
ar
X

iv
:1

10
7.

38
16

v2
  [

ph
ys

ic
s.

at
om

-p
h]

  2
1 

Ju
l 2

01
1

Atomic fragments from the nuclear reaction of the 6Li atom with

slow neutrons

Alexei M. Frolov∗ and David M. Wardlaw†

Department of Chemistry

University of Western Ontario,

London, Ontario N6H 5B7, Canada

(Dated: July 22, 2011)

Abstract

Approximate probabilities of formation of various atoms and ions in different bound states are

determined for the exothermic nuclear (n, 6Li; t, 4He)-reaction of atomic lithium-6 with slow neu-

trons. In our calculations of the final state probabilities we have assumed that the incident lithium

atom is in its ground (doublet) atomic 12S(L = 0)−state. It is straightforward to generalize our

analysis to other bound states of the three-electron Li atom.
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I. INTRODUCTION

The nuclear reaction of 6Li nuclei with slow neutrons is written in the form [1]

6Li + n = 4He + t+ 4.785 MeV (1)

where the notations 4He and t stand for the helium nucleus (often also called the α−particle,

or α, for short) and tritium (or 3H) nucleus. For thermal neutrons with En ≈ 0 the cross-

section σ of this nuclear reaction is very large σmax ≈ 960 · 10−24 cm2 or 960 barn [2], for

short. The velocities of the two nuclear fragments formed in the reaction, Eq.(1), with slow

neutrons are ≈ 6.03986 a.u. and ≈ 4.52989 a.u. for the tritium nucleus and α−particle,

respectively. These velocities are given in atomic units, where h̄ = 1, me = 1, e = 1. The

unit of atomic velocity is ve = αc ≈ c
137

≈ 2.1882661 · 108 cm · sec−1, where c is the speed of

light and α is the fine structure constant. Formally, the atomic velocity ve is the velocity of

the 1s−electron in the hydrogen atom with the infinitely heavy nucleus ∞H. It is clear that

in atomic units ve = 1.

The nuclear reaction of the 6Li nucleus, Eq.(1), proceeds with neutrons of all energies and

the energy released increases almost linearly with the energy of the incident neutron. For

fast neutrons with En ≥ 1 MeV the energy released is substantially different from the value

quoted in Eq.(1) and the velocities of the atomic fragments increase correspondingly. Note

that the cross-section of this reaction has a large resonance (maximum) σ ≈ 4.5 barn at

En ≈ 240−270 keV , but it is relatively large for neutrons of all energies En ≤ 0.8MeV . This

makes the reaction, Eq.(1), extremely important in the thermonuclear ignition and following

propagation of the thermonuclear burning wave in highly compressed (ρ ≥ 100 g · cm−3)

6LiD deuteride which is routinely used as a thermonuclear fuel in modern thermonuclear

explosive devices (see, e.g., [3], [4]). The analogous (n, 3He)-reaction [5] also plays a very

important role in such processes.

In general, the nuclear (n, t)-reactions of the 6Li and 3He nuclei with neutrons allow one

to: (1) reduce drastically the overall bremsstrahlung loss from the combustion zone; and (2)

increase the tritium/deuterium ratio which is crucially important to start many new ther-

monuclear (d, t)−reactions. Briefly, by using the 6LiD deuteride in modern thermonuclear

explosive devices we can reduce the required compressions to relatively small values. In

many cases such compressions are dozens times smaller (usually, in 25 - 40 times smaller [4])

than compressions required for any other (solid) thermonuclear fuel, e.g., 7LiD deuteride.
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On the other hand, by using compressions which are provided by a standard ‘primary’ nu-

clear charge one can create extremely compact thermonuclear explosive devices based on the

6LiD deuteride. The idea to use the pure 6LiD deuteride in thermonuclear explosive devices

was originally proposed by V.L. Ginzburg in 1948-1949 (see discussion and references in [3]).

Our goal in this study is to make accurate numerical predictions of the final state prob-

abilities for the reaction, Eq.(1), with slow neutrons. We want to predict (accurately) the

probabilities of formation of various atoms and ions in different (ground and excited) final

states. Briefly, we want to determine the probabilities to detect the He and 3H atoms and

He+, 3H− ions in their bound states. Note that all newly created atomic fragments from re-

action, Eq.(1), move rapidly even in the case of slow neutrons and that accurate theoretical

prediction of the final state probabilities for rapidly moving atomic fragments is not trivial.

On the other hand, the results of our evaluations and methods created for such evaluations

are of great interest in many applications related with the nuclear reaction, Eq.(1), and

another similar reaction of 10B nuclei with slow neutrons, namely

10B + n = 7Li + 4He + 2.791 MeV (2)

The reaction, Eq.(2), is extensively used in the boron neutron capture therapy (BNCT, for

short), or boron neutron-capture synovectomy [6] - [10], to treat different forms of cancer,

including brain cancer. The fast α−particle produced in the reaction, Eq.(2), kills (or at

least ‘badly damages’) one cancer cell before it finally stops. The modern applications of this

reaction to cancer treatment are based on the use of molecules which contain a large number

of 10B-atoms, e.g., the Na3[B20 H17NH2 CH2CH2 NH2] molecule, other similar molecules, and

molecular clusters [8], [9] (see also [10] and references therein). In this case the overall energy

release from the reaction, Eq.(2), in one cancer cell can be extremely large. Correspondingly,

the local temperature in the whole cell suddenly increases to very large values and this kills

the incident cancer cell with almost 100 % probability.

Note that the tritium nucleus does not form in the nuclear reaction Eq.(2) which means

that it is safe to initiate this reaction inside of a human body. By studying the nuclear

reaction, Eq.(1), in few-electron atoms and ions we want to develop a number of reliable

theoretical methods and numerical procedures which can be later used in applications to the

analogous reaction, Eq.(2).
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II. APPROXIMATE VARIATIONAL WAVE FUNCTION OF THE LITHIUM

ATOM

For our purposes in this study it is important to construct accurate variational wave

function(s) of the ground (doublet) 12S(L = 0)−states of the Li atom which is written in

the following general form (see, e.g., [11], [12])

Ψ(Li)L=0 = ψL=0(A; {rij})(αβα− βαα) + φL=0(B; {rij})(2ααβ − βαα− αβα) (3)

where ψL=0(A; {rij}) and φL=0(B; {rij}) are the two independent radial parts (= spatial

parts) of the total wave function. Everywhere below in this study, we shall assume that

all mentioned wave functions have unit norm. The notations α and β in Eq.(3) are the

one-electron spin-up and spin-down functions, respectively (see, e.g., [13]). The notations

A and B in Eq.(3) mean that the two sets of non-linear parameters associated with radial

functions ψ and φ can be optimized independently. Note that each of the radial basis

functions in Eq.(3) explicitly depends upon all six interparticle (or relative) coordinates

r12, r13, r23, r14, r24, r34.

In our earlier work [14] we have introduced an advanced set of radial basis functions

for bound state computations of three-electron atomic systems. Such a set is called the

semi-exponential basis set and it is written in the form

ψL=0(A; {rij}) =
N
∑

k=1

Ckr
n1(k)
23 r

n2(k)
13 r

n3(k)
12 r

m1(k)
14 r

m2(k)
24 r

m3(k)
34 exp(−αkr14 − βkr24 − γkr34) (4)

where αk, βk, γk (k = 1, 2, . . . , N) are the varied non-linear parameters. The use of a large

number of non-linear parameters in Eq.(4) allows one to construct compact and very accurate

variational wave functions for different three-electron atoms and ions. It was shown in [11]

that the semi-exponential basis, Eq.(4), has a large number of other advantages in accurate

numerical computations.

In the sudden approximation [15], [16] the numerical determination of the final state

probabilities is reduced to the analytical computation of the Fourier transform of the overlap

integral between the incident ψin and final ψfi wave functions. In the case of the nuclear

reaction of 6Li nuclei with slow neutrons under consideration here, the incident wave function

represents the ground 12S−state of the lithium atom. The final wave function represents the

product atom and/or ion. For the helium atom product we need to determine the following
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integral (or probability amplitude Mif )

Mif =
∫ ∫ ∫

ΨLi(r14, r24, r34, r12, r13, r23) exp(ıVα · r14 + ıVα · r24)× (5)

ΨHe(r14, r24, r12)d
3r14d

3r24d
3r34

where ΨLi is the wave function of the Li atom, while ΨHe is the wave function of the final

(bound) state of the He atom. The velocity Vα is the final velocity of the α−particle after

reaction, Eq.(1). For the tritium atom product in one of its bound states the probability

amplitude Mif is written in a slightly different form

Mif =
∫ ∫ ∫

ΨLi(r14, r24, r34, r12, r13, r23) exp(ıVt · r14)ΨH(r14)d
3r14d

3r24d
3r34 (6)

where ΨH(r14) is the unit-norm wave function of the tritium (or hydrogen) atom and Vt is

its velocity after the reaction, Eq.(1). In our earlier study [17] we have calculated integrals

similar to the integrals in Eq.(5) and Eq.(6) for the two-electron atomic systems which are

involved in the analogous nuclear reaction of the 3He nuclei with slow neutrons. The integral,

Eq.(5), can be considered as a partial Fourier transformation of the overlap of the incident

and final wave functions. This integral represents the Galilean transformation between the

incident system (which was at rest) and the final system which is rapidly moving with

constant speed.

In general, numerical calculations of integrals Eqs.(5) and (6) are difficult to perform due

to the presence of the electron-electron coordinates rij in the wave function. On the other

hand, for approximate evaluation of the final state probabilities for the nuclear reaction,

Eq.(1), we do not need to use the highly accurate wave functions of the Li and He atoms. In

particular, we can use the wave functions of few-electron atomic systems which do not contain

any of the electron-electron coordinates. This drastically simplifies analytical/numerical

calculation of the integrals, Eq.(5) - Eq.(6). Formally, such approximate wave functions

depend on the electron-nucleus coordinates only. Therefore, these wave functions correspond

to a system of A−electrons which do not interact with each other and can be considered

as free-electron wave functions. For the He atom we have A = 2, while for the Li atom we

have A = 3. The explicit construction of the approximate free-electron wave functions for

few-electron atomic systems is discussed below.

5



A. Special form of the trial wave function of the lithium atom

To avoid problems related to the analytical computation of the Fourier transformations

given by Eq.(5) one can apply approximate variational expansions of the three-electron wave

function. To simplify all following calculations we represent the wave function of the Li atom

in the form

ψL=0(r14, r24, r34, 0, 0, 0) =
Ns
∑

i=1

Ckr
m1(k)
14 r

m2(k)
24 r

m3(k)
34 exp(−αkr14 − βkr24 − γkr34) (7)

=
Ns
∑

i=1

Ckr
m1(k)
1 r

m2(k)
2 r

m3(k)
3 exp(−αkr1 − βkr2 − γkr3)

where Ck are the linear (or variational) coefficients, while m1(k), m2(k) and m3(k) are the

three integer (non-negative) parameters, which are, in fact, the powers of the three electron-

nucleus coordinates ri4 = ri (i = 1, 2, 3). Below, we shall assume that the trial wave function

Eq.(7) has a unit norm. Furthermore, in all calculations performed for this study only one

spin function χ1 = αβα−βαα is used. It is clear that the wave function Eq.(7) contains only

electron-nuclear coordinates and does not include any of the electron-electron coordinates.

The real (and non-negative) parameters αk, βk, γk are the 3Ns varied parameters of the

variational expansion, Eq.(7). The wave function, Eq.(7), must be properly symmetrized

upon all three electron coordinates. This problem is discussed in the next Subsection.

The principal question for the wave function, Eq.(7), is related to its overall accuracy. If

(and only if) such accuracy is relatively high, then such a wave function, Eq.(7), can be used

in actual computations of the probability amplitudes, Eqs.(5) and (6). In actual applications

the approximate wave function, Eqs.(5) and (6), can be constructed from the highly accurate

wave functions already known from earlier works (see, e.g., [11] and references therein).

Briefly, we can take our wave function of the ground 12S−state of the Li atom from [11] and

remove all those terms which contain electron-electron rij coordinates. Then the non-linear

parameters in the trial wave function, Eq.(7), must be re-optimized. The resulting wave

function can be considered as an optimal free-electron wave function of the ground state

of the ∞Li atom. Using this approach we have determined the 23-term variational wave

function shown in Table I. The total energy E of the ground 12S−state of the ∞Li atom

obtained with this wave function is -7.44859276608 a.u. Note that this value of E is very

close to the exact total energy of the ground state of the ∞Li atom. This indicates a very

good overall quality for our approximate wave function.
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B. Antisymmetrization of the trial wave function of the lithium atom

The actual many-electron wave function in an atomic system must be completely an-

tisymmetric with respect to all electron variables, i.e. upon all electron spatial and spin

variables. This statement is true for all exact and approximate few-electron wave func-

tions, including the optimized free-electron wave functions, Eq.(7). Antisymmetrization of

the two-electron wave function is trivial and is not discussed here. For a three-electron

atomic wave function this requirement is written in the form Â123Ψ(1, 2, 3) = −Ψ(1, 2, 3),

where Ψ is given by Eq.(3) and Âe is the three-particle (= electron) antisymmetrizer

Âe = ê − P̂12 − P̂13 − P̂23 + P̂123 + P̂132. Here ê is the identity permutation, while P̂ij

is the permutation of the i-th and j-th particles. Analogously, the operator P̂ijk is the per-

mutation of the i-th, j-th and k-th particles. In actual computations antisymmetrization of

the total wave function is reduced to the proper antisymmetrization of corresponding matrix

elements (for more detail, see, e.g., [14]). Each of these matrix elements is written in the

form 〈Ψ | Ô | Ψ〉, where Ô is an arbitrary spin-independent quantum operator which is

symmetric upon all interparticle permutations. The wave function Ψ, Eq.(3), contains the

two different radial parts ψ and φ. By performing the integration over all spin coordinates

one finds the four following spatial projectors Pψψ,Pψφ = Pφψ and Pφφ

Pψψ =
1

2
√
3

(

2ê+ 2P̂12 − P̂13 − P̂23 − P̂123 − P̂132

)

(8)

Pψφ =
1

2

(

P̂13 − P̂23 + P̂123 − P̂132

)

(9)

Pφψ =
1

2

(

P̂13 − P̂23 + P̂123 − P̂132

)

(10)

Pφφ =
1

2
√
3

(

2ê− 2P̂12 + P̂13 + P̂23 − P̂123 − P̂132

)

(11)

Here the indexes ψ and φ correspond to the notations used in Eq.(3). For an arbitrary sym-

metric spin-independent operator Ô each of these four projectors produces matrix elements

〈Ψ | Ô | Ψ〉 of the correct permutation symmetry (for doublet states) between all three

electrons.

C. Bound state wave functions of the final atomic fragments

The final atomic states arising in the exothermic nuclear (n, 6Li; t, 4He)-reaction of atomic

lithium-6 with slow neutrons contain either one, or two, or zero bound electrons. In this
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study our main interest is restricted to one- and two-electron atoms and ions. The explicit

form of one-electron atomic wave functions takes the form (see, e.g., [18]) Φnℓm(r,Θ, φ)α =

Rnℓ(Q, r)Yℓm(Θ, φ)α, where α is the spin-up wave function, Yℓm(Θ, φ) = Yℓm(n) is a spherical

harmonic and Rnℓ(Q, r) is the radial function. The radial function is written in the form

Rnℓ(Q, r) =
1

rn

√

√

√

√

Q(n− ℓ− 1)!

(n + ℓ)!

[2Qr

n

]ℓ+1
n−ℓ−1
∑

k=0

(−1)k

k!







n + ℓ

2ℓ+ k + 1







[2Qr

n

]k
exp

(

−Qr
n

)

(12)

where Q is the nuclear charge, while n and ℓ are the quantum numbers of this bound state.

Note that the radial function, Eq.(12), has a unit norm for an arbitrary Q.

The wave function of the two-electron He-atom can be approximated in a variety of

different forms. Currently, it is possible to construct approximate wave functions which

provide 25 - 50 correct decimal digits for the total energy of the He atom and He-like ions.

In this study, however, we shall use an approximate He wave function which does not contain

the electron-electron coordinate r21. For the ground 11S−state of the ∞He atom the radial

part of such a wave function is written in the form

ψL=0(r1, r2, r12) = C exp
[

−(Q− 5

16
)r1 − (Q− 5

16
)r2

]

(13)

where Q = 2 is the nuclear charge for the He nucleus and C is the normalizatrion constant.

The corresponding spin part of the total wave function takes the form η = α(1)β(2) −
β(1)α(2) = αβ−βα. The explicit form of the η spin function is important in the performance

of integration over all spin coordinates.

The total energy of the ∞He atom obtained with this wave function, Eq.(13), is -2.85

a.u. which indicates that it provides a relatively good approximation to the actual ground

state wave function. The main advantage of the approximate wave function, Eq.(13), is

its explicit dependence upon the two electron-nuclear coordinates r1 and r2 only. This

drastically simplifies the following computation of radial integrals with the Bessel functions

(see below). On the other hand, we need to note that the best-to-date one-term radial

wave function for the ∞He atom (see, e.g., [5]) corresponds to substantially better numerical

accuracy, since it provides the total energy E = -2.899 534 375 443 69 a.u. which is very

close to the exact answer (see, e.g., [19]). The corresponding non-linear parameters can be

found in [5]. But, in contrast with the wave function, Eq.(13), the wave function from [5]

explicitly depends upon the electron-electron coordinate r21.
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III. CALCULATIONS

By using the free-electron wave function of the Li atom obtained above we can estimate

the probabilities to form various atomic species during the nuclear reaction, Eq.(1). The

structure of the trial wave function, Eq.(7), enables one to perform accurate computations

of all integrals which include one, two and even three Galilean exponents for electrons. In

reality all such integrals are reduced to the products of one-dimensional integrals. In other

words, in our approach all electron coordinates are separated and this simplifies drastically

the following analytical and numerical computations of all required integrals.

To determine the matrix element of the operator exp(ıV ·r) (Galilean exponent) between

the wave functions of the initial and final bound, we apply the Rayleigh expansion of a plane

wave (with the use of spherical harmonic addition theorem [18], [20]). The explicit formula

takes the form (see, e.g., [18], [20], [21])

exp(ıV · r) = 4π
∑

ℓ=0

ıℓjℓ(V r)
ℓ

∑

m=−ℓ

Y ∗
ℓm(nV )Yℓm(nr) (14)

where Yℓm(n) are the spherical harmonics, V is the velocity of the final atomic fragment

and ny = y

y
is the unit norm vector which corresponds to an arbitrary non-zero vector y.

Also in this equation the spherical Bessel functions jℓ(V r) are defined by the relation (see,

e.g., [22], [23])

jℓ(V r) =

√

π

2V r
Jℓ+ 1

2

(V r) (15)

where Jℓ+ 1

2

(x) are the Bessel functions. These formulas are used in analytical and/or nu-

merical computation of all required matrix elements.

Actual computations of matrix elements with the ‘factorized’ trial wave functions, Eq.(7)

are performed with the use of the following formula
∫ ∞

0
tµJν(bt)exp(−pt)dt =

Γ(µ+ ν + 1)

Γ(ν + 1)

( b

2

)ν 1
√

(p2 + b2)ν+µ+1
× (16)

2F1

(ν + µ+ 1

2
,
ν − µ

2
; ν + 1;

b2

p2 + b2

)

where the notation 2F1(a, b; c; x) stands for the hypergeometric function. In many actual

cases these hypergeometric functions are related to the elementary/rational functions, since,

e.g., 2F1(a, b; b; x) = (1− x)−a.

The results of our computations of the final state probabilities for various atomic species

formed in the reaction, Eq.(1), can be found in Table II. As mentioned above the final states
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include various ground and excited states in the helium atom (4He), tritium atom (3H) and

He-like one-electron ion (He+). In this study we restrict ourselves to the consideration of

the 1s−, 2s− and 2p−states in the final one-electron atoms (protium and tritium) and only

one 11S−state in the 4He atom.

IV. CONCLUSION

We have considered the nuclear reaction, Eq.(1), involving the ground 12S−state of the

three-electron Li atom. The probabilities of formation of different atomic species during

this reaction have been evaluated numerically. Our newly developed procedure is based

on the use of the optimized free-electron wave functions for few-electron atomic systems

involved in the process. This allows us to perform all required complete and/or partial

Fourier transformations of the wave functions. The computed final state probabilities are

very close to the exact values determined with the use of highly accurate (or completely

correlated) wave functions which include all electron-electron coordinates.

Our procedure can now be used for the more complicated nuclear reaction, Eq.(2), in the

five-electron B-atom. The Li-atom/ion and He-atom/ion which form during this reaction

may contain up to three and two electrons, respectively. These atomic fragments move

rapidly, with the velocities vLi ≈ 2.40896 cm · sec−1 and vα ≈ 4.21568 cm · sec−1 in the case

of slow neutrons. The sudden approximation can thus certainly be applied to the He-atom

and He-like ions. However, this approximation cannot be used for internal electrons (or

12s−electrons) of the Li atom/ion, since the velocities of these two electrons are comparable

with the final velocity of the 7Li nucleus. If the nuclear reaction, Eq.(1), is produced by

the fast neutron with En ≥ 1 MeV , then the velocity of the Li atom/ion(s) is larger than

the atomic velocities of the 12s−electrons in the Li atom and sudden approximation can be

applied.
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TABLE I: An example of the trial, three-electron wave function constructed with the use of N = 23

semi-exponential radial basis functions, Eq.(7). This wave function produces the total energy E =

-7.44859276608 a.u. for the ground 12S−state of the ∞Li atom. Only one electron spin-function

χ1 = αβα− βαα was used in these calculations.

k m1(k) m2(k) m3(k) Ck αk βk γk

1 0 0 1 0.146131429481911E+02 0.416423958308045E+01 0.390330393520923E+01 0.754647967615054E+00

2 1 0 1 0.110681883475133E+03 0.526120133598745E+01 0.699723209902291E+01 0.604874234309236E+00

3 1 1 1 0.234004890152000E+03 0.598950989816454E+01 0.378246213278597E+01 0.590931685390717E+00

4 2 0 1 0.116882861303726E+03 0.413820964104499E+01 0.322650638788059E+01 0.590283203974117E+00

5 0 0 0 -0.112533836667930E+02 0.404234943769060E+01 0.402575246908481E+01 0.136870242306376E+01

6 0 0 2 0.124148253762594E+01 0.772078877480103E+01 0.208089611437233E+01 0.906692873308709E+00

7 0 0 3 0.129950444032051E+01 0.125634586976915E+02 0.167180833975207E+02 0.111484879880926E+01

8 3 0 1 0.121940082563610E+02 0.336154087416427E+01 0.329089537444583E+01 0.569461303170668E+00

9 2 2 1 -0.815264312642982E+01 0.315618697991587E+01 0.293590042487235E+01 0.642752252837086E+00

10 0 0 4 0.231307852206996E-01 0.216119418842614E+01 0.354528921898964E+01 0.848100637437686E+00

11 1 0 0 -0.290323204459308E+02 0.303111504960694E+01 0.340407714984374E+01 0.439831339492880E+00

12 1 0 2 -0.782805087195444E+01 0.319874342329211E+01 0.294880236447181E+01 0.670201325893484E+00

13 4 0 1 0.466451849833029E+05 0.257191421047538E+02 0.198922117452300E+02 0.745721864825035E+00

14 5 0 1 0.102312737866967E+03 0.610735801244370E+01 0.126738573321754E+02 0.583192334409026E+00

15 1 1 0 0.496831723313492E+01 0.214720891197913E+01 0.139151014500059E+02 0.332004403600092E+00

16 1 1 2 0.331570408306929E+01 0.313893628304852E+01 0.288670468153774E+01 0.656255394173358E+00

17 2 0 0 -0.224488896165048E+03 0.111494404746535E+02 0.712253949382151E+01 0.412242317869619E+00

18 2 0 2 -0.200426722868461E+01 0.282336074847368E+01 0.292360100848728E+01 0.638644442755579E+00

19 0 0 5 0.186252350189224E-02 0.103900277658347E+02 0.241603283627644E+01 0.858660133717424E+00

20 2 1 1 0.314011900712871E+01 0.314575640023816E+01 0.238785024725699E+01 0.645792868876097E+00

21 3 0 2 0.164525876141841E+01 0.318702139403640E+01 0.348200049008609E+01 0.663487519449685E+00

22 3 0 0 0.549306690646211E+01 0.313423005590041E+01 0.376361954006700E+01 0.494738425712773E+00

23 3 1 1 0.489167893642778E+01 0.310583281642480E+01 0.299668864388672E+01 0.617551331047668E+00
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