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Abstract

We employ a coarse-graining approach to analyze nonlinear cascades in Boussinesq flows using
high-resolution simulation data. We derive budgets which resolve the evolution of energy and poten-
tial enstrophy simultaneously in space and in scale. We then use numerical simulations of Boussinesq
flows, with forcing in the large-scales, and fixed rotation and stable stratification along the vertical
axis, to study the inter-scale flux of energy and potential enstrophy in three different regimes of
stratification and rotation: (i) strong rotation and moderate stratification, (ii) moderate rotation
and strong stratification, and (iii) equally strong stratification and rotation. In all three cases, we
observe constant fluxes of both global invariants, the mean energy and mean potential enstrophy,
from large to small scales. The existence of constant potential enstrophy flux ranges provides the
first direct empirical evidence in support of the notion of a cascade of potential enstrophy. The
persistent forward cascade of the two invariants reflects a marked departure of these flows from
two-dimensional turbulence.
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1 Introduction

The Kolmogorov [1] and Kraichnan [2] theories of three- and two-dimensional Navier-Stokes turbulence

have served as a benchmark in the understanding of fluid turbulence and as fundamental tests for the

accuracy of simulations. The Boussinesq approximation of the compressible Navier-Stokes equations in

a rotating frame give a fairly accurate description of the flow dynamics over much of the Earth’s oceans

and atmosphere but are prohibitively expensive to simulate in detail over global scales. Guided by the

success of the Kolmogorov/Kraichnan theories, it would be useful to develop a statistical phenomenology

of the small scales of Boussinesq flows to gain an understanding of the physics, serve as benchmarks to

test simulations, and offer parameterizations which could eventually be useful in practical modeling of

geophysical flows. In addition to global energy, the inviscid Boussinesq equations conserve local potential

vorticity and global potential enstrophy, thus offering more complexity than incompressible Navier-Stokes

dynamics. Charney [3] addressed one limiting case of the Boussinesq approximation, namely the quasi-

geostrophic limit of strong rotation and strong stratification, and showed that the conservation of both

energy and the quadratic potential enstrophy in such flows constrained energy to cascade to the large

scales as in 2D turbulence [2].

Conservation of potential enstrophy is believed to play a fundamental role in the dynamics of the

atmosphere and oceans [4]. Understanding its function in nonlinear scale interactions would appear

to be essential for extending Kolmogorov’s theory to Boussinesq flows with rotation and stratification.

Herring et al. [5] studied the cascade properties of potential enstrophy in turbulence simulations with a

passive scalar in the absence of rotation and stratification. They concluded that the usual Kolmogorov-

like arguments of a cascade and an inertial range do not apply to such flows due to direct action of

viscous-diffusion terms at all scales in the potential enstrophy budget, even in the limit of very small

viscosity and diffusivity (their figure 14 shows that potential enstrophy dissipation is independent of

wavenumber, k, at small values for k. See also their discussion on pp. 37 and 43). On the other hand, in

strongly rotating and/or strongly stratified Boussinesq flows, Kurien et al. [6] (hereafter, KSW06) derived

analytically a flux law for potential enstrophy which is analogous to Kolmogorov’s 4/5-law for energy

flux in 3D incompressible turbulence. The so-called 2/3-law of KSW06 implies that an inertial cascade of

potential enstrophy can exist in three limiting cases: (i) strong rotation with moderate stratification (ii)

moderate rotation with strong stratification and (iii) strong rotation and strong stratification. In these

three regimes, KSW06 showed that potential enstrophy, generally a quartic quantity, becomes quadratic

which guarantees the localization of viscous-diffusion terms to the smallest scales. Furthermore, KSW06

suggested that in the absence of strong rotation and/or strong stratification, viscous-diffusion effects

may contaminate all scales, in agreement with the conclusions of [5].

The existence of an inertial cascade range for potential enstrophy is far from obvious and remains an
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unsettled issue. To date, there has been no empirical demonstration of KSW06’s results on the constant

flux range of potential enstrophy in Boussinesq flows. In [7] a phenomenology and supporting data from

Boussinesq simulations with equally strong (non-dimensional) rotation and stratification were presented

to show that conservation of quadratic potential enstrophy could constrain the spectral distribution of

energy in the large wavenumbers. In [8] the analysis and phenomenology of [7] was extended to include

the two other limiting cases (i) and (ii) above, to show that indeed in all parameter regimes with linear

PV, the downscale flux of (quadratic) potential enstrophy can constrain the scale-distribution of energy.

It should be noted that other studies have investigated energy fluxes in stratified flow without rotation

in parameter regimes that are different from ours. For example, plots of the energy flux on a log-log

scale in figure 18 of [9] and figure 15 of [10] suggest that it is not constant as a function of wavenumber,

while [11] provides evidence of scale-independent fluxes of kinetic and potential energy. None of these

previous studies computed or analyzed the potential enstrophy flux, which constitutes an essential part

of our work.

In this Letter, we present a very general framework to analyzing nonlinear scale interactions in Boussi-

nesq flows. The coarse-graining approach we utilize allows for probing the dynamics simultaneously in

space and in scale. Motivated by the work of [6, 7, 8], we then measure fluxes of energy and potential en-

strophy across scales from simulations in three distinct limits of rotation and stratification. Our results

show constant and positive fluxes of the two quadratic invariants, indicating simultaneous persistent

downscale cascades of both quantities in all three cases. Our measurements of potential enstrophy flux

are a novel contribution of this Letter and constitute the first empirical confirmation of analytical results

by [6]. Furthermore, our evidence of a scale-independent energy flux is significant because it conveys

that a cascade should persist to arbitrarily small scales at asymptotically high simulation resolutions.

2 Boussinesq dynamics

We study stably stratified Boussinesq flows in a rotating frame. The dynamics is described by the

momentum (1) and active scalar (2) equations:

∂tu + (u·∇)u=−∇p− f ẑ×u−Nθẑ + ν∇2u +Fu, (1)

∂tθ + (u·∇)θ=Nuz + κ∇2θ + Fθ. (2)

Here, u is a solenoidal velocity field, ∇·u = 0, whose vertical component is uz. The effective pressure is

p, and Fu,Fθ are external forces. Gravity, g, is constant and in the −ẑ direction. Total density is given

by ρT (x) = ρ0 − bz + ρ(x), such that |ρ(x)| � |bz| and |ρ(x)| � ρ0, where ρ0 is a constant background

density, b is constant and positive for stable stratification, and ρ(x) is the fluctuating density field with

zero mean. The normalized density, θ(x) =
√
g/bρ0ρ(x), has units of velocity. For a constant rotation
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rate Ω about the z-axis, the Coriolis parameter is f = 2Ω. The Brunt-Väisälä frequency is N =
√
gb/ρ0,

kinematic viscosity is ν = µ/ρ0, and mass diffusivity is κ. In this paper, we only study flows with Prandtl

number Pr = ν/κ = O(1). Relevant non-dimensional parameters are Rossby number, Ro = fnl/f , and

Froude number, Fr = fnl/N , where we define the characteristic non-linear frequency as fnl = (εfk
2
f )1/3,

for a given energy injection rate εf at wavenumber kf (see [12, 6, 8]).

The dynamics of inviscid and unforced Boussinesq flows (such that ν = κ = Fθ = Fui = 0) is

constrained by the conservation of potential vorticity (hereafter, PV), q(x) = N
b ωa·∇ρT , following

material flow particles, Dtq = ∂tq + (u·∇)q = 0. Here, absolute vorticity is ωa = ω + f ẑ and local

vorticity is ω =∇×u. PV may be written in terms of ω and θ as

q(x) = f∂zθ −Nω·ẑ + ω·∇θ − fN. (3)

The first two terms are linear and dominate over the quadratic term, ω·∇θ, in the limit of large f

and/or large N . The constant part in (3) does not participate in the dynamics and can, therefore, be

neglected [12].

In addition to conservation of PV, the flow is constrained by the global conservation of potential

enstrophy, Q = 1
2q

2, such that
d

dt
〈Q〉 = 0, (4)

where 〈. . . 〉 = 1
V

∫
V
d3x(. . . ) is a space average. Another quadratic invariant of the inviscid dynamics is

total mean energy, ET = 1
2 〈|u|

2 + |θ|2〉, such that

d

dt
ET = 0. (5)

3 Numerical data

The Sandia-LANL DNS code was used to perform pseudo-spectral calculations of the Boussinesq equa-

tions (1)-(2) on grids of 6403 points in unit aspect-ratio domains. The time-stepping is 4th-order Runge-

Kutta and the fastest linear wave frequencies are resolved with at least five timesteps per wave period.

The diffusion of both momentum and density (scalar) is modeled by hyperviscosity of laplacian to the

8th-power. The hyperviscosity coefficient is chosen to resolve the total energy in the largest shell [13, 12].

The stochastic forcing is incompressible and equipartitioned between the three velocity components and

θ. The forcing spectrum is peaked at kf = 4 ± 1, for large scale forcing. The simulations are dealiased

according to the isotropic two-thirds dealiasing rule. These data were also reported in [7, 8] where further

details may be found.

We analyze three sets of simulations corresponding to three “extreme” flow regimes summarized in

Table 1. The first, Rs, is a flow under strong rotation and moderate stratification, f/N � 1. The second,
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Run resolution f (Ro) N (Fr)
Rs 6403 3000 (.002) 14 (.4)
rS 6403 14 (.4) 3000 (.002)
RS 6403 3000 (.002) 3000 (.002)

Table 1: Parameters of the Boussinesq simulation data.

rS, is a flow under moderate rotation but strong stratification, f/N � 1. The third, RS, is a flow under

strong rotation and strong stratification such that f = N . Figure 1 shows that in all three cases, 〈Q〉 is

well approximated by (one half) the square of the corresponding linear PV to within 3% or better (see

[6, 8]). We analyze snapshots of the flow at late times when 〈Q〉 along with small-scale energy spectra

(at wavenumbers k ≥ 6) have reached a statistically steady state. The total energy, however, continues

to grow due to an accumulation at the largest scales.
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Figure 1: Time-series of mean potential enstrophy, 〈Q〉, and its quadratic part: 〈Q̃〉 =〈
[f∂zθ −Nω·ẑ]

2 〉
/2 in run RS; 〈Q̃〉 =

〈
[Nω·ẑ]

2 〉
/2 in run rS; 〈Q̃〉 =

〈
[f∂zθ]

2 〉
/2 in run Rs. The

plots show that 〈Q〉 reaches steady-state and that its main contribution is from the quadratic part in all
three regimes we consider.

4 Analyzing the cascades by coarse-graining

Following [14, 15, 16, 17], we use a simple filtering technique common in the Large Eddy Simulation (LES)

literature to resolve turbulent fields simultaneously in scale and in space. We define a coarse-grained or

(low-pass) filtered field in d-dimensions as

a`(x) =

∫
ddr G`(r)a(x + r), (6)
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where G(r) is a normalized convolution kernel,
∫
ddr G(r) = 1. An example of such a kernel is the

Gaussian function, G(r) = 1√
2π
e−r

2/2. Its dilation G`(r) ≡ `−dG(r/`) in d-dimensions has its main

support in a ball of radius `. Operation (6) may be interpreted as a local space average. In the rest of

our Letter, we shall omit subscript ` whenever there is no ambiguity.

Applying the filtering operation (6) to the dynamics (1)-(2) yields coarse-grained equations that

describe the evolution of u`(x) and θ`(x) at every point x in space and at any instant of time:

∂tu + (u·∇)u = −∇p− f ẑ×u−Nθẑ

−∇· τ(u,u) + ν∇2u +Fu, (7)

∂tθ + (u·∇)θ = N uz −∇· τ(u, θ)

+κ∇2θ + Fθ, (8)

where subgrid stresses

τ `(f, g) ≡ fg` − f ` g`, (9)

are “generalized 2nd-order moments” [15] accounting for the influence of eliminated fluctuations at scales

< `.

The coarse-grained equations describe flow at scales > `, for arbitrary `. The approach, therefore,

allows for the simultaneous resolution of dynamics both in scale and in space and admits intuitive phys-

ical interpretation of various terms in the coarse-grained balance. Moreover, coarse-grained equations

describe the nonlinear coupling between scales through subgrid terms. These terms depend inherently

on the unresolved dynamics which has been filtered out. Traditional modeling efforts, such as in LES

(see for example [18]), focus on devising closures for such terms which are plausible but whose regimes

of applicability and validity are inevitably unknown. A key feature of the formalism employed here that

distinguishes it from those modeling efforts is that it allows us to estimate the contribution of subgrid

terms as a function of the resolution scale ` through exact mathematical analysis and direct numerical

simulations (see for example [19, 20, 21, 22]). Our approach thus quantifies the coupling that exists

between different scales and may be used to extract certain scale-invariant features in the dynamics.

4.1 Large-scale energy budget

From eqs. (7) and (8), it is straightforward to derive an energy budget for the large-scales, which reads

∂t

(
|u|2

2
+
|θ|2

2

)
+∇·J` = −Π` − ν|∇u|2 − κ|∇θ|2 (10)

+u·Fu + θ Fθ.

Here, ν|∇u|2 +κ|∇θ|2 is molecular dissipation acting on scales > `, and u·Fu + θ Fθ is energy injected

due to external stirring. The term J`(x) represents space transport of large-scale energy whose complete
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expression is deferred to an Appendix below. Subgrid scale (SGS) flux, Π`(x), accounts for the nonlinear

transfer of energy from scales > ` to smaller scales:

Π`(x) = −∂juiτ(ui, uj)− ∂jθ τ(θ, uj). (11)

The SGS flux in (11) is work done by large-scale velocity and scalar gradients, ∇u(x) and ∇θ(x),

against subgrid stresses. It acts as a sink in the large-scale budget (10) and accounts for the energy

transferred across scale ` at any point x in the flow. Furthermore, Π`(x) is Galilean invariant. Other

definitions of a flux are possible, such as Π`(x) = uiuj∂j(ui−ui) (Eq. (2.52) in Frisch [23]), which differs

from our definition (11) by a total gradient (disregarding the scalar part). However, these alternate

definitions are not pointwise Galilean invariant, so the amount of “energy cascade” at any point x in the

fluid according to such definitions would depend on the observer’s velocity. Several studies [24, 25, 15]

have emphasized the importance of Galilean invariance. More recently, [26, 19] showed that Galilean

invariance is necessary (but not sufficient) for scale-locality of the cascade. There are non-Galilean-

invariant terms in our budget (10) but, as is physically natural, they are all associated with space

transport J of energy (see Appendix).

Another physical requirement on the SGS flux Π`(x) is that it should vanish in the absence of fluc-

tuations at scales smaller than ` [26, 19]. For example, when ` = K−1max, where Kmax is the maximum

wavenumber in a pseudospectral simulation, there should be no cascade across ` simply because fluctua-

tions at wavevectors |k| > Kmax have zero amplitude. This is satisfied by our definition (11) identically

at every point x in the flow. Alternate definitions such as the one mentioned in the previous paragraph

(Eq. (2.52) in Frisch [23]) fail this pointwise requirement of a flux.

4.2 Large-scale Q budget

Similar to the momentum, scalar, and energy equations (7)-(10), we can write down large-scale balances

for PV and Q. The “bare” PV equation with diffusion and external forcing may be derived from (1),(2)

as

∂tq + (u·∇)q=ν(∇θ −N ẑ) ·∇2ωa + κωa·∇2∇θ (12)

+(∇θ −N ẑ) ·Fω + ωa·∇Fθ,

where Fω = ∇×Fu. Applying the filtering operation to (12) in the limit of strong rotation and/or

stratification (limit of large f and/or N such that PV is linear, q = f∂zθ − Nωz), yields the following

balance for large-scale PV

∂tq + (u·∇)q = −∇·τ(q,u)− ν N ∇2ωz + κ f ∇2∂zθ

−N Fωz + f ∂zFθ. (13)
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Using (13), we can now write the large-scale potential enstrophy budget in the limit of linear PV,

∂t
|q|2

2
+∇·JQ = −ΠQ −DQ + εQinj , (14)

where JQ(x) is space transport, DQ
` (x) is dissipation due to viscosity and diffusivity acting directly on

scales > `, and εQinj is the potential enstrophy injected due to external forcing. These terms are defined

in the Appendix below. ΠQ
` (x) is the SGS flux of potential enstrophy from scales > ` to smaller scales,

and is defined as

ΠQ
` (x) = −∂jq τ(q, uj). (15)

It is easy to verify that ΠQ
` (x) is Galilean invariant and vanishes in the absence of subgrid fluctuations.

5 Calculating fluxes using sharp spectral filter

We choose the so-called “sharp spectral filter” as our coarse-graining kernel in the definition of fluxes. We

denote a field in a periodic domain [0, 1)3, coarse-grained with the spherically symmetric sharp-spectral

filter to retain only Fourier modes |k| < K, by

a<K(x) ≡
∑
|k|≤K

dk â(k)ei2πk·x. (16)

This is similar to a`(x) with ` ∼ K−1. We omit the factor 2π in reference to wavenumber in this Letter.

Using this filter, we can discern the amount of energy and potential enstrophy cascading across a

certain wavenumber K. For example, to analyze the energy cascade, we can compute

ΠK(x) = −∂ju<Ki τ<K(ui, uj)− ∂jθ<Kτ<K(θ, uj) (17)

as a function of K. Here, τ<K(f, g) = (fg)<K − f<Kg<K . Similarly, we can analyze the potential

enstrophy cascade using

ΠQ
K(x) = −∂jq<Kτ<K(q, uj). (18)

The SGS energy flux (17) coincides with that used in [9, 10, 27] only after space averaging. Yet,

our quantity has the correct pointwise physical properties discussed above and, therefore, allows for

studying spatial properties of the cascades. In our longer work [28], we shall present new results on

spatial characteristics of (17) and (18) in all three cases of rotation and stratification.

6 Numerical Results

In this Letter, we restrict our numerical investigation to spatially averaged fluxes using the sharp spectral

filter. Figure 2 shows that there is a positive and constant flux (y-axis shown on a linear scale to highlight
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true constancy) of total energy to small scales in all three cases of rotation and stratification. We wish

to emphasize the constancy of fluxes.

A constant flux indicates a persistent non-linear transfer of energy to smaller scales, i.e. the flow

is able to sustain a cascade to arbitrarily small scales, regardless of how small the viscous-diffusion pa-

rameters are. The term “cascade” necessitates a flux constant in wavenumber. It is certainly possible

for non-linear interactions to yield a transient transfer to smaller scales but one which does not persist

(decays to zero) and cannot carry the energy all the way to molecular scales. Such distinction is imper-

ative to modeling efforts. In the latter case, there is no “cascade” or enhancement of dissipation due to

turbulence whereas in the former case, dissipation becomes independent of Reynolds number.

This issue is especially important when drawing conclusions from limited resolution simulations, true

of most cases including ours. A constant flux indicates that dissipation should be independent of the

simulation resolution. One may contend that a constant flux is just a consequence of a steady state and

having forcing localized to the largest scales. However, it may very well be that the flow reaches steady

state due to direct viscous dissipation acting on all scales as shown in [5] rather than a Kolmogorov-like

inertial cascade.

We also compute the potential enstrophy flux using the sharp spectral filter (18). Figure 3 shows

that, in a manner similar to that of energy, there is a positive and constant flux of potential enstrophy

in all three extreme cases. The plots in Figure 3 are the first measurements of potential enstrophy flux

in rotating stratified Boussinesq flows and constitute one of the main results in this Letter. They can

be regarded as the first empirical confirmation of analytical results in [6] which derived an exact law for

potential enstrophy flux in physical space as a function of scale. In fact, there is a direct mathematical

correspondence between the coarse-graining approach utilized here and the analysis of [6] which we shall

discuss in our forthcoming work [28].

Rotating and stratified flows are often said to be ‘two-dimensionalized’ in some sense, eliciting com-

parisons with two-dimensional turbulence and often justifying the study of the latter as a simplified

paradigm for geophysical flows. Here we point out that the existence of a concurrent flux of both energy

and potential enstrophy in rotating and stratified flow to smaller scales is in itself a marked departure of

these flows from 2D turbulence. In the latter case, it is known (e.g. [2, 29]) that the two cascades cannot

co-exist over the same scale-range since a forward cascade of enstrophy acts as a constraint leading to

an inverse cascade of energy to larger scales. In the strongly rotating and strongly stratified regime, it

is known (see [30, 31, 32]) that a projected part (vortical) of the flow is governed by quasigeostrophic

dynamics, which is very similar to 2D turbulence [3]. We verified (to appear in [28]) that this is indeed

the case in our RS run, where all the forward energy cascade is due to the wave component of the flow

in agreement with earlier work [30]. However, the situation in the remaining two cases, runs Rs and rS,
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is markedly different from both 2D and quasigeostrophic dynamics and this will be discussed further in

[28].

7 Conclusions

The two main results presented in this Letter are (i) deriving energy and potential enstrophy budgets

which resolve the dynamics simultaneously in space and in scale and (ii) presenting numerical data which

reveals concurrent and persistent cascades of energy and potential energy to small scales in three extreme

cases of rotating and stratified Boussinesq flow simulations. The numerical results on constant fluxes of

potential enstrophy constitute the first direct empirical evidence in support of analytical results by [6].

Our findings show a clear departure of the flows we study from 2-dimensional turbulence and should be

incorporated in any phenomenological treatments of strongly rotating and/or stratified Boussinesq flows.

In a longer forthcoming work [28], we shall refine our analysis to study anisotropy of these cascades, their

pointwise and scale-locality properties, and quantify contributions from vortical and wave components.

Acknowledgements. This research used resources of the Argonne Leadership Computing Facility at Argonne

National Laboratory, which is supported by the Office of Science of the US DOE under contract DE- AC02-

06CH11357. HA acknowledges partial support from NSF grant PHY-0903872 during a visit to the Kavli Institute

for Theoretical Physics. This research was performed under the auspices of the US DOE at LANL under

Contract No. DE-AC52-06NA25396. HA was supported by the LANL/LDRD program and by the DOE ASCR

program in Applied Mathematical Sciences. SK received partial funding from NSF program Collaborations in

the Mathematical Geosciences: NSF CMG-1025188.

8 Appendix: Budgets
For the sake of completion, we write down the complete expression for the transport term in (10):

Jj(x) = uj
|u|2

2
+ ui τ(ui, uj)− ν∂j

|u|2

2
, (19)

+ uj
|θ|2

2
+ θ τ(θ, uj)− κ∂j

|θ|2

2
.

In large-scale potential enstrophy budget (14), JQ(x) is space transport, DQ
` (x) is dissipation, and

εQinj is the potential enstrophy injected due to external forcing. These are defined as

DQ
` (x) =νN2|∇ωz|2+κf2|∇∂zθ|2− (ν+κ)fN(∇∂zθ)·∇ωz (20)

JQj (x) =uj
|q|2

2
+ q τ(uj , q)+ νN q ∂jωz − κf q ∂j∂zθ, (21)

εQinj(x) = −N q Fωz + f q ∂zFθ (22)

Note that while the first two dissipation terms in (20) are positive definite, the last term can be of either

sign.
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