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Degree distributions of many real networks are known t@felthe Mandelbrot law, which can be considered
as an extension of the power law that determined by not odypthwer-law exponent, but also the shifting
coefficient. Although the shifting coefficient highly affébe shape of distribution, it receives less attention in
the literature and in fact, mainstream analytical methagetaon backward or forward difference will lead to
considerable deviation to its value. In this article, wevglbat the degree distribution of a growing network
with linear preferential attachment approximately foltotie Mandelbrot law. We propose an analytical method
based on a recursive formula that can obtain a more accuxptession of the shifting coefficient than the
previous methods. Simulations demonstrate the advantafgesr method. This work provides a possible
mechanism leading to the Mandelbrot law of evolving netwpdnd refines the mainstream analytical methods
for the shifting coefficient.

PACS numbers: 89.75.Hc, 89.75.Fb, 02.50.-r

I. INTRODUCTION collaboration networks [12], and online user-object biipar
networks [13] obey the stretched exponential forms, and the
Many systems can be described as complex netwolrk’s [1— loubl_e power-law glistribution seems a better way to.deecrib
in which, the nodes correspond to the elements and the links the air transportation networks [14=-16]. In this articles w
the relations between elements. Uncovering the mechanisnj@Cus on theMandelbrot law or called theshifted power law
underlying the structural features of real networks is ohe ol1Z], which can be written as:
the most interesting challenges in network science. Two pi-
oneering models, respectively for small-worldl [5] and seal p(k) o< (k+¢)77, 3)
free networksl[6], give explanations for many real phenom-
ena, such as, the logarithmic growth of average distanee, thvhere~ is the power-law exponent andis the shifting co-
power-law degree distribution, and the high clusteringfcoe €fficient. Recently, the Mandelbrot law has been applied to
cient. With the idea of ‘rich get richer’, Barabasi and Atbe characterize the degree distributions of some real netvork
proposed the scale-free network model, embedding two mectfl€,119]. Even for the well-known BA model, the degree dis-
anisms: growth and preferential attachment. That is, at eactribution

time step, a new node is added and connected to a few old
2m(m + 1)

nodes with probability proportional to their degree as: =TT omPk3 4
PR = Gk SR @
(ki) = ki/ XJ: ki @) obtained by the master equation|[20], is not an exactly power

law distribution. This distribution can be approximated as
wherek; is the degree of nodeand; runs over all old nodes. P(k) o (k + 1)~?, which also satisfies the Mandelbrot law

The analytical solution of the degree distribution, with v = 3 ande = 1. _
A number of tools have been developed to get the analytical
p(k) = 2m2k =3, (2) solutions of network degree distributions, including theam-

field approximation, the master equation, the rate equation
can be obtained by applying the mean-field approximation [6and so onl[7, 20=23]. Most of these kinds of known analyti-
7], in which2m is the average degree of the network. cal methods only concentrate on the power-law exponent, yet

Unfortunately, for many real networks, the degree distribu paid less attention to the value of shifting coefficient, evhi

tions are different from exact power laws [8, 9]. For example however, plays a significant role in determining the shape of
the scientific collaboration networks can be better charact degree distributions. Even worth, we will show later that th
ized by the power-law distributions with exponential céitof Widely used difference approximation, no matter forware di
[10], the degree distributions of the email networks [Ldjne  ference or backward difference, will result in consideead#-

viation to the real value of the shifting coefficient. We posp

an analytical method based on a recursive formula that can ob

tain a more accurate expression of the shifting coeffictean t
*Electronic addres$: zhutou@ustc.edu the previous methods. In addition, we show that the degree
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distribution of a growing network with linear preferentath
tachment approximately follows the Mandelbrot law. This ar

ticle is organized as follows. In Section 2, we will presdrd t 10° \ ' ]
evolving network model with linear preferential attachmen

which can be considered as an extension of the BA model. 1074

In Section 3, we will analyze the model, especially propose s ]

an analytical method to accurately predict the shiftingfitoe 10 E E

cient. Finally, we will summarize our work in the last sectio 10° 1 ]

T 0]

1. MODEL 10°4 O Simulation Result E

] = Present Method

The present model embodies a linear preferential attach- 10°4 -~ EaCKW"gd 3

ment, which can be considered as an extension of the famous 10.,3 . orwar . e ]
BA model. Initially, our model starts with a fully connected 10 100

network withmg nodes andng(mgo — 1)/2 links. If the final
size isS, it should satisfy the conditiom, < S. After ini-
tialization, at each time step, a new node will be added o t
network, which will connect ten old nodes. The probability FIG. 1: Degree distribution of the modeled network with= 0

of an old node to be connected is linearly connected with its @dm = 3. Since = 0, itis equivalent to a BA network. Com-
degreek;, say pared with the results of backward difference approxinmatiolue

dash line) and forward difference approximation (greenlide), the

. ) . present method based on recursive formula (red solid Iseloser
aki + = am(aki + ) = am(ak; + B), (5)  tothe simulation result (round donuts). The network siz is 10*
N 2mN Zj k; and the results are obtained by averaging over 100 indepenet-

izations.

wherea and 3 are two parameters. This model will degener-
ate to the BA model ifs = 0. The self-loop and multiple links o
are not allowed in this model. The parameterand3 satisfy m_fluence on t_he deg_ree distributipf¥), the number of nodes
the normalization condition with degreek in the time stepV + 1 reads

N+1)p(k) = Np(k)+mm(k—1)p(k—1)—mn(k)p(k)+0km,
S w (k) = 1, e \HUp(R) = Np(k)tmr(k=L)p(k=1)=mm(k)p(k)+ a
k wheremn(k — 1)p(k — 1) andmm(k)p(k) represent, respec-
tively, the number of nodes whose degree changes frem
to k in this time step, and the number of hodes whose degree
changes fronk to k& + 1 in this time step whosed,, ac-
counts for the specific degree equakitg namelydg,, = 1
whenk = m anddg,, = 0 otherwise. Eq. (9) is the usually
form of the well-known rate equation [21,/22]. This equation
Itis equivalent to: is usually solve(_j by using the diff_erence approximatiorwho
ever, here we will show a much different method that will lead
1 to a recursive formula. We will later compare our resulthwit
a=o—(1-p). (8)  the ones obtained by the difference approximation.
Eq. (9) is equivalent to

(k;) =

wherern (k) is the probability a selected node is of degkee
That is

> wk)p(k) = (ak+ B)p(k) = 2ma+B=1. (7)

k k

P(m) = gy b = m,
I1l. ANALYSIS p(k) 1 +mm(k)] = mn(k — 1)p(k — 1),k > m.
(10)
The rate equation is based on the assumption that the add&gminding the linear relation
nodes and links, during a time step, has no influence on the m(k) = ak + (11)
global degree distribution of the network. That is to sayhim ’
large limit of the network, the degree distribution apptuex  considering Eq. (8), the probability of a newly added link
to a steady form. Denote(k) the steady degree distribution connecting to an old node with minimum degree is
and N the number of nodes in the current time step/Nif 1-8 1+
is large enough, then the number of nodes with degréee m(m)=——m+pf=——. (12)
approximated taVp(k). Analogously, the number of nodes 2m 2
with degreek in the next step i$N + 1)p(k). Accordingly,  Clearly, this probability should be no less than zero and no
since during a time step in totab links are added with no largerthan one, and thusl < 3 < 1. According to Eq. (10),



the probability density ofn-degree nodes is

3

namely the degree distribution is close to an exponentsal di
tribution. It is easy to be understood since when— 1,

p(m) = 1 _ 2 . (13) the selection of old nodes is almost random. Wises- 0,
L+mn(m)  2+m(1+p) o = 5, our model degenerates to the BA model, and we
I . cangeta = —1,b = 2, v = 3 andc = 1, then the degree
Substituting Eg. (8) into Eq. (10), we get distribution approaches to
2(1+ mﬂ)] [ 2mp } 2
k)|lk+ ————| = |k+ — —1|p(k—1). (14 N=—-——-"  (k+1)3 23
o) |1+ 2522 200 1] pe- ). a9 D= B @
Specifying: where
_ 2mp (z) =T'(x)/T(x) (24)
a = m — 1,
2(1 + mp) is theDigamma function with
b= Wa (15) S
[(z) = / et at (25)
then Eq. (14) can be rewritten in a simple recursive formula 0
as being theGamma function and
_k+ta dmip(z
p(k) = mp(k - 1). (16) W(n,z) = dez ). (26)
Taking logarithm in both sides of Eq. (16), we get Hereinafter, we will compare the present method with the
traditional method based on the difference approximatiae.
log p(k) — log k+ a (17) first introduce the backward difference approximation,ahkihi
p(k—1) E+b assumes

With the ansatz thab(k) follows the Mandelbrot law, sub-
stituting Eq. (3) into Eq. (17), we can obtain the relatiapsh
between the power-law exponenand the shifting coefficient
cas

k+a ) k—1+c¢

1 = 18
0g 7= = Ylog ——— (18)
which is equivalent to:
l+ar 1+ (c—1)2
1 k — ~ylog ————2F 19
Og1+b% 708 1+cq (19)

Under the approximation with large through the second or-
der Taylor expansion of Eq. (19) witty k being the variable,
we can get the power-law exponent

2
’7—b—a—1+m, (20)
and the shifting coefficient
C:b+a+171+2mﬂ. (21)

2 T 1-p

dp
o = p(k) = p(k—1). (27)
Substituting Eq. (27) into Eqg. (16), we get
_k+a dp
o) =1 | - 2] (28)
which is equivalent to
dp  a—1b
) (29)
that lead to the solution
p(k) o (k +a)~ =9, (30)

Similarly, if we apply the forward difference approximatio
by assuming

Eq. (20) and Eq. (21) declare that the power-law exponent

~ only depends on the parametgrwhile the shifting coeffi-
cientc is related to botht andm. Whenmg is very large or

8 — 1, a andb are both very large, and the Taylor expansion
cannot be applied on Eq. (19). Under such condition, Eq. (16)

can be approximately rewritten as

p(k) ~ Tp(k = 1), (22)

dp
— =plk+1)—pk 31
op =Pk 1) = p(k), (31)
then Eq. (16) can be rewritten as
k+a+1
kE+1)= ——p(k 32
p(k+1) = =g p(k). (32)
which is equivalent to
dp a—1b
= =— n(k). 33
ket (33)
In this case, the solution is
p(k) oc (k+ b+ 1)t~ (34)



FIG. 2: The comparison of degree distributions with differshift-

ing coefficients givenm = 5 andS = 10000. Compared with

the case of = 0.8 and shifting coefficientc = 50.4 (green
down-triangles), the degree distribution of the nonetstuf case
with 3 = —0.1 andc =
a straight line in the log-log coordinates. The results détaioed by
averaging over 100 independent realizations.

0 (purple circles) is much more close to

4

works, neither the BA networks nor most real networks have
very precise power-law degree distributions. The present
method suggests that we can obtain a more precise power-
law distribution by setting a right that corresponds to a zero
shifting coefficient. Since the degree distribution is

(k) oc (k + 200y 42y, (35)
1-8
it asks for
_1+2mpB
=15 =0, (36)
namely = —5= andp(k) o k37, Thatis, given the

linear preferential attachment, the non-shifted poweréa-
ponentis determined by the network’s average degree and can
never exceed 3. Figure 2 compares two degree distributions,
respectively withc = 0 andc = 50.4, from which one can
confirm that the non-shifted power law is indeed much closer
to a straight line in the log-log coordinates, and the gffti
coefficient largely affects the shape of degree distrilbutio

IV. CONCLUSION

In this article, we extend the BA model to an evolving
model with linear preferential attachment and show that thi
model will generate networks with Mandelbrot-law degree

The three methods all indicate that the Mandelbrot law willdistributions, which are previously observed in many rgat s
emerge from an evolving network with linear preferential at tems. As shown in Fig. 2, the shifting coefficient, usually
tachment, and they all give the same power-law exponerteing ignored in the literature, largely affects the shdmee

~ = b — a. In contrast, the shifting coefficient are different: gree distribution.

cpresent  _ a+b+1

backv\ard _ aandcforward = b+ 1.

In puzzlement, the backward and forward
difference approximations will lead to different solut®oan

As shown in Flg 1, we compare the degree distributionsshifting coefficient, although they give the same estimmatio
obtained by these three methods with the simulation resultdo the power-law exponent. Our analysis indicate that bbth o
which shows that the present method is observably more clogaem are inaccurate, and we propose an analytical methbd tha

to the simulation results.

results in a more accurate solution. Simulations dematestra

Although we usually refer to the concept of scale-free netthe advantages of our method.
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