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Abstract: Many growing phenomena in both nature and society can be predicted with sigmoid 

function. The growth curve of the level of urbanization is a typical S-shaped one, and can be 

described by using logistic function. The logistic model implies a replacement process, and the 

logistic substitution suggests non-linear dynamical behaviors such as bifurcation and chaos. Using 

mathematical transform and numerical computation, we can demonstrate that the 1-dimensional 

map comes from a 2-dimensional two-group interaction map. By analogy with urbanization, a 

general theory of replacement dynamics is presented in this paper, and the replacement process 

can be simulated with the 2-dimansional map. If the rate of replacement is too high, periodic 

oscillations and chaos will arise, and the system maybe breaks down. The replacement theory can 

be used to interpret various complex interaction and conversion in physical and human systems. 

The replacement dynamics provides a new way of looking at Volterra-Lotka’s predator-prey 

interaction, man-land relation, and dynastic changes resulting from peasant uprising, and so on. 
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1 Introduction 

Logistic function typically reflects a kind of replacement in nature and society, and can be used 

as one of the substitution models. In early literature, the law of logistic substitution was mainly 

researched in economics, especially in industrial and technological studies. Fisher and Pry (1971) 

once successfully used the logistic function to characterize the substitution of old technology by 
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new. Hermann and Montroll (1972) argued that the industrial revolution is a replacement process, 

that is, the proportion of agricultural worker declines while that of nonagricultural workers 

increases. Montroll (1978) generalized the notion of substitution to a variety of situations by 

asserting technological and social evolution to be the consequence of a sequence of substitutions 

of one technique by another. Treating technological innovations as structural fluctuations in a 

self-organizing industrial system, Batten (1982) and Karmeshu et al (1985) gave a conceptual 

rationale for Fisher-Pry’s law of technological replacement. A landmark of the replacement 

dynamics is the work of Karmeshu (1988) and his co-workers, who extended the idea of 

replacement process for the study of replacement of rural population by urban population and 

revealed the pattern of urbanization in India. Recently, Chen (2009) and Chen and Xu (2010) 

demonstrated that the replacement dynamics of urbanization may be associated with complex 

dynamics such as bifurcation and chaos. 

Today, it is time to develop a general theory of replacement dynamics by means of the idea 

from fractals and chaos. The replacement is ubiquitous in both nature and society. Where there is a 

logistic growth, there is a logistic substitution, and thus replacement behavior will arise. The new 

points of this work lie in three aspects. First, a general principle of replacement dynamics is 

proposed. Second, the two-group interaction model is employed to interpret the process of 

replacement. Third, the periodic oscillations and chaos of replacement dynamics are used to 

explain the catastrophic occurrences in natural and social evolution. The rest part of this paper is 

organized as follows. In Section 2, the replacement of urbanization dynamics is advanced, and the 

1-dimensional logistic map is linked with the 2-dimensional map of two-population interaction 

map. In Section 3, the model of replacement dynamics is generalized to different fields such as 

ecology, geography, and history. In Section 4, a general theory of replacement dynamics is 

propounded, and the related questions are discussed. Finally, the paper is concluded by 

summarizing the mains of this work. 

2 Model: from 1-D map to 2-D map 

2.1 The 1-D logistic map 

The level of urbanization is the basic measurement which is used to describe the extent of 
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urbanization in a region. It is defined with the ratio of urban population to total population, that is 
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where u(t) refers to the urban population of time t, r(t) to the rural population at the same time, P(t) 

=u(t)+r(t) is the total population of the region, and L(t), the level of urbanization. The 

measurement equivalent to this is the urban-rural ratio (URR), which is defined by o(t)=u(t)/r(t) 

(Chen and Xu, 2010; United Nations, 2004). Don’t look down on these simple measurements. Just 

due to them, the relation between the 1-dimensional logistic map and a 2-dimensional 

two-population interaction map is brought to light (Chen, 2009). 

In urban studies, one of problems concerning us is how the level of urbanization changes over 

time. In fact, if some kind of measurement of a system has clear upper limit and lower limit, the 

growing course of the measurement always takes on the S-shaped curve. The curve can be 

formulated as a sigmoid function. The sigmoid function is also called squashing function. Pressed 

by the upper limit and withstood by the lower limit, a line will be twisted into S shape. The family 

of sigmoid functions includes various functions such as the ordinary arc-tangent, the hyperbolic 

tangent, and the generalized logistic function. Among all these sigmoid function, the simplest and 

the best-known one is the logistic function. Sometimes, the logistic function is the synonym of the 

sigmoid function (Mitchell, 1997). 

As we know, the level of urbanization comes between 0 (or 0%) to 1 (or 100%), thus it can 

often be fitted to the logistic function since it has clear upper and lower limits (Chen, 2009; Chen 

and Xu, 2010; Karmeshu, 1988; Rao et al, 1989). For many years, the United Nations experts of 

urbanization employed the logistic model to predict the level of urbanization of different countries 

(United Nation, 2004). The logistic model can be expressed as 
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where L0 is the initial value of urbanization level L(t), i.e., the level of urbanization of time t=0, k 

is the intrinsic/ original growth rate. The derivative of equation (2) is 
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Obviously, this is a discrete-time demographic model analogous to the logistic equation first 



4 
 

created by mathematician Pierre François Verhulst (Banks, 1994). Suppose that the step length of 

data sampling is ∆t=1. Discretizing equation (3) yields a 1-dimensional map in the form 

2
1 )1( ttt kLLkL −+=+ .                             (4) 

where Lt=ut/(ut+rt) is the discrete expression of L(t), and here rt and ut are the discrete expressions 

of r(t) and u(t), respectively. 

The logistic map is in fact a polynomial mapping of degree 2 based on recurrence relation. The 

map was popularized in a seminal paper of May (1976). It is often cited as an archetypal example 

of how complex behavior such as bifurcation and chaos can emerge from very simple non-linear 

dynamical equations (Figure 1). Let xt=kLt/(1+k), then equation (4) can be normalized and we 

have xt+1=(1+k)xt(1-xt). I will demonstrate that the logistic process is actually a replacement 

process, which can be extended to the general principle of replacement dynamics.  

 
       a. Fixed state (k=1.75)               b. Two-period oscillation (k=2.25) 

 
c. Four-period oscillation (k=2.5)                d. Chaotic state (k=2.75) 

Figure 1 The change of the level of urbanization based on the 1-dimensional map: from fixed 

state to chaotic state (the pattern is the same as those from May (1976)) 
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2.2 The 2-D two-population interaction map 

Because of equation (1), the 1-dimensional map can be converted into a 2-dimensional map of 

urban-rural population interaction. The level of urbanization is defined by urban population and 

rural population, thus the percent of urban population must be associated with urban and rural 

population growth. By analogy with the Volterra-Lotka model in ecology (Dendrinos and Mullally, 

1985), the urban-rural interaction model can be built as follows (Chen, 2009) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
+=

+
−=

)()(
)()()(

d
)(d

)()(
)()()(

d
)(d

tutr
tutrdtcu

t
tu

tutr
tutrbtar

t
tr

.                          (5) 

This means that the growth rate of rural population, dr(t)/dt, is proportional to the size of rural 

population, r(t), and the coupling between rural and urban population, but not directly related to 

urban population size; the growth rate of urban population, du(t)/dt, is proportional to the size of 

urban population, u(t), and the coupling between rural and urban population, but not directly 

related to rural population size. It seems to be difficult to understand these, but the census dataset 

of the United States (US) of America supports this model (Chen and Xu, 2010). What is more, the 

two-population interaction can be generalized to two-group interaction.  

If a study region is a close system, the decrease of rural population will be equal to the increase 

of urban population resulting from urban-rural interaction, and thus we have b=d. In this instance, 

from equations (1) and (5) follows 
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Let k=b-a+c, equation (6) is identical to equation (3). This suggests that the urbanization level 

growth is associated with the process of urban and rural interaction. Discretizing equation (5) 

yields a 2-dimenaional map such as 
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For simplicity, the notation of parameters is not changed in spite of the error coming from the 

continuous-discrete conversion. By means of the least squares calculation of the US census data 
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from 1790 to 1960, we have 
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I don’t adopt the data after 1960 as the US city definition varied from 1970. 

US is not a close country of population, so it is not strange that b≈0.3615 is not equal to 

d≈0.5044. What is strange is that c=0, this suggests that the growth rate of urban population is 

only proportional to the coupling between rural and urban population, but not directly related to 

rural and urban population sizes. However, if we think it deeply, it seems to be true. Despite cities 

of long standing, the history of urbanization compared with the history of human being is not long. 

There was no real urbanization before industrialization (Knox, 2005). If the growth rate of urban 

population was proportional to its urban population size, urbanization should arise long ago. As a 

matter of fact, urbanization began due to industrialization, development of transportation and so 

on. Numerical simulation shows that, if c is significantly greater than 0, urban population and total 

population in a region will grow ceaselessly. However, this is not the case in the real world. 

Therefore, the c value is either zero or very small.  

 

Table 1 The model parameters of urbanization and corresponding dynamical behaviors (a=0.25, 

c=0) 

Figure 1-D map (k=b-a+c) 2-D map (b=d) System behavior 
Figure 1(a)，Figure 2(a) 1.75 2.00 Fixed state 
Figure 1(b)，Figure 2(b) 2.25 2.50 Two-period oscillation 
Figure 1(c)，Figure 2(c) 2.50 2.75 Four-period oscillation 
Figure 1(d)，Figure 2(d) 2.75 3.00 Chaotic state 
 

The nonlinear dynamical behaviors displayed in Figure 1 can also be generated by the 

2-dimensional map, equation (7). According to the US model of urbanization, let a=0.025, c=0 

(Table 1). For simplicity and without loss of generality, let b=d. the US census started in 1790, 

when the urbanization is 201 655, and the rural population is 3 727 559. We may take the initial 

values such as r0=3.727 559 million, and u0=0.201 655 million. Thus, the rt and ut values can be 

given by the recurrence relations, equation (7), and the level of urbanization, Lt, can be given by 
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equation (1), or Lt=ut/(ut+rt). Changing the b and d values, we have various simple and complex 

dynamical patterns such as sigmoid growth, periodic oscillations, and chaos (Figure 2). In fact, if 

we remove various constraints imposed on the parameter a, b, c, and d, the dynamical behaviors of 

the 2-dimenaional map are richer and more colorful than those of the 1-dimensiaonl map. 

 
      a. Fixed state (b=d=2)                 b. Two-period oscillation (b=d=2.5) 

 
c. Four-period oscillation (b=d=2.75)             d. Chaotic state (b=d=3) 

Figure 2 The change of the level of urbanization based on the 2-dimensional map: from fixed 

state to chaotic state (Chen, 2009) 

3.3 Replacement dynamics 

Urbanization is in fact a process of population replacement—the urban population substitute for 

the rural population (Karmeshu, 1988). Generally speaking, the replacement equation is an 

exponential function, can the replacement process can be expressed as a logit transform. As 

indicated above, URR is defined by 
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The level of urbanization can be expressed as 
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In light of equation (2), URR proved to be an exponential function of time, namely 
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where O0= L0/(L0-1) is the initial value of URR. Thus we have logit transform such as 
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where the initial values r0=r(0), u0=u(0).This is just the urban-rural population substitute equation 

(Karmeshu, 1988). Both the urban-rural population datasets of American census and Indian census 

can be fitted to the replacement model, equation (10) or equation (12) (Figure 3). Moreover, the 

population replacement can be extended to the general replacement dynamics.  

 
  a. America, 1790-2000                    b. India, 1901-2001 

Figure 3 Two patterns of the urban replacement process of America and India 

 (Note: The data sources are censuses of the United States of America and India, respectively. See: (1) 

http://www.census.gov/population; (2) http://censusindia.gov.in/Census_Data_2001/ .) 
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3 Generalization: the replacement dynamics in nature and society 

3.1 Example 1: ecological replacement 

The urban replacement came from technological replacement, can be generalized to many 

different fields. Let’s see several examples. In ecology, the predator-prey interaction model is a 

well-known nonlinear dynamical model (Dendrinos and Mullally, 1985). The model can be 

revised by using the concept from replacement dynamics. Suppose there a close region such as an 

island with two types of animals. One is predator (flesh-eater, carnivore, carnivorous animals), and 

the other, the prey (vegetarian, herbivore, herbivorous animals). By analogy with the energy unit 

“standard coal”, we can make a comparable unit for animals, namely, standard head. If the 

predators and preys are x and y standard heads, respectively, then we can define a measurement, 

the ratio of the biomass of predator to that of the entire animals p(t), in the form 

%100
)()(

)()( ×
+

=
tytx

txtp .                          (13) 

where x represents the biomass of predator, y, the biomass of prey in the region. Accordingly, the 

predator-prey ratio (PPR) can be given by o(t)=x(t)/y(t). 

Clearly, there is upper limit and lower limit for p(t). Because of the squashing effect, the ratio of 

the biomass of predator to that of the entire animals should follow the law of logistic growth. Thus, 

Volterra-Lotka’s predator-prey interaction model can be revised in the form of equation (5), and 

May (1976)’s logistic equation can be associated with the revised predator-prey model, which 

differ in expression from the classical Volterra-Lotka’s model. 

3.2 Example 2: geographical replacement 

In geography, the very basic and important topic is the relation between man and land or natural 

environment. Because of the man-land interaction, the primary productivity or even secondary 

productivity are gradually consumed by human being. So far, man has used up more than 40% of 

the primary productivity. In other words, human being has transformed the first nature into the 

second nature and the third nature (Swaffield, 2002). Defined a new measurement, the ratio of the 

primary productivity to the total productivity in a region p’(t), in the form 
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where x’ represents the primary productivity, and y’ is the other productivity. Accordingly, the 

ratio of the primary productivity to the other productivity (POR) can be defined by o(t)’= 

x’(t)/y’(t). 

The process of human being marauding nature is also a logistic process, and thus it is also a 

nonlinear dynamics of replacement. In a sense, the man-land relation is unstable, and periodic 

oscillations and chaos may arise since humankind depletes nature so rapidly.  

3.3 Example 3: historical replacement 

In the theory of class struggle, Marxist analysis of society identifies two main social groups: 

labor (the proletariat or workers) and capital (the bourgeoisie or capitalists). The former includes 

anyone who earns their livelihood by selling their labor power and being paid a wag/salary for 

their labor time, and the latter include anyone who obtains their income not from labor as much as 

from the surplus value that they appropriate from the workers who create wealth. Whether or not 

you believe in Marxism, you will agree that the social system falls into two groups—the haves 

(wealthy, men of wealth, the rich) and the have-nots (needy, poor people, the poor). Let x’’ 

represent the number of have-nots, and y’’ represent the number of the haves. Then we can define 

a ratio of the have-nots to the total population such as 

%100
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Thus the poor-rich ratio (PRR) can be expressed as o’’(t)=x’’(t)/y’’(t). This process of replacement 

is just so-called pauperization of a country. 

In ancient China, for example, dynastic changes were always processes of land annexation and 

concentration of landholding right. The rich annexed the land of the poor, first little by little, and 

then more and more, so that about 20 percent of people held 80 percent of land or so, and about 80 

percent people had little land. Land annexation can be regarded as a logistic process. It often led to 

social pauperization, and then the nation lost its balance. Peasant uprising burst out, social 

turbulence began. Hundreds responded to a single call, and as one (uprising) fell, another rose. 

This seems to be the course from oscillations to chaos. The final result is that new dynasty 
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replaced old dynasty, or new regime replaced old regime. 

4 Questions and discussion 

The logistic substitute model can be employed to describe the process of replacement of one 

activity by another (Karmeshu, 1988). The studies used to be confined in the fields of industrial 

development and urbanization. However, you can find the replacement processes here and there in 

both nature and society. If some phenomena fill into two groups, which can be expressed by the 

dummy variable 0 and 1, and one group tries to take the place of the other group, there will be a 

replacement dynamics (Table 2). So, the replacement dynamics is actually a 0-1 discrete spatial 

dynamics. The living space of one group is squashed and occupied by another group. The 

replacement process can be divided into two types: virtuous replacement (sound substitution) and 

vicious replacement (unsound substitution). For examples, new technology displace old 

technology, this is a kind of virtuous replacement. However, the land annexation in human history 

(the have-nots displace the haves) is a kind of vicious replacement. The virtuous replacement lead 

to a virtuous cycle, and a system develops soundly, whereas the vicious replacement result in a 

vicious cycle, and a system tends towards breakdown. 

 

Table 2 The 0-1 classification of living space and the elements of replacement dynamics 

Item Type 0 Type 1 
Industry 1 Old technology New technology 
Industry 2 Traditional technique Modern technique 
Urbanization Rural population Urban population 
City Unfilled space Filled space 
Ecology 1 Prey Predator 
Ecology 2 Primary productivity The secondary and tertiary productivity 
Geography 1 The first nature The second, third, and fourth nature 
Geography 2 Natural space Human space 
Economics 1 Primary industry The secondary and tertiary industry 
Economics 2 Agricultural workers Non-agricultural workers 
Sociology Old ideas New ideas 
History Haves (the rich) Have-nots (the poor) 
 

It is necessary to clarify the dynamical mechanism of the discrete replacement. Let’s take the 

urban replacement as an example to illustrate the underlying rationale of replacement process. 
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Two models based on two postulates can be employed to explain the replacement dynamics of 

urbanization. One the nonlinear dynamics model based on the postulate of two-population 

coupling, as indicated by equation (5), the other is a linear dynamics model based on the postulate 

of allometric growth such as (Bertalanffy, 1968; Chen and Jiang, 2009) 
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where α and β are growth coefficients (α>0, β>0). The solutions to linear differential equations are 
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From equation (17) follows 
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which is equivalent to equation (12). This suggests that the replacement model of urbanization can 

be derived from the linear dynamics equations. Apparently we have 

αβ −=k .                                  (19) 

Because k represents the difference between the relative growth ratio of rural population, α, and 

that of urban population, β, the United Nations (2004) experts called it the urban-rural growth 

difference (URGD). On the other hand, from equation (17) follows an allometric scaling relation 

between urban and rural population in the form  
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where η=u0/r0
β/α is proportionality coefficient, and 
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is the allometric scaling exponent. Equation (20) was verified by Naroll and Bertalanffy (1956). In 

equation (21), Du refers to the fractal dimension of urban population, and Dr, the fractal dimension 

of rural population. This suggests that, if the replacement dynamics is based on the linear 

differential equations, it is actually based on the allometric scaling law associated with fractal 
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geometry. The law of allometric growth is very significant in urban studies (see e.g. Batty and 

Longley, 1994; Bettencourt et al, 2007; Chen, 2010; West et al, 2002). However, in the urban 

replacement process, it seems to be the non-linear interaction rather than the allometric scaling 

that dominates the dynamical evolution.  

Discretizing equation (16) yields a 2-dimensional map such as 
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However, if we employ equation (22) to simulate the rural population, urban population, total 

population, and the level of urbanization, the results do not tally with the actual situation—all the 

population and the urbanization level go up unboundedly. In contrast, if we use the 2-dimensional 

map defined by equation (7) to simulate the level of urbanization, the rural population, urban 

population, and total population, the results conform to reality—the capacity values are limited 

(Figure 4, Figure 5). This seems to imply that it is the nonlinear dynamics rather than the linear 

dynamics that can be employed to interpret the replacement process. Despite this, the logistic 

equation can be used as a bridge of understanding between the simple allometric scaling law and 

the complex nonlinear interaction model (Table 3). 

 

Table 3 Mathematical transform relation between the simple allometric scaling laws and 

complex non-linear dynamics 

Models Complex models Transformation Simple models 
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Figure 4 The logistic curve of urbanization level based on the 2-dimensional map 

 

Figure 5 The growth curves of the urban population, rural population, and total population 

based on the 2-dimensional map 

 

The replacement complex depends on the rate of logistic substitution. If the parameter values a, 

b, c, and d in the 2-dimensional map, equation (7), have proper scales, the numerical simulation 

results are normal, and the rural population, urban population, total population, and the level of 

urbanization finally converge (Figure 4, Figure 5). However, if the parameter values go beyond 

certain limits, the periodic oscillation and chaos will emerge. Figure 2 displays the change patterns 

of the level of urbanization. The pivotal parameters are the ones on the cross terms, that is, the 

coupling parameters b and d. The values of b and d indicate the rate of replacement. The higher 
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the b and d are, the rapider the replacement is. If and only if b and d exceed the critical values, 

periodic oscillations and chaos will arise. A conclusion can be drawn that the overspeed 

(“quick-tempered”) replacement gives rise to unstable evolution. 

5 Conclusion remarks 

The logistic replacement is one of the ubiquitous general empirical observations across the 

individual sciences, which cannot be understood in the set of references developed within the 

certain scientific domain. We can find the replacement process everywhere in nature and society. 

The theory of replacement dynamics should be developed from the interdisciplinary perspective. It 

deals with the replacement of one activity by another. One typical logistic substitution is the 

replacement of old technology by new, another typical logistic substitution is the replacement of 

rural population by urban population. This paper is mainly based on urban-rural replacement, but 

it provides a series of examples on replacement process in different fields such as ecology, 

geography, and history. 

The replacement process is associated with the nonlinear dynamics described by two-group 

interaction model. The discrete expression of the nonlinear differential equation is the 

2-dimensional maps. The map can generate various simple and complex behaviors including 

S-shaped growth, periodic oscillations, and chaos. If the rate of replacement is lower, the growth 

curve is a sigmoid curve. However, if the replacement rate is too high, periodic oscillations or 

even chaos will arise. This suggests, no matter what kind of replacement it is--virtuous 

substitution or vicious substitution, the rate of replacement should be befittingly controlled. 

Otherwise, catastrophic events maybe take place, and the system will likely fall apart. Clearly, the 

studies on the replacement dynamics is revealing for us to understand the evolution in nature and 

society. 
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