文章编号:1001-1595(2011)01-0071-07

膨胀系数可调的 Balloon Snake 方法在道路轮廓提取中的应用

吴 亮^{1,2}, 胡云安²

1. 海军驻合肥地区军事代表室, 安徽 合肥 230088; 2. 海军航空工程学院, 山东 烟台 264001

Balloon Snake with Adjustable Expansion Coefficient in Road Contour Extraction

WU Liang $^{\rm 1,2}$, HU Yunan $^{\rm 2}$

1. Military Representative Office of Navy in Hefei, Hefei 230088, China; 2. Naval Aeronautical and Astronautical University, Yantai 264001, China

Abstract : The road contour is initialized with the output of centerline detection and extracted using balloon snakes. Since the missing road segment can be recovered by the expansion of balloon snake, the integrality of road contour extraction is improved. Compared with the constant expansion coefficient, tuning the expansion coefficient according to image gradient and curvature produce more stable output and the expansion is accelerated. Several road images were used for testing and the results demonstrate its effectiveness and advantage.

Key words :snake; road extraction; road contour

摘 要:以条带检测的结果初始化道路轮廓,利用 balloon snake 方法提取道路轮廓。在初始道路轮廓存在缺失的情况 下,balloon snake 的膨胀作用可以找回丢失的道路片段,提高道路提取的完整性。基于图像梯度和轮廓曲率调节膨胀 系数,降低道路提取效果对膨胀系数的敏感,并加快道路轮廓的扩张,减少迭代次数。通过多幅道路图像的试验证明,该 方法提取道路轮廓的效果较好。

关键词:snake;道路提取;道路轮廓 中图分类号:TP751 文献标识码:A

1 引 言

道路是地理信息系统主要的记录和标识对 象。利用航空或卫星遥感图像建立或更新地理信 息系统,需要从图像中提取道路。典型的道路提 取方法有平行边缘检测方法^[1]、区域分割方 法^[2-5]、条带检测方法^[6-7]等。Kass于1988年提 出的 snake 方法被广泛应用于图像中目标轮廓的 提取,随后 snake 方法在道路提取中也得到 应用^[8-10]。

文献[8]采用 ziplock snake 方法^[11]提取道路 轮廓。传统 snake 方法,轮廓各点处的图像力同 时影响轮廓形变。而 ziplock snake 的图像力从 轮廓两端向中间逐渐释放。这使得该方法不易受 图像中强梯度噪声的干扰。ribbon snake 方法^[12] 和 quadratic snake 方法^[10]以不同的方式将道路 双边缘的梯度特征约束引入轮廓能量项,使得轮 廓在 道路边缘处获得能量最小值。quadratic snake 的优势在于无需轮廓初始位置信息。但也 正因此,该方法提取道路的准确性和完备性较差。 且由于迭代方程中包含二次积分项,其计算量远 大于传统 snake 方法。ziplock snake 和 ribbon snake 方法不能独立完成道路提取,需要其他手 段提供道路位置以初始化道路轮廓。若其他道路 提取方法在提取过程中丢失部分道路段,ziplock snake 和 ribbon snake 也将无法提取完整的道路 轮廓。

本文采用膨胀系数可调的 balloon snake 方 法提取道路轮廓。基于 Steger 的条带检测方法 提取道路线,并初始化道路轮廓。利用 balloon snake 的膨胀作用使轮廓沿当前道路向与之连通 的道路分支扩张,从而找回丢失的道路片段,提高 了道路轮廓提取的完整性。基于图像梯度和轮廓 曲率调节 balloon snake 的膨胀系数,降低了轮廓 提取结果对膨胀系数的敏感,并加快道路轮廓提 取的速度。经多幅示例图像验证了该方法提取道 路轮廓的效果。

2 道路中心线提取和轮廓初始化

Steger 提出的条带检测算法将为道路轮廓的 初始化提供道路位置。设道路方向为 *p*, 与 *p* 相 垂直的道路法向为 *n*。显然, 沿 *n* 方向的道路剖 面的灰度将呈现波峰特征,因此,道路中心线位于 沿n方向、灰度的一阶导数零点和二阶导数极小 值点。离散化后经推导可得,道路中心点位置须 满足[6]

$$-\frac{r_{x}n_{x}^{2}+r_{y}n_{x}n_{y}}{r_{xx}n_{x}^{2}+2r_{xy}n_{x}n_{y}+r_{yy}n_{y}^{2}} \in [-0.5, 0.5]$$

$$-\frac{r_{y}n_{y}^{2}+r_{x}n_{x}n_{y}}{r_{xx}n_{x}^{2}+2r_{xy}n_{x}n_{y}+r_{yy}n_{y}^{2}} \in [-0.5, 0.5]$$

$$(1)$$

式中, r_x 、 r_y 、 r_{xy} 、 r_{xx} 、 r_{yy} 为图像灰度沿x、y方向 的一阶二阶偏导数,由 Hessian 矩阵的绝对值较 大的特征值 λ 所对应的特征向量确定单位向量 n, n_x, n_y 为n 沿x, y 方向的分量, λ 反映该点处的 道路强度。满足式(1)且λ超过一定阈值的图像 点为可能的道路中心点。

将可能的道路中心点连接成道路中心线。从 当前道路强度最大的点起始,沿 p 方向搜索下一 道路中心点,按照最小化代价函数S的原则从符 合方向约束的邻域中选择道路点。

 $S = \| (t_x^{k+1}, t_y^{k+1}) - (t_x^k, t_y^k) \| + |a^{k+1} - a^k|$ (2)式中,上标 k、k+1 分别表示前后道路点;a 表示 向量n的方向。

实际提取的道路中心线存在虚检测和漏检 测。通过设置道路长度门限和曲率门限剔除虚检 测。漏检测则可以由 balloon snake 的轮廓扩张 作用弥补。以文献[6]中的示例图片为例,图1说 明道路中心线提取和道路轮廓初始化的过程。提 取道路中心线得到(a)图,剔除过短和曲率过大的 道路线得到(b)图。对道路中心线图像进行膨胀 操作,再通过形态学方法[15]提取二值图像边缘, 即得到初始轮廓,如图1(c)所示。

的结果

(a) 道路中心线提取 (b) 剔除过短和曲率 (c) 根据道路中心线 过大的线条

初始化道路轮廓

图 1 道路中心线的提取、筛选和轮廓初始化

Fig. 1 Road centerline extraction, filtering and road contour initialization

基于膨胀系数调节的 balloon snake 3 方法

snake 方法的原理是构造一个和轮廓形状相 关、包含图像谱特征和几何特征的能量函数,经迭 代寻找函数的最小值,以获得目标轮廓[14]。设轮 廓为

 $v(s) = (x(s), y(s)) \quad s \in [0, 1]$ (3)式中,s表示相对弧长;x(s)、y(s)表示轮廓轨迹 在图像中的坐标。轮廓的能量通常由内部能量、 图像能量和外部能量组成,即

$$E_{\text{snake}}(v(s)) = E_{\text{img}}(v(s)) + E_{\text{int}}(v(s)) + E_{\text{ext}}(v(s))$$
(4)

内部能量为

$$E_{\rm int}(v(s)) = \frac{1}{2} \int_{0}^{1} a(s) \left| \frac{\mathrm{d}v(s)}{\mathrm{d}s} \right|^{2} + \beta(s) \left| \frac{\mathrm{d}^{2}v(s)}{\mathrm{d}s} \right|^{2} \mathrm{d}s \tag{5}$$

图像能量和轮廓所在位置的图像梯度有关

$$E_{\rm img}(v(s)) = -\int_0^1 |\nabla I(v(s))| \,\mathrm{d}s \qquad (6)$$

式中, Ⅵ 为图像梯度。balloon snake 引入外部 能量

$$E_{\text{ext}}(v) = \int_{0}^{1} k \boldsymbol{n}(s) \,\mathrm{d}s \tag{7}$$

将式(5)~式(8)代入式(4),并求泛函极值,当 式(4)取得最小值时需满足

$$-\frac{\mathrm{d}}{\mathrm{d}s}(a(s)\frac{\mathrm{d}x(s)}{\mathrm{d}s}) + \frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}(\beta(s)\frac{\mathrm{d}^{2}x(s)}{\mathrm{d}s^{2}}) + \frac{\partial E_{\mathrm{img}}}{\partial x} + \frac{\partial E_{\mathrm{ext}}}{\partial x} = 0$$

$$-\frac{\mathrm{d}}{\mathrm{d}s}(a(s)\frac{\mathrm{d}y(s)}{\mathrm{d}s}) + \frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}(\beta(s)\frac{\mathrm{d}^{2}y(s)}{\mathrm{d}s^{2}}) + \frac{\partial E_{\mathrm{img}}}{\partial y} + \frac{\partial E_{\mathrm{ext}}}{\partial x} = 0$$
(8)

将式(8)离散化并引入迭代步长 γ,得到迭代 方程[14]

$$x_{t+1} = (A + \gamma I)^{-1} (\gamma x_t + f_x + kn_x) y_{t+1} = (A + \gamma I)^{-1} (\gamma y_t + f_y + kn_y)$$
 (9)

式中, $f_x = -\frac{\partial E_{img}}{\partial x}, f_y = -\frac{\partial E_{img}}{\partial y}; A$ 为由 α 、 β 确定 的系数矩阵, α , β 决定了轮廓的平滑程度,通常均 取 0.1;γ决定了一次迭代轮廓变化的程度,取值 过小可能引起轮廓在强梯度特征附近的振荡,一 般取 5;k 通常为 1;(n_x , n_y)为轮廓的外法向 n 在 x,y方向上的分解,且轮廓点(x_i, y_i)处的(n_x , n_y)由下式确定

$$n_{x} = \frac{y_{i+1} - y_{i-1}}{\sqrt{(x_{i+1} - x_{i-1})^{2} + (y_{i+1} - y_{i-1})^{2}}}}{n_{y}} = \frac{-(x_{i+1} - x_{i-1})}{\sqrt{(x_{i+1} - x_{i-1})^{2} + (y_{i+1} - y_{i-1})^{2}}}} \right\}$$
(10)

式中, (x_{i-1}, y_{i-1}) 、 (x_{i+1}, y_{i+1}) 为当前轮廓点的前 后点。 (n_x, n_y) 使轮廓沿外法线方向形变,即发生 膨胀作用。

3.1 基于图像梯度调节

传统 balloon snake 方法的膨胀系数为常值, 即在轮廓各处膨胀系数 k 取值相同。图 2 以某 一道路分支为例说明固定膨胀系数提取轮廓遇 到的困难。k=0.3 时,由于膨胀力小于几何力 和图像力的共同作用,使道路交叉口的左上分 支轮廓无法继续扩张。取 k=0.35 后可保证左 上分支道路轮廓的顺利扩张,但在道路交叉处 左侧,因膨胀作用过大,轮廓突破道路边界向外 扩张。

(c) 第80次迭代, 左图 k=0.3, 右图 k=0.35

由上可知,道路轮廓的提取效果受膨胀系数 影响较大。已贴合道路边界的轮廓段,可停止膨胀,未贴合道路边界的轮廓段,则希望继续膨胀。 由于道路边界处的图像梯度大于道路面处,因此 可根据图像梯度的反比关系调节膨胀系数。在外 部能量项中引入膨胀系数的权值 w₁,即

$$E_{\text{ext}}(v) = \int_{0}^{1} w_{1}k\boldsymbol{n}(s) ds, \boldsymbol{\mathfrak{C}}(9) \ \text{H} \underline{\varpi} \mathfrak{G} \mathfrak{H}$$
$$x_{t+1} = (A + \gamma I)^{-1} (\gamma x_{t} + f_{x} + w_{1}kn_{x})$$
$$y_{t+1} = (A + \gamma I)^{-1} (\gamma y_{t} + f_{y} + w_{1}kn_{y})$$
(11)

轮廓由离散的有序点 $\{(x_i, y_i) | i = 1, 2, 3, ..., n\}$ 组成。已知图像各点处梯度为 ∇I ,轮廓上 图像梯度的最大、最小值为 ∇I_{max} 、 ∇I_{min} ,按式(12) 调节各轮廓点的膨胀系数权值 w_1

$$w_1 = 1 + \frac{\nabla I_{\max} - \nabla I}{\nabla I_{\max} - \nabla I_{\min}}$$
(12)

图 3 显示了基于图像梯度调节膨胀系数得到 的轮廓。和图 2 中结果相比,该方法既能使轮廓 扩张到其他道路分支,也不会因膨胀系数过大使 轮廓超越道路边缘。

(c)第50次迭代

(d) 第80次迭代

图 3 基于图像梯度调节膨胀系数得到的结果 Fig. 3 Expansion result for tuning expansion coefficient according to image gradient

3.2 基于轮廓曲率调节

扩张使轮廓延伸至和当前道路相连通的其 他道路分支。因此,即使道路中心线提取的结 果存在漏检,balloon snake也可以通过轮廓扩张 找回丢失的道路段。而轮廓扩张的速度也决定 了道路提取的速度。显然,扩张速度由膨胀系 数 k 决定,可以通过增大膨胀系数 k 加快扩张速 度。但并非在所有的轮廓段都应增大膨胀系 数。如图 4 所示,如果轮廓中的道路剖面段具 有较高的膨胀系数,能加快道路扩张;而其余的 道路轮廓段已贴合道路边缘,产生错误的道路 轮廓提取结果。

图 4 基于曲率调节膨胀系数的示意图 Fig. 4 Principle of expansion coefficient according to curvature

因此,在轮廓的外部能量项中再引入一个由 轮廓曲率控制的权系数 w₂,在轮廓的道路剖面段 w₂ 取值较大,而在其他轮廓段 w₂ 取值较小。相应

的,外部能量项 $E_{\text{ext}}(v) = \int_{0}^{1} w_1 w_2 k \mathbf{n}(s) ds_{\circ}$ 迭代方 程式(9) 变为

$$\begin{array}{c} x_{t+1} = (A + \gamma I)^{-1} (\gamma x_t + f_x + w_1 w_2 k n_x) \\ y_{t+1} = (A + \gamma I)^{-1} (\gamma y_t + f_y + w_1 w_2 k n_y) \end{array}$$
(13)

在道路图像分辨率不高的情况下,轮廓曲率可以 由曲线的弦长弧长比反映。相隔 m 个轮廓点的 轮廓段,其弦长弧长比 R 为

$$R = \frac{\|(x_i, y_i) - (x_{i+m-1}, y_{i+m-1})\|}{\sum_{i=1}^{m-1} \|(x_{i+1}, y_{i+1}) - (x_i, y_i)\|}$$
(14)

式中,*x_i、y_i*为轮廓点在图像中的坐标。设定弦长 弧长比的阈值以识别轮廓中的道路剖面。显然, 道路边缘直线段各处的弦长弧长比近似为1。假 设弯曲的道路段是弧长为*l*、曲率半径为*r*的理想

圆弧段,则该弧段的弦长弧长比为 $\frac{2r\sin(\frac{l}{2r})}{l}$ 。计 算式(14)时,选取合适的*m*,使弧长约为1.5倍道 路宽度,即*l*=1.5*d*,*d*为道路宽度。显然,道路剖 面处弧段的曲率半径为0.5*d*,弦长弧长比为 0.67;而一般道路弯道处的曲率半径至少为道路 宽度的1倍,则弦长弧长比为0.93。由于道路曲 线离散化后,实际弧长小于理想弧长,因此实际计 算的弦长弧长比大于理想值,所以选取阈值为 0.7。因此,基于轮廓曲率的调节率可以写为

$$w_2 = \begin{cases} n & R < 0.7 \\ 1 & R \ge 0.7 \end{cases}$$
(15)

式中,n为加速膨胀所需的整数倍数,本文取 n为 2。

图 5 中粗线示意的部分为计算弦长弧长比识 别的道路剖面段。

图 5 计算弦长弧长比方法选取道路剖面段 Fig. 5 Road profile recognized by computing arc chord ratio

采用基于轮廓曲率调节的膨胀系数方法得到 图 6 中左图的道路轮廓,固定轮廓膨胀系数得到 右侧各图中的轮廓。通过对比说明,基于曲率调 节膨胀系数的方法能加快轮廓的扩张。

(a) 第1次迭代, 膨胀系数调节(左)固定膨胀系数(右)

(b) 第10次迭代, 膨胀系数调节(左)固定膨胀系数(右)

(c) 第20次迭代, 膨胀系数调节(左)固定膨胀系数(右)

- 图 6 基于曲率调节膨胀系数的方法和固定膨胀系数 方法的效果对比
 - Fig. 6 Comparison between expansion coefficient tuning according to curvature and constant expansion coefficient

4 轮廓的填充和提取

多条道路中心线起始了多条轮廓,多条轮廓 同时扩张,造成轮廓间的重叠。文献[10]在形变 过程中将重叠的轮廓合并成一条轮廓。但合并的 算法实现复杂,且合并后由于轮廓长度增加,使 式(11)中矩阵求逆的困难增大。因此,本文不合 并重叠的轮廓,而在形变结束后填充轮廓,形成道 路区域的二值图像,再提取图像边缘,得到道路轮 廓。具体过程见图 7。

图 7 轮廓的填充和提取的示例 Fig. 7 Contour filling and boundary extraction

5 试 验

以文献[6,8,10,16]中的示例图像和从谷歌 地球软件上截取的合肥市区某处遥感图像为例,验 证 balloon snake 方法提取道路轮廓的效果。试验的结果见图 8~图 12。其中(a)为提取的道路中心线图像,(b)图中剔除了长度和曲率不符合要求的线条,(c)图基于(b)图的结果初始化道路轮廓,(d)图为扩张后的道路轮廓,(e)图为轮廓填充结果,(f)为最终提取的道路轮廓。

从图中可以看到,提取的道路中心线包括一些虚假检测。通过设置长度、曲率阈值剔除虚假 道路检测的同时,也剔除了一些正确检测。 balloon snake 的膨胀力和道路边缘的图像力共同作用,使得初始轮廓在数次迭代后很快贴合道 路边缘;而膨胀作用使轮廓沿道路方向继续延伸, 并逐渐覆盖丢失的道路片断;不同道路轮廓逐渐 重叠起来,共同覆盖了道路区域;填充迭代后的多 个轮廓得到道路区域的二值图像,最后提取图像 边界得到道路轮廓。

(c)

(d)

(a)

(e) 图 9 文献[8]中的示例图像提取得到的道路轮廓

(b)

Fig. 9 Road contour extraction for image in ref. [8]

图 12 截取谷歌地图中合肥市某区域图像,提取得到的道路轮廓 Fig. 12 Road contour extraction for the image of Hefei city cropped from Google Earth

对比传统 balloon snake 方法和膨胀系数可调 的 balloon snake 方法的道路提取速度。道路剖面 段的膨胀系数权值取 w₂ = 2。表 1 记录了两种方 法使轮廓迭代至稳定状态所需的迭代次数,说明膨 胀系数可调的 balloon snake 方法可以大大减少迭 代次数。需要说明的是迭代次数取决于道路中心 线到道路边缘的距离和轮廓膨胀速度,因此,减少 的迭代次数和总的迭代次数成正比关系。

表 1 膨胀系数可调方法和传统 balloon snake 方法在提 取道路轮廓时所需迭代次数对比

Tab. 1 The iteration number comparison between expansion coefficient tuning and constant expansion coefficient

试验图像 -	迭代次数	
	膨胀系数可调方法	传统 balloon snake 方法
图 8	107	145
图 9	72	114
图 10	114	182
图 11	217	371
图 12	87	157

6 结 论

本文提出了膨胀系数可调的 balloon snake 方 法。并结合道路轮廓提取的应用,基于图像梯度和 轮廓曲率调节膨胀系数。道路中心线提取为 snake 提供初始轮廓,由于中心线提取方法的不完善,存 在漏检和虚检。虚假检测通过设置道路长度和曲 率阈值剔除;轮廓在膨胀力作用下的扩张,逐渐覆 盖漏检和错误剔除的道路区域,从而实现道路轮廓 的提取。采用膨胀系数可调的balloon snake 方法, 并根据图像梯度和轮廓曲率调节膨胀系数,解决不 同轮廓段的不同膨胀系数需要,并减少了迭代次 数,大大加快了道路轮廓提取的速度。

参考文献:

- [1] STEGER C, GLOCK C, ECKSTEIN W, et al. Modelbased Road Extraction from Images [C] // Proceedings of Automatic extraction of Man-made Objects from Aerial and Space Images. Basel: Birkhauser Verlag, 1995;275-284.
- [2] KOUTAKI G, KEIICHI UCHIMURA. Automatic Road Extraction Based on Cross Detection in Suburb[C] // Proceedings of SPIE, Electronic Imaging. [S. l.]:SPIE, 2004:337-344.
- [3] ZHANG C, BALTSAVIAS E, GRUEN A. Knowledgebased Image Analysis for 3D Road Reconstruction [C] // Proceedings of the 21st Asian Conference on Remote Sensing, Zurich: Institute of Geodesy and Photogrammetry,

ETH-Hoenggerberg, 2000:100-105.

- [4] BAJCSY R, TAVAKOLI M. Computer Recognition of Roads from Satellite Pictures [J]. IEEE Transactions Systems, Man and Cybernetics, 1976,6(9):623-637.
- [5] BACHER U, MAYER H. Fuzzy Classification and Ziplock Snakes for Road Extraction from IKONOS Images[C] // Proceedings of ISPRS / EARSeL Joint Workshop on High Resolution Mapping from Space. Hannover:[s. n.], 2003.
- [6] STEGER C. An Unbiased Detector of Curvilinear Structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(2):113-125.
- [7] STEGER C. Extracting Curvilinear Structures: a Differential Geometric Approach[C]//Proceedings of the 4th European Conference on Computer Vision. [S. l.]: Springer-Verlag, 1996;630-641.
- [8] LAPTEV I. Road Extraction Based on Line Extraction and Snakes[R]. Computational Vision and Active Perception Lab, Royal Institute of Technology, 1997.
- [9] LAPTEV I, LINDEBERG T, ECKSTEIN W, et al. Automatic Extraction of Roads from Aerial Images Based on Scale Space and Snakes[J]. Maching Vision and Applications, 2000(12):23-31.
- [10] MARIKHU R, DAILEY M N, MAKHANOV S, et al. A Family of Quadratic Snakes for Road Extraction[C]// Proceedings of the 8th Asia Conference on Computer Vision, Heidelberg: Springer-Verlag, 2007:18-22.
- [11] NEUENSCHWANDER W, FUA P, IVERSON L, et al. Ziplock Snakes [J]. International Journal of Computer Vision, 1997, 25(3):191-201.
- [12] FUA P, LECLERC Y G. Model Driven Edge Detection[J]. Maching Vision and Applications, 1990, 3(1):45-56.
- [13] COHEN L D. On Active Contour Models and Balloons
 [J]. Computer Vision, Graphics and Image Processing, 1991, 53 (2):211-218.
- [14] KASS M, WITKIN A, TERZOPOULOS D. Snakes: Active Contour Models[J]. International Journal of Computer Vision, 1988, 4(1):321-331.
- [15] GONZALEZ R C, WOODS R E. Digital Image Processing[M]. 2nd Edition. New Jersey: Prentice Hall, 2002.
- [16] MOHAMMADZADEH A, VALADAN ZOEJ M J, TAVAKOLI A. Automatic Class Mean Calculation of Road Surface from IKONOS Images Using Fuzzy Logic and Particle Swarm Optimization [C] // International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. [S. l.]: ISPRS, 2007: 119-124. (責任编辑: 雷秀丽)

修回日期: 2010-02-16

First author : WU Liang(1980—), male, PhD candidate, majors in image processing and vision navigation. E-mail :wulianghefei@163.com

收稿日期: 2009-09-07

第一作者简介:吴亮(1980—),男,博士生,主要研究方向 为图像处理、视觉导航。