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The advent of Internet and World Wide Web has led to unprecedent growth of the information
available. People usually face the information overload by following a limited number of sources
which best fit their interests. In order to get the picture it is important to address issues like who
people do follow and how they search for better information sources. In this work we conduct an
empirical analysis on different on-line social networking sites, and draw inspiration from its results
to present different source selection strategies in an adaptive model for social recommendation. We
show that local search rules which enhance the typical topological features of real social communities
give rise to network configurations that are globally optimal. Hence these abstract rules help to
create networks which are both effective in information diffusion and people friendly.

PACS numbers: 89.65.Ef, 89.75.Fb, 89.75.Hc

I. INTRODUCTION

The fast development of the Internet has caused the
amount of information available to grow dramatically.
Therefore, people can hardly find what they are inter-
ested in. The problem of delivering the right content
to the right person has attracted much attention in re-
cent years. A possible solution is represented by Recom-
mender Systems [1–3], which act as personalized infor-
mation filters by analyzing users’ profiles and past ac-
tivities. Techniques used to produce recommendations
include Collaborative Filtering [2, 4], Bayesian cluster-
ing [5], Probabilistic Latent Semantic Analysis [6], ma-
trix decomposition [7, 8], diffusion and conduction [9–
11] and many others. However it was recently shown
that similarity of users’ past activities plays a less im-
portant role than social influence: people value recom-
mendations obtained by abstract mathematical analysis
less than those coming from their friends or peers [12].
Social recommendation has hence emerged as a new ap-
proach which makes direct use of the social connections
between members of a society [13]. Examples of social
recommending implementations include services like De-
licious.com, Flickr.com, LiveJournal.com, Youtube.com,
FriendFeed.com and Twitter.com, where users can select
some other users as information sources and follow them
by importing or receiving respectively their URLs, pho-
tos, journals, videos, feeds and microblogs. In these sys-
tems the information spread from a user to her followers,
and eventually to the followers’ followers, and so forth.
This diffusion mechanism resembles the spreading of epi-
demics or rumors over a network [14, 15].
A recently proposed news recommendation model [16–

18] mimics the spreading process typical for social sys-
tems and combines it with an adaptive network of con-
nections. In this model, when a user reads a news (or
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a different kind of content), she can either “approve” or
“disapprove” it. If approved, the news spreads to the
user’s followers. Thus each user receives pieces of news
from other users who represent her current leaders (i.e.
information sources). Simultaneously with the spreading
of news the leader-follower network evolves with time in
order to connect users with similar tastes. A key as-
pect of this model is hence how to find good sources for
each user. In [17] the authors propose a hybrid strategy
for leaders updating based on local search and random
off-trap, that is able to efficiently optimize the network
of connections. The local aspect of the proposed strat-
egy considers the leaders of her current leaders as po-
tential candidates for each user, increasing in this way
the clustering coefficient of the network. However this
approach leaves aside other potential good candidates.
For instance, real life examples reveal that a follower of
a user is very likely to become a good leader for her too,
as suggested by the high value of the link reciprocity in
many information-sharing social networking services.

In this work we first conduct an empirical analysis on
different on-line social networks, showing that real so-
cial communities are characterized by high values of link
reciprocity and clustering coefficient. Then, building on
the model introduced in [16], we propose and study dif-
ferent local leader updating strategies, and we compare
the features of the resultant network topology from the
viewpoint of user’ satisfaction, network adaptation and
recommendation efficiency. We only rely on local search
rules because centralized-search mechanisms are very de-
manding and almost unfeasible for large-scale networks.
Besides we wish to study the evolution of social and peer-
to-peer networks, where users do not have a complete
view of the network but only a limited and localized one.
However we show that this apparent drawback can be
overcome by an apt choice of these rules: local aware-
ness of the network becomes almost as effective as global
knowledge in producing optimal topologies. Moreover
we find that an effective local updating strategy actu-
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ally enhances both reciprocity and clustering coefficient
of the network, mimicking in this way the users’ search of
sources (or in general acquaintances) in social networks.

II. EMPIRICAL ANALYSIS

In this section we extract the features of five differ-
ent on-line information-sharing social networking sites:
delicious.com, flickr.com, livejournal.com, youtube.com

and friendfeed.com. In these systems users form a so-
cial network and can share different kind of content—
respectively bookmarks, photos, blog articles, videos and
feeds. Table I gives an overview of the features of the
different systems. Note that we excluded from the anal-
ysis both isolated nodes and self-loops. To describe the
networks’ topologies we use two standard quantities:

• Link reciprocity (r) is the tendency of node pairs to
form connections between each other and is defined
as the ratio of the number of bi-directed links to the
total number of links in the network [19].

• Clustering coefficient (c) measures the tendency of
the network to form tightly connected components
and is defined as the ratio of the number of directed
link triangles that exist among a user and her first
neighbors to the total number of triangles that can
exist among these users, averaged over all users [20]:

Delicious.com, previously known as del.icio.us, is the
world-largest online bookmarking website. Users in de-
licious.com collect URLs as bookmarks; moreover, they
can select other users to be their leaders (i.e. informa-
tion sources) and follow them by importing their own
bookmarks. Hence we can naturally represent the deli-
cious.com community by a directed leader-follower net-
work. To extract the network’s structure, we perform
a crawl of the users graph by accessing the public web
interface provided by the site: starting from a user, we
follow her outgoing and incoming links to reach other
users, and so on. This algorithm is known as breadth-
first search (BFS) [21]. The dataset is being collected
since May 2008, and it consists of 854,357 users and
2,521,187 directed links among them; out of these users,
more than 99% belong to the giant component. The val-
ues of the reciprocity and the clustering coefficient for
the delicious.com network are reported in Table I.
We also report the empirical results for flickr.com, live-

journal.com and youtube.com. In these website users can
select other users as friends (leaders, as intended in this
paper) to get access to their content (photos, blogs and
video respectively). The leader-follower networks of these
on-line communities were obtained in [22] by crawling
the large weakly connected component of the correspond-
ing user graphs. The algorithm used for the crawl was
again BFS with snowball method [23]: the data extrac-
tion starts from a set of seed users and then it expands
by following the outgoing links of these users to reach
new users, and so on.

Friendfeed.com is a microblogging service created in
2007 and acquired by Facebook in 2009, in which users
can share short messages to a list of contacts, who can
comment back under the original messages. It is also
a feed aggregator, importing data from several other
services like Twitter, Facebook, YouTube, Flickr and
Google Reader. The leader-follower network we analyze
was crawled in [24].
The summary of the results is reported in Table I. We

immediately notice that both the level of link reciprocity
and the degree of local clustering in all social networks
are significantly high. For comparison, we also report the
values of the reciprocity r0 and clustering coefficient c0
of Erdös and Rényi random graphs [25] with the same
number of nodes and links as the real networks. Both r0
and c0 are given by the ratio of the actual number of links
to the total number of possible links in the graphs, hence
r0 = c0. These values turn out to be between two and five
orders of magnitude smaller than what we observe in real
social networks. This phenomenon has a natural expla-
nation in information-sharing social communities: if two
users have common interests each of them can likely pro-
vide the other with the right content; also, people tend
to be introduced to other people via mutual friends, in-
creasing the probability that two friends of a single user
are also friends. In the following sections we will draw in-
spiration from these observations to define the topology
evolution rules of an adaptive model for social recom-
mendation.

III. MODEL DESCRIPTION

We now briefly summarize the news recommendation
model based on [16, 17] that will be used for the study
of different leader selection strategies.
The system consists of U users, each connected to L

other users (the user’s leaders) by directed links. The
value of L is fixed as users usually follow a limited num-
ber of sources. Users receive news from their leaders and
eventually read and rate them; in addition, they can in-
troduce new content to the system.
Evaluation of news α by user i (eiα) is either +1 (liked),

−1 (disliked) or 0 (not read yet). Similarity of reading
tastes of users i and j (sij) is estimated by comparing
past users’ assessments: if i and j evaluated Nij news
in common and agreed Aij times, their similarity can be
measured in terms of the overall probability of agreement

sij =
Aij

Nij

(

1−
1

√

Nij

)

(1)

where the term in the parentheses disadvantages user
pairs with small overlap Nij (which are more sensitive
to statistical fluctuations). For Nij ≤ 1, sij is replaced
by a small positive value s0. Apart from their ratings, no
other information about users is assumed by the model.
Propagation of news works as follows. When news α

is introduced to the system by user i at time tα, it is



3

TABLE I. Statistics of social networking sites.

Delicious Flickr LiveJournal YouTube Friend-Feed
Date of crawl 05-2008 01-2007 12-2006 01-2007 09-2009
Number of users 854,357 1,715,255 5,203,764 1,138,499 513,588
Number of links 2,521,187 22,613,980 76,937,805 4,945,382 19,810,789
Reciprocity 0.392 0.624 0.734 0.791 0.207
Clustering 0.161 0.165 0.255 0.077 0.146
r0, c0 3.45·10−6 7.68·10−6 2.84·10−6 3.81·10−6 7.51·10−5

passed from i to her followers j with a recommendation

score proportional to their similarity sij . If this news is
later liked by one of users j who received it, it is similarly
passed further to this user’s followers k (with recommen-
dation score proportional to sjk), and so on. For a generic
user k at time t, news α is recommended according to its
current recommendation score:

Rkα(t) = δekα,0 λ
t−tα

∑

l∈Lk

skl δelα,1 (2)

Here Lk is the set of leaders of user k, the term δekα,0

equals one only when user k has not read news α yet and
the term δelα,1 is one only if user l liked news α. The
sum represents the instance of a user receiving the same
news from multiple leaders—recommendation scores are
summed up in this case, reflecting that a news liked by
several leaders is more likely to be liked by this user too.
Finally, to allow fresh news to be accessed fast, recom-
mendation scores are exponentially damped with time,
with λ ∈ (0, 1] being the damping factor.
Starting from an initial random network configuration

(random assignment of leaders to users), connections are
periodically rewired to drive the system to an optimal
state where users with high similarity (taste mates) are
directly connected. When rewiring occurs for user i, the
leader with the lowest similarity value (j) is replaced with
a new user (k) if sik > sij . There are different selection
strategies for picking new candidate leaders:

1. Random rewiring. k is simply a user picked at ran-
dom in the network.

2. Local rewiring. k is the user in the neighborhood
of user i with the maximum value of sik. This
mechanism is based on the observation that two
users who have common acquaintances are likely
to have similar interests. As will be discussed in
the next section, there are different ways to define
such neighborhood.

3. Hybrid rewiring. Random rewiring is used in some
cases and local rewiring in the others. This mecha-
nism mimics both users searching for friends among
friends of friends (local rewiring) and having casual
encounters which may lead to long-term relation-
ships (random rewiring).

4. Global rewiring. k is the user who maximizes sik

among all users U (this is a local rewiring with the
neighborhood being the whole network).

A. Topology evolution

The search for new and better information sources is a
fundamental feature of many social communities. In the
model described above, the leader updating procedure is
intended to drive the network to an optimal state where
users with high similarity are directly connected, so that
the system is able to efficiently deliver right news to right
users. We remind here that one is constrained to local
search rules because global search mechanism (such as
the Global rewiring) are very demanding for large-scale
networks and also unfeasible without a centralized con-
trol. On the other hand, the Random rewiring strategy is
very inefficient as good new leaders are hardly found by
chance. Besides we want to be true to life: users always
have a little and localized view of the network. There-
fore we shall define the “neighborhood” of a user, i.e. a
set of close users in the network who stand for possible
candidate leaders. This is the basis of the Local rewiring.
The choice of a specific neighborhood should be clever
enough to allow users to actually find their taste mates.
For instance, the pool of candidate leaders should not be
too large, as in this case the search becomes unmanage-
able both from the system’s and the users’ point of view.
On the other hand, if the neighborhood size is very small
(compared to the whole network), the rewiring may stop
at a sub-optimal assignment of leaders: the topology evo-
lution halts if users’ better leaders are at some moment
out of the neighborhoods (they can never be reached),
meaning that the algorithm got trapped in a sub-optimal
state [17]. A possible solution to this problem is to em-
ploy some percentage of randomness in the selection, as
in the Hybrid rewiring. In this way users may happen to
get connected regardless of their distance, and the pool
of candidate leaders for each user is potentially the whole
network. In the following analysis we will always make
use of a Hybrid rewiring with 10% of randomness, to ex-
ploit mainly the local search but to avoid trapping in a
local minimum (see [17] for a detailed study of the effect
of the randomness percentage on the rewiring efficiency).
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FIG. 1. Local network structure of one user. Links’ directions
reflect how information flows between users.

B. Neighborhood definition

We shall now define the “neighborhood”, i.e. the set
of candidate leaders exploited by the Hybrid rewiring.
The local network structure from a user’s viewpoint is
represented in Figure 1. At distance one from the user
there are two sets of users: her leaders (L) and follow-

ers (F ). L and F form the first layer from the user.
At distance two, we find four different sets of users: her
leaders’ leaders (LL), leaders’ followers (LF ), followers’
leaders (FL) and followers’ followers (FF ). These sets
form the second layer from the user. Notice that the de-
scribed sets may overlap with each other (e.g. a user can
be leading but also following another user). Given such
scheme of the local network structure, we have to con-
sider which of these sets contain potential good leaders
for the user.
Apart from the current set of leaders L, the first layer

contains a good set of candidates—represented by F . In-
deed if user i is a good leader of user j, meaning that
j obtains valuable information from i, then i and j are
likely to have some common interests and the similarity
between them can be high. Hence also user j can provide
user i with the right content and be a good information
source for her. This assumption is supported by the high
value of the link reciprocity in many information-sharing
social networks (see Table I). Including F in the can-
didate set hence increases the probability of having re-
ciprocal links. However, this set may be too small to be
considered alone. Therefore we move further to the sec-
ond layer. The leaders’ leaders set (LL) was considered in
[17] where the authors observed that since user j obtains
valuable information from her leader i and such informa-
tion may come from i’s leaders, then j can have similar
interests with i’s leaders and benefit from following them.
Again this assumption is supported by the high value of
the clustering coefficient in many social networks (Table
I). Analogous considerations lead us to take into account
also the LF , FL and FF sets.
In the following sections we will study the behavior of

the described model for different definition of the neigh-
borhood. When using Hybrid rewiring, we will simply
denote it by the neighborhood that it exploits. For in-
stance it will be named as LL if only leaders’ leaders are
considered as candidates, and LL+F if also followers are
included.

IV. RESULTS

For numerical tests of the model, we use an agent-
based framework. Tastes of user i are represented by a
D-dimensional binary vector ti and attributes of news α
by a D-dimensional binary vector aα. Each vector has a
fixed number, DA, of elements equal one (active tastes)
and all remaining elements equal zero. We always set the
system so that all mutually different user taste vectors
are present exactly once: U =

(

D
DA

)

. This also means
that the taste vectors of two users differ at least in two
elements. Hence we define as “taste-mates” users with
exactly two different taste vector elements. Opinion of
user i about news α is based on the overlap of the user’s
taste vector with the news’s attribute vector

Ωiα = (ti, aα) (3)

where (·, ·) is a scalar product of two vectors. If Ωiα ≥ ∆
user i likes news α (eiα = +1), otherwise she dislikes it
(eiα = −1). Here ∆ is the users’ approval threshold.
Simulation runs in discrete time steps. In each step,

an individual user is active with probability pA. When
active, the user reads and evaluates the top R news from
her recommendation list and with probability pS submits
a new news with attributes identical to the user’s tastes.
The network of connections is rewired every u time steps.
Parameters values used in all following simulations are:

D = 14, DA = 6 (so that U = 3003), L = 10, pA = 0.05,
pS = 0.02, R = 3, ∆ = 3, λ = 0.9, s0 = 0.001, u = 10.
To measure the system’s performance we use:

• approval fraction, the ratio of news approvals to all
assessments: it tells us how often users are satisfied
with the news they read.

• average differences, the average number of vector
elements in which users differ from their leaders:
it measures how well the network has adapted to
users’ tastes.

Figure 2 shows the approval fraction (a) and the av-
erage differences (b) at different times steps of the net-
work’s evolution and for different definitions of the neigh-
borhood exploited by the Hybrid rewiring. Global and
Random methods are shown as benchmarks. As ex-
pected, if we limit the pool of candidate leaders to F ,
users are not much satisfied because they can hardly find
good information sources. This is the result of having
considered a very small set (the average number of fol-
lowers for a user equals L). If instead we define LL as
the neighborhood (as in [17]), we significantly improve
both users’ satisfaction degree and network’s adaptation
speed. This is because the candidate set is much wider in
this case—there are on average L[L−r−(L−1)(c+Lq/2)]
different leaders’ leaders for a users, and this number is
much greater than L for typical values of r, c and q (here
q is the probability that four users are linked in a closed
square structure). To further improve the performance
of the system, we expand the candidate pool to LL+ F .



5

0 1000 2000 3000 4000 5000 6000
simulation length

0.5

0.6

0.7

0.8

0.9
ap

pr
ov

al
 f

ra
ct

io
n

Global
LL+LF+FL+FF+F
LL+F
LL
F
Random(a)

0 1000 2000 3000 4000 5000 6000
simulation length

2.0

3.0

4.0

5.0

6.0

7.0

av
er

ag
e 

di
ff

er
en

ce
s

Global
LL+LF+FL+FF+F
LL+F
LL
F
Random

(b)

FIG. 2. Approval fraction (a) and average differences (b) for
different rewiring strategies. The lowest value of the average
differences is two, as it is the taste vector differences between
taste-mates.

With this definition of the neighborhood we promote at
the same time the reciprocity and the clustering coeffi-
cient of the network, obtaining a surprising effect: both
approval fraction and average differences become as good
as the ones obtained by the Global rewiring, i.e. by con-
sidering the whole network as the candidate leader set. In
other words, such a small local scale turns out to be as
representative as a whole-network scale. Hence further
expanding the candidate set to the whole second layer
(LL + LF + FL + FF + F ) does not bring to any sub-
stantial improvements. We remark that this feature does
not depend on the size of the system. We run simulations
of a 15-times bigger system with U =

(

18
8

)

= 43758 and
∆ = 4, and observe that the simple LL + F has again
the same performance as the global search.

We also measure the values of link reciprocity and clus-
tering coefficient in the network. The evolution of these
quantities is shown in Figure 3. We firstly introduce two
reference values for r and c. In the initial random net-
work the average probability to find a reciprocal link be-

0 1000 2000 3000 4000 5000 6000
simulation length

0

0.3

0.6

0.9

lin
k 

re
ci

pr
oc

ity

Global
LL+LF+FL+FF+F
LL+F
LL
F
Random

(a)

0 1000 2000 3000 4000 5000 6000
simulation length

0

0.1

0.2

0.3

cl
us

te
ri

ng
 c

oe
ff

ic
ie

nt
Global
LL+LF+FL+FF+F
LL+F
LL
F
Random

(b)

FIG. 3. Link reciprocity (a) and Clustering coefficient (b) for
different rewiring strategies. The values of r∗ and c∗ are each
represented by a horizontal dotted line in the respective plots.

tween two connected vertices is simply equal to the av-
erage probability of finding a link between any two ver-
tices, which is given by (UL)/[U(U − 1)] = L/(U − 1).
Hence we have r0 := r(t = 0) = L/(U − 1). This
statement also holds for the probability to find a closed
link triangle between three users, i.e. for the cluster-
ing coefficient: c0 := c(t = 0) = L/(U − 1). Instead
if the network is in a structure-less optimal configu-
ration where each user has randomly chosen L of her
N = DA(D−DA) taste-mates as leaders, then the value
of the reciprocity becomes r∗ = L/N . Besides in this net-
work state the probability that two taste-mate neighbors
of a user are also taste-mates with each other is given
by (D − 2)/(N − 1). To show this, consider two taste
mate users: there are (DA − 1) + (D−DA − 1) = D− 2
other users who are taste mates with both of them and
(DA − 1)(D − DA − 1) = N − D + 1 who are taste
mates with only one of them. The clustering coefficient
is given by the above-mentioned probability conditional
to the existence of a link: c∗ = [(D−2)/(N−1)][L/N ] =
[L(D − 2)]/[N(N − 1)]. Figure 3a shows that the reci-
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TABLE II. Specificity (1− α) and Sensitivity (1− β) of rec-
ommendation for different rewiring strategies.

1− α 1− β

Global 95.9% 12.6%
LL+ FL+ FL+ FF + F 96.3% 10.9%
LL+ F 96.6% 10.6%
LL 94.8% 9.2%
F 81.8% 29.9%
Random 84.2% 33.1%

procity coefficient grows from r0 as the system evolves
with any rewiring method. As expected, the value of r
is very high with F (by construction, F promotes reci-
procity), and low for Random and LL. In the latter
case, r will eventually converge to r∗. The other meth-
ods achieve similar values of r, which are comparable
with the reciprocity degree of real social networks (Table
I). The clustering coefficient (Figure 3b) shows an oppo-
site trend: it becomes soon very large with LL (by con-
struction) while it remains quite small for Random and
F , eventually converging to c∗. For the other methods c
converges to values again comparable with the clustering
coefficient of real social networks (Table I). The differ-
ences between the various methods are more evident for
c than for r, as including more sets from the second layer
will result in increasing the probability to form a closed
link triangle
At last, we discuss the efficiency of the modeled rec-

ommender system. When making recommendations, it
is possible to fall into two different kinds of error: rec-
ommending content that users wouldn’t like, and not
recommending content that users would like. These er-
rors are known respectively as of type I (false positives)
and of type II (false negatives) [26]. To complete the
picture, true positives are recommendations of content
that users would like, and true negatives are lacks of rec-
ommendation of content that user wouldn’t like. Note
that false positives upset users but false negatives do not
(i.e. a type I error has more serious consequences than
the other), hence a good recommendation engine should
mainly reduce false positives. We further introduce the
specificity (1 − α) and the sensitivity (1 − β) of the rec-
ommendation system as the ability to avoid respectively
false positives and false negatives:

1− α =
TN

TN+FP
, 1− β =

TP

TP+FN

where TP, TN, FP and FN are respectively the number
of true positives, true negatives, false positives and false
negatives. To measure these quantities in our artificial
setting, we define α as the average number of wrong rec-
ommendations for a news over the number of users who
might dislike this news—given by

∑∆−1

k=0

(

DA

k

)(

D−DA

DA−k

)

,
and 1 − β as the average number of good recommenda-
tions for a news over the number of users who might like

this news—given by
∑DA

k=∆

(

DA

k

)(

D−DA

DA−k

)

. Table II re-

ports the stationary values of specificity and sensitivity
for the recommender system when different source selec-
tion strategies are employed. Specificity is remarkably
high for all methods, especially for the best performing
ones, hence the number of false positives in the system
is very low. Sensitivity shows instead an opposite trend:
Random and F updating strategies are the best perform-
ing now. We see that the effort of reducing one type of
error results in increasing the other type, as it gener-
ally happens in statistical tests. In our case the reason
behind this phenomenon is the presence of tightly con-
nected components in the system: in a highly clustered
network news have few paths to spread far from the users
who post them (and the spreading process takes long
time), hence they tend to remain localized. As a conse-
quence, few users receive a news but almost all of them
like it. When clustering is low, a news has more spread-
ing directions, hence it can reach many users but more
of them eventually dislike it. However we are mainly
interested in having a recommender system with high
specificity, and in this sense simple local strategies (like
LL+F ) again perform at the same level of global search
in generating optimal network structures for recommend-
ing and sharing information.

V. CONCLUSION

How to recommend the right content to the right per-
son and what/who are this person’s favorite information
sources are fundamental questions in the age of informa-
tion overload. In this work we exploited a recently pro-
posed news recommendation model which combines sim-
ilarity of users’ past activities and social relationships to
obtain recommendations, and which mimics the spread-
ing process typical for social systems where the network
of connections continually evolves with time [16]. The
topology evolution serves users looking for newer and
better information sources. Since global optimization of
the users’ connections is computationally prohibitive for
a large system, a key issue of the model is where to find
good new leaders for users. Taking real life as inspiration,
we try to model the users’ search of sources in real so-
cial communities, retaining that users only have a limited
view of the network. For this purpose we designed differ-
ent local search strategies which increase the network’s
reciprocity and clustering coefficient. We then studied
the resulting evolution and properties of the system and
showed that with these local search rules the users’ com-
munity can self-organize into optimal topologies, almost
equivalent to the ones that can be generated by global
knowledge of the system. Indeed the resulting artificial
networks have high reciprocity and clustering, as similar
to the real information-sharing social communities stud-
ied in section II. Therefore our automated abstract rules
help to create networks which not only are effective for
the spreading of information but also resemble structures
resulting from real human activity.
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