computational
box could be significant. In our calculations switching
from a system containing 64 water molecules to 8 the
gain is a factor of∼85. Nevertheless for our calcula-
tions we used the simulation box containing 64 water
molecules. In order to obtain the temperature dependent
β factor atP = 1.9 GPa we fitted by the least squares
procedure the formulaβ = 1+A/T 2 to theβ factors cal-
culated at the three temperatures. The parameter of the
fit is A = 6.112·10−3 for temperature expressed in units
of 103 K. The resultingβ factor as a function of temper-
ature atP = 1.9 GPa is given in figure 8 together with
the already discussed predictions using the cluster ap-
proach. Interestingly, the molecular dynamicsβ factor
is in good agreement with the value obtained by using
clusters approach with Yamaji et al. (2001) frequencies.
The difference between our cluster and MD calculations
is also moderate, 0.6h at 1000 K and 1h at 800 K.
However, the agreement between both types of calcu-
lations is only reached at lower pressures (P < 2 GPa),
which will be discussed in the next paragraph. In or-
der to check the validity of the single atom approxima-
tion outlined in section 2 for fluids we computedβ fac-
tors with the full frequency spectra obtained for selected
configurations. We found only negligible deviation of
the resultedβ factors from the ones derived considering
force constants acting on the Li atom only.

In the [Li(H2O)n]+ cluster calculations we obtained
an unexpected result indicating thatβ factor should de-
crease with pressure, which we found counter intuitive.
In order to investigate the pressure impact on theβ fac-
tor accounting for the continuity on the medium and
its pressure-driven compression we computed the frac-
tionation factors atT = 1000 K and different pres-
sures on a system containing 8 H2O molecules. In each
case 10 ps long trajectories were generated andβ fac-
tors were computed on a set of atomic configurations
extracted uniformly along the trajectories. The result
is given in figure 6. We clearly see that for pressures
P > 2 GPa, as the effect of compression, theβ factor
increases monotonically with increasing pressure. The
reason for that is the small decrease in the mean Li-
O bond length (measured as the average distance be-
tween Li and the three closest neighbors) with increas-
ing P, which is opposite to the result using clusters ap-
proach, and the coordination, as shown in figure 9. This
finding is in line with results of Wunder et al. (2011),
who found that the mean Li-O distance increases for the
pressures up to 1 GPa and remains constant at higher
pressures. This explains why the computations using
cluster approach, in which the increase of the Li-O bond
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Figure 10: The solid-fluid isotope fractionation between Li-bearing minerals and aqueous solution. The lines represent the computed values and
the shadowed areas reflect the uncertainties computed assuming the computational error evaluation described in section 3. 1M, 2M1, 2M2 and 3T
lines indicate results obtained for different mica polytypes. The points are the measured values of Wunder et al. (2006, 2007). Left and right panels
represent the result without and with thermal expansion correction discussed in the text. The thermal expansion correction is made by a constant
negative shifts of the solid-fluid fractionation factors of−0.6h for staurolite,−0.7h for mica and−0.4h for spodumene. The pressure assumed
for the computations is 2 GPa . The computed values for staurolite given in right panel are shifted by additional−0.5h, the correction due to the
higher experimental pressureP = 3.5 GPa, as discussed in the text.

lengths with the increase in the cluster size, and there-
fore pressure, is also observed, produce good pressure
dependence ofβ factor at low pressures, as illustrated in
figure 6. On the other hand this clearly shows that an
isolated cluster is not a good representation of highP
andT fluid and can not be used for the computation of
theβ factors in fluids at extreme conditions. Continuity
and compressibility of the fluid have to be considered in
order to obtain realistic results.

Although most of the experimental results to which
we refer in this paper were performed at lower pres-
sures (2− 3.5 GPa), at which our results indicate small
pressure effects on the fractionation (see Fig. 6),
Wunder et al. (2011) report a measurement of Li isotope
fractionation between spodumene and aqueous fluid at
T ∼ 900 K andP = 8 GPa to be+0.75± 0.5h lower
than the values measured at the same temperature but
lower pressures for the same systems in Wunder et al.
(2006). In order to check if we are able to reproduce
this behavior with our method we computed theβ fac-

tor of spodumene at highP = 8 GPa by using the lat-
tice constants of compressed spodumene determined by
Arlt & Angel (2000). Because of the high compression,
the resultingβ factor is 3h higher than the one de-
rived for uncompressed solid. Theβ factor of fluid at
the same (P, T ) conditions increases by 1.9h. This re-
sults in pressure-driven decrease of the spodumene-fluid
fractionation factor (∆7Li spd.−fluid) by 1.1h, which is in
good agreement with the result of Wunder et al. (2011).

4.3. Fluid-mineral fractionation

The different experiments on Li isotope fractiona-
tion between Li-bearing minerals and aqueous solution
at highP andT (Wunder et al., 2006, 2007) show the
strongest enrichment in7Li for staurolite and subse-
quently lighter isotopic signatures for the fluid, mica
and spodumene. An important test for our proposed
computational method is to reproduce the sequence
of experimentally observed fractionation factors. The
crystal structures used in the calculation and the proce-
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dure used to compute theβ factors are described in pre-
vious sections, and the relevantβ factors were already
discussed. The computed fluid-mineral fractionation
factors,∆7Limineral−fluid, between staurolite, spodumene
and mica, and aqueous solution are given in figure 10
together with the experimental values of Wunder et al.
(2007) for mica and staurolite and Wunder et al. (2006)
for spodumene respectively. The errors of the computed
fractionation factors are given in the figure caption and
are derived assuming uncertainty in the computed vibra-
tional frequencies coming from using BLYP functional,
which is discussed in section 3. The computed curves
correctly predict the fractionation sequence. The heavy
Li isotope preferentially fractionates into staurolite with
respect to aqueous solution, whereas spodumene is en-
riched in6Li. The computations also reproduce the ex-
perimental results for both minerals on the quantitative
level within 1− 1.5h, taking into account the uncer-
tainties in the calculated fractionation factors, and our
prediction for spodumene is ideal. In case of mica the
picture is more complicated as it has four polytypes and
more than one Li substitution site. In figure 10 we plot-
ted the average mica-fluid fractionation factors com-
puted for different polytypes. The resulted solid-fluid
fractionation is higher than the experimental values by
∼ 1 − 2h, depending on the polytype. Nevertheless,
our results confirm that among the considered miner-
als, the fractionation between mica and the fluid is the
smallest and that on average the mica containing mix-
ture of different polytypes should be slightly enriched
with light isotope comparing with fluid. We note that
as the measurements for mica were performed at lower
temperature of∼ 650 K, the error in the calculated frac-
tionation factor between mica and fluid is significant
and∼ 0.6h. The straightforward comparison of our
results for mica crystalline solid with the experimental
data is also complicated as different reported measured
samples of Wunder et al. (2007) contained different rel-
ative abundances of different polytypes. We also found
that of all the crystalline solids considered here mica is
the most sensitive to the change in the lattice parameters
and computational setup. For instance, while theβ fac-
tors for other minerals and the fluid are well converged
(within 0.1h) using the force constants obtained with
the plane wave energy cutoff of 100 Ryd, the resulted
β factors for mica with this setup are overestimated by
∼ 1.5h and the converged values were obtained by ap-
plying much higher cutoff of 140 Ryd.

We notice that for staurolite and mica the solid-fluid
fractionation factors are overestimated by∼ 0.5−1.5h.
However, the lattice parameters used in the calculations
of the crystalline solids are the one measured at am-

bient conditions. At high temperatures solids undergo
thermal expansion, which should result in the lower-
ing of the β factors. Observing the deviation of the
computed solid-fluid fractionation factors for staurolite
and mica we attempted to check for the effect of the
thermal expansion of the lattice parameters of mod-
eled solids on the derived fractionation factors. Ac-
cording to the crystal structure data of Cameron et al.
(1973) the lattice constants of spodumene expand by
∼ 0.5 % atT ∼ 1000 K. Having such a pronounced ef-
fect, we recalculated theβ factors of spodumene atT =
573 K, 723 K and 1033 K using temperature-dependent
lattice parameters of Cameron et al. (1973). We found
that the thermal expansion of spodumene results in
∼ 0.4h decrease in theβ factors for all the consid-
ered temperatures. Similar reduction is observed for
micas. Russell & Guggenheim (1999) showed that for
the phlogopite 1M mica the lattice parameters increase
by ∼ 0.5 % at T = 650 K. Assuming that Li-bearing
micas undergo similar expansion we computed theβ
factors with the lattice parameters rescaled by+0.5 %.
The resultedβ factors are∼ 0.7h smaller, which indi-
cates that inclusion of thermal expansion effect lowers
the computed mica-fluid fractionation curves by 0.7h.
We also computed theβ factor for staurolite assum-
ing the ∼ 0.5 % increase of its lattice parameters at
1000 K (Holland and Powell, 2011). The resultedβ fac-
tor decreases by 0.6h. In addition we notice that the
measurements for staurolite were performed at higher
pressureP = 3.5 GPa (Wunder et al., 2007). At such
elevated pressure theβ factor for fluid increases by
∼ 0.5h (Fig. 6) leading to the further decrease of the
staurolite-fluid fractionation factor by 0.5h. The solid-
fluid isotope fractionation factors resulted by applying
the derived shifts inβ factors are given in the right panel
of figure 10. It is clearly visible that the corrections due
to the thermal expansion of crystalline solids and the
high pressure in case of staurolite make the prediction
more consistent with the measurements. We note that
on the right panel we plotted the solid-fluid fractiona-
tion curves only at the temperature range corresponding
to the experiment as being interested in direct compari-
son of the computed values with the experiments we ap-
plied the constant thermal expansion and pressure cor-
rection derived only at these temperatures. The respec-
tive corrections for staurolite and mica at other temper-
atures may be different.

Beside the thermal expansion effect and the uncer-
tainties and systematic errors resulting from choice of
the DFT functional there are other effects that could po-
tentially increase the uncertainties in the calculated frac-
tionation factors. These additional effects could arise
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from the usage of the experimental equation of state for
fluid and lattice parameters for crystalline solids, and
uncertainties in the crystalline lattice site occupations
as in the case of micas. On the other hand, it can not
be guaranteed with full confidence that the experimen-
tal measurements of Wunder et al. (2006, 2007), which
indicate complete isotopic exchange, reflect an equi-
librium fractionation (see for instance Li et al. (2011))
1. Nevertheless, the good agreement between theoreti-
cal prediction and experimental data on the Li isotope
fractionation between complex Li-bearing minerals and
aqueous fluid shows that the outlined method for com-
puting the isotope fractionation of fluids and crystals is
a powerful tool, which can be successfully applied for
prediction of isotopic signatures of complex Earth ma-
terials under extreme conditions.

5. Conclusions

We propose a computationally efficient approach for
computation of theβ and isotope fractionation factors
for complex minerals and fluids at high temperatures
and pressures. We demonstrated that in order to derive
the reliableβ factors for either minerals or fluids at high
T andP it is sufficient to know the force constants acting
on the substituted isotope. This reduces significantly the
computational time and allows for computations of iso-
tope fractionation in complex materials containing even
hundreds of atoms. In case of fluids we show that the
widely used technique of representing aqueous solution
as an ion-hydration-shell cluster is not sufficient to re-
produce the isotope fractionation in aqueous solutions
at elevated temperatures and pressures, when the dy-
namical character of the hydration shell and the com-
pression of the fluid have to be accounted for. This can
be achieved byab initio molecular dynamics simulation
technique, which allows for direct access to the dynam-
ical distributions of water (fluid) molecules around the
considered ion and proper consideration of compression
effects. The relevant isotope fractionation factors can be
computed on a set of uncorrelated snapshot configura-
tions extracted from the molecular dynamics trajectory.

We show that in the case of Li in aqueous solution it
is sufficient to compute theβ factors from the molecu-
lar dynamics simulations performed with a simulation
cell containing a small number of atoms, which further
reduces the computational time needed to perform the

1Although the arguments supporting the equilibrium fractionation
as given in Wunder et al. (2006, 2007) are convincing and the good
agreement between our predictions and the measurements corroborate
that scenario.

task. A system containing a single Li, a charge com-
pensating anion and 8 H2O molecules was sufficient to
obtain the accurateβ factors within the uncertainties of
theab initio method used in the calculations.

We verify our approach by computing the Li isotopes
fractionation factors between Li-bearing minerals and
aqueous solutions and their comparison with the exper-
imental data. The computed Li fractionation factors be-
tween staurolite, spodumene, mica and aqueous solu-
tions reproduce the experimental results on quantitative
and qualitative levels. We show thatab initio calcula-
tions are able to predict the correct sequence of isotopes
fractionation between considered materials as observed
in the experiment. The computed fractionation factors
are within 1h in agreement with the measured values.
We also found that the thermal expansion of the solids
affects the isotope fractionation process and its inclu-
sion improves the agreement with the experimental data.

Our study shows thatab initio computer simulations
represent a powerful tool for prediction and understand-
ing of equilibrium stable isotope fractionation processes
between various phases including aqueous solutions at
high pressures and temperatures. We expect that with
the increasing power of computers and performance of
the computational software these methods will be exten-
sively applied to complement analytical techniques and
to interpret measured isotopic signatures.
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