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Degree distributions of many real networks are known to follow the Mandelbrot law, which can be considered
as an extension of the power law that determined by not only the power-law exponent, but also the shifting
coefficient. Although the shifting coefficient highly affect the shape of distribution, it receives less attention in
the literature and in fact, mainstream analytical method based on backward or forward difference will lead to
considerable deviation to its value. In this article, we show that the degree distribution of a growing network
with linear preferential attachment approximately follows the Mandelbrot law. We propose an analytical method
based on a recursive formula that can obtain a more accurate expression of the shifting coefficient than the
previous methods. Simulations demonstrate the advantagesof our method. This work provides a possible
mechanism leading to the Mandelbrot law of evolving networks, and refines the mainstream analytical methods
for the shifting coefficient.

PACS numbers: 89.75.Hc, 89.75.Fb, 02.50.-r

I. INTRODUCTION

Many systems can be described as complex networks [1–4],
in which, the nodes correspond to the elements and the links to
the relations between elements. Uncovering the mechanisms
underlying the structural features of real networks is one of
the most interesting challenges in network science. Two pi-
oneering models, respectively for small-world [5] and scale-
free networks [6], give explanations for many real phenom-
ena, such as, the logarithmic growth of average distance, the
power-law degree distribution, and the high clustering coeffi-
cient. With the idea of ‘rich get richer’, Barabási and Albert
proposed the scale-free network model, embedding two mech-
anisms: growth and preferential attachment. That is, at each
time step, a new node is added and connected to a few old
nodes with probability proportional to their degree as:

Π(ki) = ki/
∑

j

kj , (1)

whereki is the degree of nodei, andj runs over all old nodes.
The analytical solution of the degree distribution,

p(k) = 2m2k−3, (2)

can be obtained by applying the mean-field approximation [6,
7], in which2m is the average degree of the network.

Unfortunately, for many real networks, the degree distribu-
tions are different from exact power laws [8, 9]. For example,
the scientific collaboration networks can be better character-
ized by the power-law distributions with exponential cutoff
[10], the degree distributions of the email networks [11], some
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collaboration networks [12], and online user-object bipartite
networks [13] obey the stretched exponential forms, and the
double power-law distribution seems a better way to describe
the air transportation networks [14–16]. In this article, we
focus on theMandelbrot law or called theshifted power law
[17], which can be written as:

p(k) ∝ (k + c)−γ , (3)

whereγ is the power-law exponent andc is the shifting co-
efficient. Recently, the Mandelbrot law has been applied to
characterize the degree distributions of some real networks
[18, 19]. Even for the well-known BA model, the degree dis-
tribution

p(k) =
2m(m+ 1)

(k + 2)(k + 1)k
≈ 2m2k−3, (4)

obtained by the master equation [20], is not an exactly power-
law distribution. This distribution can be approximated as
p(k) ∝ (k + 1)−3, which also satisfies the Mandelbrot law
with γ = 3 andc = 1.

A number of tools have been developed to get the analytical
solutions of network degree distributions, including the mean-
field approximation, the master equation, the rate equation,
and so on [7, 20–23]. Most of these kinds of known analyti-
cal methods only concentrate on the power-law exponent, yet
paid less attention to the value of shifting coefficient, which,
however, plays a significant role in determining the shape of
degree distributions. Even worth, we will show later that the
widely used difference approximation, no matter forward dif-
ference or backward difference, will result in considerable de-
viation to the real value of the shifting coefficient. We propose
an analytical method based on a recursive formula that can ob-
tain a more accurate expression of the shifting coefficient than
the previous methods. In addition, we show that the degree
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distribution of a growing network with linear preferentialat-
tachment approximately follows the Mandelbrot law. This ar-
ticle is organized as follows. In Section 2, we will present the
evolving network model with linear preferential attachment,
which can be considered as an extension of the BA model.
In Section 3, we will analyze the model, especially propose
an analytical method to accurately predict the shifting coeffi-
cient. Finally, we will summarize our work in the last section.

II. MODEL

The present model embodies a linear preferential attach-
ment, which can be considered as an extension of the famous
BA model. Initially, our model starts with a fully connected
network withm0 nodes andm0(m0 − 1)/2 links. If the final
size isS, it should satisfy the conditionm0 ≪ S. After ini-
tialization, at each time step, a new node will be added into the
network, which will connect tom old nodes. The probability
of an old nodei to be connected is linearly connected with its
degreeki, say

Π(ki) =
αki + β

N
=
am(αki + β)

2mN
=
am(αki + β)

∑

j kj
, (5)

whereα andβ are two parameters. This model will degener-
ate to the BA model ifβ = 0. The self-loop and multiple links
are not allowed in this model. The parametersα andβ satisfy
the normalization condition

∑

k

π(k)p(k) = 1, (6)

whereπ(k) is the probability a selected node is of degreek.
That is

∑

k

π(k)p(k) =
∑

k

(αk + β)p(k) = 2mα+ β = 1. (7)

It is equivalent to:

α =
1

2m
(1 − β). (8)

III. ANALYSIS

The rate equation is based on the assumption that the added
nodes and links, during a time step, has no influence on the
global degree distribution of the network. That is to say, inthe
large limit of the network, the degree distribution approaches
to a steady form. Denotep(k) the steady degree distribution
andN the number of nodes in the current time step, ifN
is large enough, then the number of nodes with degreek is
approximated toNp(k). Analogously, the number of nodes
with degreek in the next step is(N + 1)p(k). Accordingly,
since during a time step in totalm links are added with no

10 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 

 

p(
k)

k

 Simulation Result
 Present Method
 Backward
 Forward

FIG. 1: Degree distribution of the modeled network withβ = 0

andm = 3. Sinceβ = 0, it is equivalent to a BA network. Com-
pared with the results of backward difference approximation (blue
dash line) and forward difference approximation (green dotline), the
present method based on recursive formula (red solid line) is closer
to the simulation result (round donuts). The network size isS = 10

4

and the results are obtained by averaging over 100 independent real-
izations.

influence on the degree distributionp(k), the number of nodes
with degreek in the time stepN + 1 reads

(N+1)p(k) = Np(k)+mπ(k−1)p(k−1)−mπ(k)p(k)+δkm,
(9)

wheremπ(k − 1)p(k − 1) andmπ(k)p(k) represent, respec-
tively, the number of nodes whose degree changes fromk− 1
to k in this time step, and the number of nodes whose degree
changes fromk to k + 1 in this time step whose.δkm ac-
counts for the specific degree equal tom, namelyδkm = 1
whenk = m andδkm = 0 otherwise. Eq. (9) is the usually
form of the well-known rate equation [21, 22]. This equation
is usually solved by using the difference approximation, how-
ever, here we will show a much different method that will lead
to a recursive formula. We will later compare our results with
the ones obtained by the difference approximation.

Eq. (9) is equivalent to
{

p(m) = 1
1+mπ(m) , k = m,

p(k) [1 +mπ(k)] = mπ(k − 1)p(k − 1), k > m.

(10)
Reminding the linear relation

π(k) = αk + β, (11)

considering Eq. (8), the probability of a newly added link
connecting to an old node with minimum degree is

π(m) =
1− β

2m
m+ β =

1 + β

2
. (12)

Clearly, this probability should be no less than zero and no
larger than one, and thus−1 ≤ β ≤ 1. According to Eq. (10),
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the probability density ofm-degree nodes is

p(m) =
1

1 +mπ(m)
=

2

2 +m(1 + β)
. (13)

Substituting Eq. (8) into Eq. (10), we get

p(k)

[

k +
2(1 +mβ)

1− β

]

=

[

k +
2mβ

1− β
− 1

]

p(k− 1). (14)

Specifying:

a =
2mβ

1− β
− 1,

b =
2(1 +mβ)

1− β
, (15)

then Eq. (14) can be rewritten in a simple recursive formula
as

p(k) =
k + a

k + b
p(k − 1). (16)

Taking logarithm in both sides of Eq. (16), we get

log
p(k)

p(k − 1)
= log

k + a

k + b
. (17)

With the ansatz thatp(k) follows the Mandelbrot law, sub-
stituting Eq. (3) into Eq. (17), we can obtain the relationship
between the power-law exponentγ and the shifting coefficient
c as

log
k + a

k + b
= γ log

k − 1 + c

k + c
, (18)

which is equivalent to:

log
1 + a 1

k

1 + b 1
k

= γ log
1 + (c− 1) 1

k

1 + c 1
k

. (19)

Under the approximation with largek, through the second or-
der Taylor expansion of Eq. (19) with1/k being the variable,
we can get the power-law exponent

γ = b− a = 1 +
2

1− β
, (20)

and the shifting coefficient

c =
b+ a+ 1

2
=

1 + 2mβ

1− β
. (21)

Eq. (20) and Eq. (21) declare that the power-law exponent
γ only depends on the parameterβ, while the shifting coeffi-
cientc is related to bothβ andm. Whenmβ is very large or
β → 1, a andb are both very large, and the Taylor expansion
cannot be applied on Eq. (19). Under such condition, Eq. (16)
can be approximately rewritten as

p(k) ≈
a

b
p(k − 1), (22)

namely the degree distribution is close to an exponential dis-
tribution. It is easy to be understood since whenβ → 1,
the selection of old nodes is almost random. Whenβ = 0,
α = 1

2m , our model degenerates to the BA model, and we
can geta = −1, b = 2, γ = 3 andc = 1, then the degree
distribution approaches to

p(k) = −
2

ψ(2,m+ 1)
(k + 1)−3, (23)

where

ψ(x) = Γ′(x)/Γ(x) (24)

is theDigamma function with

Γ(x) =

∫

∞

0

e−ttx−1dt (25)

being theGamma function and

ψ(n, x) =
dnψ(x)

dxn
. (26)

Hereinafter, we will compare the present method with the
traditional method based on the difference approximation.We
first introduce the backward difference approximation, which
assumes

dp

dk
= p(k)− p(k − 1). (27)

Substituting Eq. (27) into Eq. (16), we get

p(k) =
k + a

k + b

[

p(k)−
dp

dk

]

, (28)

which is equivalent to

dp

dk
=
a− b

k + a
p(k) (29)

that lead to the solution

p(k) ∝ (k + a)−(b−a). (30)

Similarly, if we apply the forward difference approximation
by assuming

dp

dk
= p(k + 1)− p(k), (31)

then Eq. (16) can be rewritten as

p(k + 1) =
k + a+ 1

k + b+ 1
p(k), (32)

which is equivalent to

dp

dk
=

a− b

k + 1+ b
p(k). (33)

In this case, the solution is

p(k) ∝ (k + b+ 1)−(b−a). (34)
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FIG. 2: The comparison of degree distributions with different shift-
ing coefficients givenm = 5 andS = 10000. Compared with
the case ofβ = 0.8 and shifting coefficientc = 50.4 (green
down-triangles), the degree distribution of the none-shifting case
with β = −0.1 andc = 0 (purple circles) is much more close to
a straight line in the log-log coordinates. The results are obtained by
averaging over 100 independent realizations.

The three methods all indicate that the Mandelbrot law will
emerge from an evolving network with linear preferential at-
tachment, and they all give the same power-law exponent
γ = b − a. In contrast, the shifting coefficient are different:
cpresent = a+b+1

2 , cbackward = a and cforward = b + 1.
As shown in Fig. 1, we compare the degree distributions
obtained by these three methods with the simulation results,
which shows that the present method is observably more close
to the simulation results.

Although we usually refer to the concept of scale-free net-

works, neither the BA networks nor most real networks have
very precise power-law degree distributions. The present
method suggests that we can obtain a more precise power-
law distribution by setting a rightβ that corresponds to a zero
shifting coefficient. Since the degree distribution is

p(k) ∝ (k +
1 + 2mβ

1− β
)1+

2
1−β , (35)

it asks for

c =
1 + 2mβ

1− β
= 0, (36)

namelyβ = −
1
2m andp(k) ∝ k3−

2
2m+1 . That is, given the

linear preferential attachment, the non-shifted power-law ex-
ponent is determined by the network’s average degree and can
never exceed 3. Figure 2 compares two degree distributions,
respectively withc = 0 andc = 50.4, from which one can
confirm that the non-shifted power law is indeed much closer
to a straight line in the log-log coordinates, and the shifting
coefficient largely affects the shape of degree distribution.

IV. CONCLUSION

In this article, we extend the BA model to an evolving
model with linear preferential attachment and show that this
model will generate networks with Mandelbrot-law degree
distributions, which are previously observed in many real sys-
tems. As shown in Fig. 2, the shifting coefficient, usually
being ignored in the literature, largely affects the shape of de-
gree distribution. In puzzlement, the backward and forward
difference approximations will lead to different solutions on
shifting coefficient, although they give the same estimation
to the power-law exponent. Our analysis indicate that both of
them are inaccurate, and we propose an analytical method that
results in a more accurate solution. Simulations demonstrate
the advantages of our method.
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