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Abstract

We generate exact solutions of the non-autonomous chiral model, which in particular arises in General
Relativity, using a general result of the bidifferential calculus approach to integrable PDDEs. In the case
of the 2×2, respectively 3×3 matrix chiral model, this family of solutions admits reductions to solutions
of the Ernst equation(s) describing stationary and axially symmetric (electro-) vacuum space-times. In
this way we recover the Ernst potentials of multi-Kerr-NUT and multi-Demiański-Newman metrics.

1 Introduction

The bidifferential calculus framework allows to elaborate solution generating methods for a wide class of
nonlinear “integrable” partial differential or difference equations (PDDEs) to a considerable extent on a
universal level, i.e. resolved from specific examples. A brief account of the basic structures and some
results have been presented in [1] (also see the references therein), the essentials needed in the present
work are provided in Section 2. We explore in this framework the non-autonomous chiral model, with
matrix dimensions m×m, that results from the stationary axially symmetric Einstein (m = 2) and Einstein-
Maxwell (m = 3) vacuum equations [2–11], and for m > 3 also appears in higher-dimensional gravity theories
(see e.g. [12–17]). More precisely, we concentrate on a surprisingly simple non-iterative solution generating
result that has been successfully applied in various other cases of integrable (soliton) equations [1, 18–20]
to generate multi-soliton families. In order to make it applicable to the non-autonomous chiral model, a
slight generalization is required, however (see Section 3 and Appendix A). Section 4 then elaborates it for
the m×m chiral model, and Section 5 addresses reductions, in particular to the Ernst equation of General
Relativity. Section 6 contains some concluding remarks.

2 Preliminaries

Basic definitions. A graded algebra is an associative algebra Ω over C with a direct sum decomposition
Ω =

⊕

r≥0
Ωr into a subalgebra A := Ω0 and A-bimodules Ωr, such that Ωr Ωs ⊆ Ωr+s. A bidifferential
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calculus (or bidifferential graded algebra) is a unital graded algebra Ω equipped with two (C-linear) graded
derivations d, d̄ : Ω → Ω of degree one (hence dΩr ⊆ Ωr+1, d̄Ωr ⊆ Ωr+1), with the properties

d2κ = 0 ∀κ ∈ C , where dκ := d̄− κ d , (2.1)

and the graded Leibniz rule

dκ(χχ′) = (dκχ)χ
′ + (−1)r χ dκχ

′ ,

for all χ ∈ Ωr and χ′ ∈ Ω.

Dressing a bidifferential calculus. Let (Ω, d, d̄) be a bidifferential calculus. Replacing dκ in (2.1) by

Dκ := d̄− A− κ d , (2.2)

with a 1-form A (i.e. an element of Ω1), the resulting condition D2
κ = 0 (for all κ ∈ C) can be expressed as

dA = 0 and d̄A− AA = 0 . (2.3)

If these equations are equivalent to a PDDE (or a system of PDDEs), we say we have a bidifferential calculus
formulation for it. This requires that A depends on an independent variable (or a set of independent
variables) and the derivations d, d̄ involve differential or difference operators. There are several ways to
reduce the two equations (2.3) to a single one. Here we only consider two of them.

1. We can solve the first of (2.3) by setting

A = dφ . (2.4)

This converts the second of (2.3) into

d̄ dφ = dφ dφ . (2.5)

This equation is obviously invariant under φ 7→ αφα−1 +β with an invertible α ∈ A satisfying dα = d̄α = 0,
and β ∈ A satisfying dβ = 0.

2. Alternatively, the second of equations (2.3) can be solved by setting

A = (d̄g) g−1 , (2.6)

and the first equation then reads

d
(

(d̄g) g−1
)

= 0 . (2.7)

This equation has the (independent left and right handed, i.e. chiral) symmetry

g 7→ α g β , (2.8)

where α ∈ A is d-constant1 and β ∈ A is d̄-constant, and both have to be invertible. Since

d̄ [(dg−1) g] = −d̄(g−1dg) = g−1 [(dd̄g) g−1 − (d̄g) dg−1] g = g−1 d[(d̄g) g−1] g , (2.9)

g solves (2.7) iff g−1 solves (2.7) with d and d̄ exchanged. In our central example, the non-autonomous chiral
model, g 7→ g−1 becomes a symmetry.

1It may not be evident that we need not require d̄α = 0 in addition, but the latter condition is indeed not necessary. The
simple proof uses dd̄ = −d̄d and the Leibniz rule for d and d̄.
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Linear system. The compatibility condition of the linear equation

d̄X = (dX)P + AX (2.10)

is

0 = d̄2X = (dX) [(dP )P − d̄P ] + (d̄A− A
2)X − (dA)X P .

If P satisfies2

d̄P = (dP )P , (2.11)

this reduces to

(d̄A− A
2)X = (dA)X P . (2.12)

For the above choices of A, this implies the respective PDDE. Hence (2.10) is the source of a corresponding
Lax pair, also see Appendix B.

Miura transformation. If a pair (φ, g) solves the Miura transformation equation

(d̄g) g−1 = dφ (2.13)

(cf. [1]), it follows (as an integrability condition) that φ solves (2.5) and g solves (2.7). We note that
(2.13) is just the linear equation (2.10) if we identify A = dφ, X = g and set P = 0. If we have chosen
a bidifferential calculus and a reduction condition such that (2.5) becomes equivalent to some PDDE, this
does not necessarily mean that also (2.7) is equivalent to some ordinary PDDE. But for the central example
of this work, the non-autonomous chiral model, such a mismatch does not occur. In fact, in Section 3 we
will actually present a solution generating method for (2.13).

3 A solution generating method

Let
∧

(CN ) denote the exterior (Grassmann) algebra of the vector space CN and Mat(m,n,B) the set of
m × n matrices with entries in some unital algebra B. We choose A as the algebra of all matrices (with
entries in B), where the product of two matrices is defined to be zero if the sizes of the two matrices do not
match, and assume that Ω = A ⊗∧(CN ) is supplied with the structure of a bidifferential calculus. In the
following, I = Im and I = In denote the m×m, respectively n× n, identity matrix.

Proposition 3.1. Let P ,R,X ∈ Mat(n, n,B) be invertible solutions of

d̄P = (dP )P , d̄R = R dR , d̄X = (dX)P − (dR)X , XP −RX = V U , (3.14)

with d- and d̄-constant U ∈ Mat(m,n,B), V ∈ Mat(n,m,B). Then

φ = UX−1V , g = I +U(RX)−1V (3.15)

solve the Miura transformation equation (2.13), and thus (2.5), respectively (2.7).

Proof: Using the last three of (3.14) we obtain

d̄(RX)−1 = −X−1[d̄XX−1 +R−1d̄R]R−1

= −X−1(dX)X−1(XP ) (RX)−1

= (dX−1)[I + V U (RX)−1] .

Multiplication by U from the left and by V from the right, and using d̄I = 0, leads to

d̄g = U(dX−1)V g = (dφ) g .

Hence φ and g solve the Miura transformation equation (2.13). We did not use the first of (3.14), but it
arises as an integrability condition: 0 = d̄2X = (dX) [(dP )P − d̄P ]. �

2We note that, as a consequence of this equation, also P k with any k ∈ N (k ∈ Z) is a solution (if P is invertible).
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Remark 3.2. The third of (3.14), which has the form of the linear equation (2.10), is almost a consequence
of the fourth, which is a Sylvester equation. Indeed, as a consequence of the Sylvester equation we have

0 = d̄(RX −XP + V U) = (d̄R)X +R d̄X − (d̄X)P −X d̄P

= R [d̄X + (dR)X ]− [d̄X +X dP ]P

= R [d̄X + (dR)X − (dX)P ]− [d̄X + (dR)X − (dX)P ]P + d(RX −XP )P ,

where the last term vanishes. If P and R are sufficiently independent, this implies that the third of (3.14)
is satisfied. In particular, this holds if B is the algebra of complex functions of some variables and if P and
R have no eigenvalue in common. �

Appendix A explains how Proposition 3.1 arises from a more general theorem that has been applied in
previous work to generate soliton solutions of several integrable PDDEs.

4 The non-autonomous chiral model

The PDE defining the non-autonomous chiral model can be obtained as a reduction of the self-dual Yang-Mills
(sdYM) equation (see e.g. [21–23]). In an analogous way, a bidifferential calculus for the non-autonomous
chiral model can be derived from a bidifferential calculus for the sdYM equation (also see [24]). In coordinates
ρ, z, θ, it is given by

df = −fz ζ1 + eθ (fρ − ρ−1fθ) ζ2 , d̄f = e−θ (fρ + ρ−1fθ) ζ1 + fz ζ2 . (4.1)

Here e.g. fz denotes the partial derivative of a function f (of the three coordinates) with respect to z, and

ζ1, ζ2 is a basis of
∧1

(C2). d and d̄ extend to matrices of functions and moreover to Ω = A ⊗∧(C2) with
A = Mat(m,m,C), treating ζ1, ζ2 as constants. The coordinate θ is needed to have the properties of a
bidifferential calculus, but we are finally interested in equations for objects that do not depend on it.

A (matrix-valued) function is d-constant (d̄-constant) iff it is z-independent and only depends on the
variables θ, ρ through the combination θ + log ρ (respectively θ − log ρ). It is d- and d̄-constant iff it is
constant, i.e. independent of z, θ, ρ.

For an m×m matrix-valued function g, (2.7) takes the form

(ρ gz g
−1)z + (ρ gρ g

−1)ρ − (gρ g
−1)θ + (gθ g

−1)ρ − ρ−1 (gθ g
−1)θ = 0 .

Restricting g by setting

g = ec θ g̃ (4.2)

with any constant c and θ-independent g̃, for the latter we obtain the non-autonomous chiral model equation3

(ρ g̃z g̃
−1)z + (ρ g̃ρ g̃

−1)ρ = 0 . (4.3)

In Section 4.1, we derive a family of exact solutions by application of Proposition 3.1. In Appendix B we
recover two familiar linear systems (Lax pairs) for this equation.

Miura transformation. Evaluating (2.5) with

φ = e−θ φ̃ , (4.4)

where φ̃ is θ-independent, we obtain

φ̃zz + φ̃ρρ + ρ−1φ̃ρ = [φ̃ρ + ρ−1φ̃, φ̃z] ,

which is related to the non-autonomous chiral model by the Miura transformation

φ̃z = −g̃ρ g̃
−1 − c ρ−1 I , g̃z g̃

−1 = φ̃ρ + ρ−1 φ̃ . (4.5)

3Changing the sign of the first term in the expression for df in (4.1), we obtain a minus sign between the two terms on the
left hand side of (4.3). This hyperbolic version of the chiral model shows up, in particular, in the reduction of the Einstein
vacuum equations with two spacelike commuting Killing vector fields, describing gravitational plane waves [8]. Our further
analysis can be adapted to this case.
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Symmetries. (4.3) is invariant under each of the following transformations, and thus, more generally, any
combination of them.

(1) g̃ 7→ α g̃ β, with any invertible constant m×m matrices α and β (cf. (2.8)).

(2) g̃ 7→ ρc g̃ with any constant c.

(3) g̃ 7→ g−1 (also see (2.9)).

(4) g̃ 7→ g̃†, where † indicates Hermitian conjugation.

We note that g̃ 7→ (g†)−1 is a fairly obvious symmetry. With its help, (4) follows immediately from (3).

4.1 A family of exact solutions

Let us first consider the equation d̄P = (dP )P , which is the first of (3.14). Using the above bidifferential
calculus, it takes the form

P z P = −e−θ(P ρ + ρ−1P θ) , P z = eθ(P ρ − ρ−1P θ)P .

Writing

P = e−θP̃ ,

and assuming that P̃ does not depend on θ, this translates to

P̃ ρ − ρ−1P̃ = −P̃ z P̃ , P̃ z = (P̃ ρ + ρ−1P̃ ) P̃ . (4.6)

Lemma 4.1. The following holds.

(1) If P̃ and I + P̃
2
are invertible, the system (4.6) implies

P̃
2 − 2ρ−1 (z I +B) P̃ − I = 0 , (4.7)

with a constant matrix B.
(2) Let I + P̃

2
be invertible and P̃ ρ, P̃ z commute with P̃ . If P̃ satisfies (4.7), then P̃ solves (4.6).

Proof: (1) Assuming that I + P̃
2
is invertible, the system (4.6) can be decoupled into

P̃ ρ = ρ−1 P̃ (I − P̃
2
)(I + P̃

2
)−1 , P̃ z = 2ρ−1 P̃

2
(I + P̃

2
)−1 , (4.8)

which can also be written as

(P̃
−1

)ρ = −ρ−1 P̃
−1

(I − P̃
2
)(I + P̃

2
)−1 , (P̃

−1
)z = −2ρ−1 (I + P̃

2
)−1 ,

assuming that P̃ is invertible. Subtraction yields

(P̃ − P̃
−1

)ρ = −ρ−1 (P̃ − P̃
−1

) , (P̃ − P̃
−1

)z = 2ρ−1 I ,

which can be integrated to

P̃ − P̃
−1

= 2ρ−1 (z I +B) , (4.9)

with a constant matrix B. This implies (4.7).
(2) Let P̃ satisfy (4.7) with a constant matrix B. Then P̃ is invertible, since the existence of a non-vanishing
vector annihilated by P̃ would be in conflict with (4.7). Thus (4.9) holds, which implies [P̃ ,B] = 0.
Differentiation of (4.7) with respect to ρ, and elimination of zI +B with the help of (4.7) or equivalently
(4.9), leads to

0 = P̃ ρ P̃ + P̃ P̃ ρ + 2ρ−2(zI +B) P̃ − 2ρ−1(zI +B) P̃ ρ = (P̃ + P̃
−1

)P̃ ρ + ρ−1(P̃
2 − I) ,

where we used the assumption [P̃ ρ, P̃ ] = 0. If I+ P̃
2
is invertible, the resulting equation is the first of (4.8).

In the same way we obtain the second of (4.8). (4.8) is equivalent to (4.6). �
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Remark 4.2. The conditions [P̃ ρ, P̃ ] = [P̃ z, P̃ ] = 0 in part (2) of the lemma are satisfied in particular if
the spectrum spec(B) is simple, i.e. if the eigenvalues of B are all distinct, since then the solutions of (4.7)
are functions of ρ, z and the matrix B (and thus P̃ ρ and P̃ z commute with P̃ ) [25]. But this would be
unnecessarily restrictive, see section 4.2. �

Remark 4.3. Under the assumption that I + P̃
2
is invertible, (4.8) implies [P̃ ρ, P̃ ] = [P̃ z , P̃ ] = 0. For the

bidifferential calculus under consideration, d̄P = (dP )P is therefore equivalent to d̄P = P dP . The latter
is one of our equations for R in Proposition 3.1. Setting

R = e−θR̃ ,

with R̃ θ-independent, invertible P̃ and R̃ both have to solve (4.7). �

The third of (3.14) becomes

Xρ + ρ−1Xθ = −Xz P̃ + R̃z X , Xz = (Xρ − ρ−1Xθ) P̃ − (R̃ρ + ρ−1R̃)X .

Assuming that U and V are θ-independent, and recalling the θ-dependence of φ, the formula for φ in (3.15)
requires X = eθX̃ with θ-independent X̃. Hence

X̃ρ + ρ−1X̃ = −X̃z P̃ + R̃z X̃ , X̃z = (X̃ρ − ρ−1X̃) P̃ − (R̃ρ + ρ−1R̃) X̃ . (4.10)

The last of (3.14) becomes the θ-independent Sylvester equation

X̃ P̃ − R̃ X̃ = V U . (4.11)

Now Proposition 3.1 implies the following.

Proposition 4.4. Let n × n matrices P̃ and R̃ be solutions of (4.7) (with a matrix B, respectively B′),

with the properties that they commute with their derivatives w.r. to ρ and z, and that I+ P̃
2
and I+ R̃

2
are

invertible. Furthermore, let spec(P̃ ) ∩ spec(R̃) = ∅ and X an invertible solution of the Sylvester equation
(4.11) with constant m× n, respectively n×m, matrices U and V . Then

g̃ = (I +U(R̃X̃)−1V ) g0 , (4.12)

with any constant invertible m×m matrix4 g0, solves the non-autonomous chiral model equation (4.3).

Proof: As a consequence of the spectrum condition, a solution X̃ of the Sylvester equation (4.11) exists and
is unique. The further assumptions for P̃ and R̃ are those of Lemma 4.1, part (2). Furthermore, (4.10) is a
consequence of (4.11) if the spectrum condition holds (see also Remark 3.2). Now our assertion follows from
Proposition 3.1 and the preceding calculations. �

Remark 4.5. The determinant of (4.12) is obtained via Sylvester’s theorem,

det(g̃) = det(I +U(R̃X̃)−1V ) det(g0) = det(I + V U(R̃X̃)−1) det(g0)

= det(R̃X̃ + V U) det(R̃X̃)−1 det(g0) = det(X̃P̃ ) det(R̃X̃)−1 det(g0) =
det(P̃ )

det(R̃)
det(g0) ,

where we used the Sylvester equation (4.11) and assumed that it has an invertible solution. �

Remark 4.6. As an obvious consequence of (4.11), U and V enter g̃ given by (4.12) only modulo an
arbitrary scalar factor different from zero. We also note that a transformation

P̃ 7→ T−1
1 P̃ T 1 , R̃ 7→ T−1

2 R̃ T 2 , U 7→ UT 1 , V 7→ T−1
2 V , X̃ 7→ T−1

2 X̃T 1 ,

with constant invertible n× n matrices T 1,T 2, leaves (4.7), (4.10), (4.11) and (4.12) invariant. As a conse-
quence, without restriction of generality, we can assume that the matrix B in (4.7), and the corresponding
matrix related to R̃, both have Jordan normal form. �

4Here g0 represents the freedom of chiral transformations.
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Example 4.7. Let P̃ and R̃ be diagonal, i.e.

P̃ = (pi δij) , R̃ = (ri δij) .

If they have no eigenvalue in common, then (4.11) has a unique solution given by the Cauchy-like matrix

X̃ ij =
(V U)ij
pj − ri

.

It remains to solve (4.7) (choosing B diagonal), which yields

pi = ρ−1
(

z + bi + ji
√

(z + bi)2 + ρ2
)

, ri = ρ−1
(

z + b′i + j′i

√

(z + b′i)
2 + ρ2

)

, (4.13)

with constants bi, b
′
i and ji, j

′
i ∈ {±1}. Since we assume that {bi} ∩ {b′i} = ∅, the assumptions of Proposi-

tion 4.4 are satisfied.5 It follows that, with the above data, (4.12) solves the non-autonomous chiral model
equation. �

The case where P̃ or R̃ is non-diagonal is exploited in the next subsection. But Example 4.7 will be
sufficient to understand most of Section 5.

4.2 More about the family of solutions

Introducing matrices A and L via

A = (z I +B)2 + ρ2 I , P̃ = ρ−1 (L+ z I +B) ,

(4.7) translates into

L2 = A . (4.14)

According to Remark 4.6, we can take B in Jordan normal form,

B = block-diag(Bn1
, . . . ,Bns

) .

Let us first consider the case where B is a single r × r Jordan block,

Br = b Ir +N r , Nr =



















0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

...
...

. . . 1
0 · · · · · · · · · 0



















.

Then we have

A = r
2 (Ir +Mr) ,

where

Mr = r
−2 [2(z + b)Nr +N2

r ] , r = ±
√

(z + b)2 + ρ2 ,

and thus

L = r (Ir +M r)
1/2 = r

r−1
∑

k=0

(

1/2

k

)

Mk
r ,

5We have to restrict ourselves to the region ρ > 0, of course. Furthermore, I + P̃
2
can lack invertibility at most on a curve

in the (ρ, z) coordinate space.
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by use of the generalized binomial expansion formula, noting that Mr
r = 0 as a consequence of N r

r = 0.
Hence we obtain the following solution of (4.7),

P̃ r = ρ−1
(

z Ir +Br + r

r−1
∑

k=0

(

1/2

k

)

Mk
r

)

, (4.15)

which is an upper triangular Toeplitz matrix. In particular, we have

P̃ 1 = ρ−1 [z + b+ r] ,

P̃ 2 = ρ−1[z + b+ r]

(

1 r
−1

0 1

)

,

P̃ 3 = ρ−1[z + b+ r]





1 r
−1 1

2
ρ2r−3(z + b+ r)−1

0 1 r
−1

0 0 1



 ,

P̃ 4 = ρ−1[z + b+ r]









1 r
−1 1

2
ρ2r−3(z + b+ r)−1 − 1

2
(z + b) ρ2r−5(z + b+ r)−1

0 1 r
−1 1

2
ρ2r−3(z + b+ r)−1

0 0 1 r
−1

0 0 0 1









.

These matrices are obviously nested and, from one to the next, only the entry in the right upper corner is
new.

For the above Jordan normal form of B, solutions of (4.7) are now given by6

P̃ = block-diag(P̃ n1
, . . . , P̃ ns

) ,

where the blocks typically involve different constants replacing b, i.e. different eigenvalues of B. Since P̃ ρ

and P̃ z obviously commute with P̃ , and since I + P̃
2
is generically invertible, Lemma 4.1, part (2), ensures

that P̃ solves (4.6). If P̃ has the above form, and R̃ a similar form, and if P̃ and R̃ have disjoint spectra, it
remains to solve the Sylvester equation7 (4.11) in order that (4.12) yields solutions of the non-autonomous
chiral model equation. This yields a plethora of exact solutions. We postpone an example to Section 5,
where additional conditions considerably reduce the freedom we have here, see Example 5.6.

5 Reductions of the non-autonomous chiral model to Ernst equa-

tions

According to Section 4, a particular involutive symmetry of the non-autonomous chiral model (4.3) is given
by g̃ 7→ γ (g̃†)−1γ, where γ is a constant matrix with

γ† = γ , γ2 = I .

(4.3) therefore admits the generalized unitarity reduction g̃† γ g̃ = γ, which means that g̃ belongs to the
unitary group U(m; γ).8 Another reduction, associated with an involutive symmetry, is g̃† = g̃. Imposing
both reductions simultaneously, amounts to setting

g̃† = g̃ , (γg̃)2 = I . (5.1)

Writing

g̃ = γ (I − 2P) ,

translates theses conditions into

γP†γ = P , P2 = P .

6For P̃ with simple spectrum, any solution of (4.7) has this form. Otherwise there are additional solutions, see [25].
7Under the stated conditions the Sylvester equation possesses a unique solution and a vast literature exists to express it.
8If γ has p positive and q negative eigenvalues, this is commonly denoted U(p, q).
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In particular, P is a projector. If we require in addition that rank(P) = 1, which for a projector is equivalent
to tr(P) = 1 ([26], Fact 5.8.1), the following parametrization of g̃ can be achieved (also see e.g. [27–30]),

g̃ = γ − 2
v v†

v†γ v
, (5.2)

where v is an m-component vector with v†γ v 6= 0. This parametrization is invariant under v 7→ c v with a
non-zero constant c, so that the first component of v can be set to 1 in the generic case where it is different
from zero. If γ has signature m−1, (5.2) is a parametrization of the symmetric space SU(m−1, 1)/S(U(m−
1)× U(1)) [27–29]. The condition tr(P) = 1 corresponds to

tr(γg̃) = m− 2 . (5.3)

We also note that det(g̃) = − det(γ). The following result shows how the reduction conditions (5.1) and
(5.3) can be implemented on the family of solutions of the non-autonomous chiral model obtained via
Proposition 4.4.

Proposition 5.1. Let X̃ solve the Sylvester equation (4.11), where P̃ , R̃,U ,V , satisfy9

(Γ P̃ )2 = −I , (Γ R̃)2 = −I , g0γU = U Γ , ΓV = V g0γ , (5.4)

with an n× n matrix Γ and a constant m×m matrix g0 satisfying

Γ2 = I , (g0γ)
2 = I . (5.5)

Furthermore, let spec(P̃ ) ∩ spec(R̃) = ∅.
(1) g̃ given by (4.12) satisfies

(γg̃)2 = I and tr(γg̃) = tr(γg0)− 2 tr(Γ) . (5.6)

(2) If moreover the relations

R̃
†
= ΓP̃Γ , U† = V g0 , g†0 = g0 , Γ† = Γ (5.7)

hold, then g̃ given by (4.12) is Hermitian.

Proof: Using (4.11), (5.4) and (5.5), we find

R̃ (X̃P̃ + ΓR̃X̃Γ)− (X̃P̃ + ΓR̃X̃Γ) P̃ = 0 ,

so that the spectrum condition implies

ΓR̃X̃Γ = −X̃P̃ . (5.8)

With the help of this result we obtain

g0γ (I +U(R̃X̃)−1V ) = g0γ +UΓ(R̃X̃)−1V = g0γ −U(ΓX̃P̃ )−1V = (I −U(X̃P̃ )−1V ) g0γ .

Using (g0γ)
2 = I, the condition (γg̃)2 = I for (4.12) is therefore equivalent to

(I −U(X̃P̃ )−1V )(I +U(R̃X̃)−1V ) = I .

Expanding the left hand side and using the Sylvester equation (4.11) to eliminate V U , this indeed turns
out to be satisfied. To complete the proof of (1), it remains to derive the trace formula. Using (4.12), (4.11)
and (5.8), we obtain

tr(γg̃)− tr(γg0) = tr((R̃X̃)−1V g0γU) = tr((R̃X̃)−1V UΓ)

= tr((R̃X̃)−1(X̃P̃ − R̃X̃)Γ) = −tr(Γ) + tr((R̃X̃)−1X̃P̃Γ)

= −tr(Γ)− tr((R̃X̃)−1ΓR̃X̃) = −2 tr(Γ) .

9These conditions are motivated by the structure of P̃ , R̃,U ,V found in example 5.5.
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In order to prove (2), we consider the Hermitian conjugate of the Sylvester equation (4.11). By use of
(5.7), and with the help of g0γU = U Γ, ΓV = V g0γ and (g0γ)

2 = I, it takes the form

V U = −(ΓX̃
†
Γ)P̃ + R̃ (Γ X̃

†
Γ) .

By comparison with the original Sylvester equation, the spectrum condition allows us to conclude that

X̃
†
= −ΓX̃ Γ .

Together with (5.8) this implies

(R̃X̃)† = X̃
†
R̃

†
= −ΓX̃ Γ2P̃Γ = −ΓX̃P̃Γ = R̃X̃ .

It follows that U(R̃X̃)−1V g0 is Hermitian, and thus also g̃ given by (4.12). �

Remark 5.2. Let the matrix data (P̃ i, R̃i,U i,V i,Γi) satisfy Γ2
i = Ini

and

(Γi P̃ i)
2 = −Ini

, (Γi R̃i)
2 = −Ini

, g0γU i = U i Γi , Γi V i = V i g0γ .

Set P̃ = block-diag(P̃ 1, . . . , P̃N ), R̃ = block-diag(R̃1, . . . , R̃N ), Γ = block-diag(γ, . . . , γ), and

U = (U1, . . . ,UN ) , V =







V 1

...
V N






.

Then we have Γ2 = I and (5.4) holds. If spec(P̃ ) ∩ spec(R̃) = ∅, the corresponding Sylvester equation
has a unique solution X̃. According to part (1) of Proposition 5.1, g̃ given by (4.12) satisfies the reduction
conditions (5.6). This is a way to superpose solutions from the class obtained in section 3, preserving the
constraints (5.4). We simply block-diagonally compose the matrix data associated with the constituents. In
an obvious way, this method can be extended to part (2) of Proposition 5.1. �

Remark 5.3. Let n = 2N and

P̃ =

(

P̌ 0

0 −P̌
−1

)

, R̃ =

(

Ř 0

0 −Ř
−1

)

, Γ =

(

0 i IN

−i IN 0

)

,

where P̌ and Ř are invertible block-diagonalN×N matrices, composed of blocks of the form (4.15). Then we
have (ΓP̃ )2 = −In and (ΓR̃)2 = −I. Choosing γ and g0 such that (g0γ)

2 = I, the conditions g0γU = UΓ

and ΓV = V g0γ are solved by

U =
(

Ǔ i g0γ Ǔ
)

, V =

(

V̌

−i V̌ g0γ

)

,

where Ǔ and V̌ are arbitrary constant m×N , respectively N ×m matrices. Writing

X̃ =

(

X̌ Ř
−1

ŽP̌

Ž ŘX̌P̌

)

,

reduces the 2N × 2N Sylvester equation (4.11) to the two N ×N Sylvester equations

X̌P̌ − ŘX̌ = V̌ Ǔ , ŽP̌ + Ř
−1

Ž = −i V̌ g0γǓ . (5.9)

If X̌ and Ž are invertibel, then R̃X̃ is invertible.10 Proposition 5.1, part (1), implies that (4.12) with the
above matrix data satisfies (γg̃)2 = I and tr(γg̃) = tr(γg0). With a suitable choice of γ and g0 we can
achieve that (5.3) holds. To fulfil the remaining Hermiticity condition, one possibility is via part (2) of
Proposition 5.1. See also Examples 5.6 and 5.12. Such solutions can be superposed in the way described in
Remark 5.2.

In the special case where Ř = r IN , the solutions of the Sylvester equations (5.9) are X̌ = V̌ Ǔ (P −
r IN )−1 and Ž = −i V̌ g0γǓ (P + r−1 IN )−1. These expressions are not invertible if N > m, so in this
particular case our solution formula only works for N ≤ m (also see Example 5.6). �

10(R̃X̃)−1 can be computed as a 2 × 2 block matrix. The problem of evaluating the original expression for g̃ that involves
2N × 2N matrices then reduces to that of evaluating only N ×N matrix expressions.
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Remark 5.4. Let H be an m×m-matrix that satisfies

H† γ H = γ . (5.10)

If g̃ satisfies

(γ g̃)2 = I , g̃† = g̃ ,

then also

g̃′ = Hg̃H† ,

and we have tr(γ g̃′) = tr(γ g̃). If g̃ has the form (4.12) with Hermitian g0 and (γ g0)
2 = I, and if H also

satisfies

H g0 H
† = g0 , (5.11)

then the effect of the transformation g̃ 7→ g̃′ amounts to the replacement

U 7→ U ′ = H U , V 7→ V ′ = V H−1 , (5.12)

which leaves the Sylvester equation (4.11) invariant. �

5.1 Solutions of the Ernst equation of General Relativity

We choose m = 2 and

γ =

(

0 i
−i 0

)

, (5.13)

and write

v =

(

1
i E

)

,

with a complex function E and its complex conjugate Ē . Then (5.2) takes the form

g̃ =
2

E + Ē

(

1 i

2
(E − Ē)

i

2
(E − Ē) ĒE

)

,

so that

E =
1− i g̃21

g̃11
.

(4.3) now becomes the Ernst equation

(ReE) (∂2
ρ + ρ−1∂ρ + ∂2

z ) E = (Eρ)2 + (Ez)2 ,

where e.g. ∂ρ denotes the partial derivative with respect to ρ. This equation determines solutions of the
stationary axially symmetric Einstein vacuum equations. The following statements are easily verified.

1. Excluding g̃ = ±γ, the reduction conditions (5.1) are equivalent to

g̃ real , det(g̃) = 1 , g̃12 = g̃21 . (5.14)

(5.3) is then automatically satisfied.

2. For real g̃, the second of the reduction conditions (5.1) implies the first. As a consequence, Proposi-
tion 5.1, part (1), already generates solutions of the Ernst equation.

11



We will use these observations in the following examples.

Example 5.5 (Kerr-NUT). For the solution of the non-autonomous chiral model given in Example 4.7 with
n = 2, we have

det(g̃) =
p1p2
r1r2

det(g0) ,

with pi, ri given by (4.13) (also see Remark 4.5). Choosing

g0 = I2 ,

so that det(g0) = 1, the second of the reduction conditions (5.14) is solved by setting

p2 = − 1

p1
, r2 = − 1

r1
,

noting that −1/pi is given by the expression for pi with ji exchanged by −ji. We shall write p, r instead of
p1, r1. With U = (uij),V = (vij), the remaining constraint g̃12 = g̃21 is solved by11

u22 = −u11u12/u21 , v22 = −v11v21/v12 .

In the following we assume that u11 and v11 are different from zero and write

u21 = u u11 , v12 = v v11 .

Then u11, u12, v11, v21 drop out of g̃. Without restriction of generality, we can therefore choose them as
u11 = 1, u12 = −u, v11 = 1 and v21 = −v, hence

U =

(

1 −u
u 1

)

, V =

(

1 v
−v 1

)

.

Then U and V commute with γ. g̃ is real in particular if either of the following conditions is fulfilled.

(1) p, r, u, v are real.

(2) r̄ = − 1

p , v = ū and j = −j′ ∈ {±1}.
The Ernst potential takes the form

E =
(1 + uv) p+r

p−r − i (u− v) pr−1

pr+1
+ (u− i)(v − i)

(1 + uv) p+r
p−r − i (u− v) pr−1

pr+1
− (u− i)(v − i)

.

By a shift of the origin of the coordinate z, we can arrange in both cases that

p = ρ−1 (z + b+ j r+) , r = ρ−1 (z − b+ j′ r−) , r± :=
√

(z ± b)2 + ρ2 , j, j′ ∈ {±1} , (5.15)

where b ∈ R in case (1) and b ∈ iR in case (2). Using

p+ r

p− r
=

1

2b
(j r+ + j′ r−) ,

pr − 1

pr + 1
=

1

2b
(j r+ − j′ r−) , (5.16)

and introducing

a = −b
1 + uv

u− v
, l = j b

1− uv

u− v
, m = −j b

u+ v

u− v
, (5.17)

we obtain

E =
r+ − jj′ r− − i a

b (r+ + jj′ r−)− 2 (m+ i l)

r+ − jj′ r− − i a

b (r+ + jj′ r−) + 2 (m+ i l)
. (5.18)

Setting jj′ = −1, the cases (1) and (2) now simply distinguish the non-extreme and the hyperextreme
Kerr-NUT space-times (see e.g. [31]). The constants satisfy

m
2 + l

2 − a
2 = b2 .

�

11Another solution is u22 = u12u21/u11, v22 = v12v21/v11. But this leads to g̃ = g0.
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Example 5.6. Let n = 2N . With the choices made in Remark 5.3, Proposition 5.1, part (1), implies that
g̃, given by (4.12) with g0 = I2, satisfies (γg̃)

2 = I2 and tr(γg̃) = 0. Choosing all parameters real, it follows
that g̃ = I2 +U(R̃X̃)−1V determines a solution of the Ernst equation, provided that X̃ is invertible.12 For
N = 1, we are back to the preceding example. For N = 2 let, for example,

P̃ =









p p r−1 0 0
0 p 0 0
0 0 −p−1 (pr)−1

0 0 −p−1









, R̃ =









r1 0 0 0
0 r2 0 0
0 0 −r−1

1 0
0 0 0 −r−1

2









, Γ =









0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0









,

where p = ρ−1(z+ b+ r), r = ±
√

(z + b)2 + ρ2, and ri is also of the form (4.13) with a constant b′i 6= b. The
conditions for U and V restrict these matrices to the form

U =

(

u1 u3 −u2 −u4

u2 u4 u1 u3

)

, V =









v1 v2
v3 v4

−v2 v1
−v4 v3









,

with constants ui, vi. If r1 = r2 =: r (i.e. b′1 = b′2), it turns out that g̃ does not depend on r and vi, and we
obtain

E =
r+ i a (z + b) r−1 − (m+ i l)

r+ i a (z + b) r−1 + (m+ i l)
,

with the parameters

a =
u2
1 + u2

2

2(u1u4 − u2u3)
, l =

u2
1 − u2

2

2(u1u4 − u2u3)
, m = − u1u2

u1u4 − u2u3

,

which satisfy m
2 − a

2 + l
2 = 0. This is the Ernst potential of an extreme Kerr-NUT space-time. �

Example 5.7 (Multi-Kerr-NUT). According to Remark 5.2, there is a simple way to superpose solutions
by block-diagonally composing their matrix data. Let

U i =

(

1 −ui

ui 1

)

, V i =

(

1 vi
−vi 1

)

, P̃ i =

(

pi 0
0 −1/pi

)

, R̃i =

(

ri 0
0 −1/ri

)

,

where pi 6= rk, i, k = 1, . . . , N , are given by (4.13), and either bi, b
′
i, ui, vi ∈ R or b̄′i = bi ∈ C, j′i = −ji,

vi = ūi ∈ C. Set

U = (U1, . . . ,UN ) , V =







V 1

...
V N






,

and P̃ = block-diag(P̃ 1, . . . , P̃N ), R̃ = block-diag(R̃1, . . . , R̃N ), Γ = block-diag(γ, . . . , γ). With g0 = I2,
all assumptions of part (1) of Proposition 5.1 hold, hence with these data (4.12) determines a family of
solutions of the Ernst equation. Obviously, such a solution is a superposition of N (non-extreme, respectively
hyperextreme) Kerr-NUT solutions.13 More generally, in the same way we can superpose any number of
solutions with matrix data of the form given in Example 5.6. �

5.2 Solutions of the Ernst equations in the Einstein-Maxwell case

Choosing

γ =





0 i 0
−i 0 0
0 0 −Im−2



 , (5.19)

12The latter condition may indeed be violated, as shown in Remark 5.3.
13See e.g. [6, 32, 33] for other derivations, and also [34], as well as the references cited there.
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and writing

v =





1
i E√
2Φ



 ,

with a complex function E and a complex (m− 2)-component vector Φ, (5.2) takes the form

g̃ =
2

E + Ē + 2Φ†Φ





1 i

2
(E − Ē + 2Φ†Φ)

√
2Φ†

i

2
(E − Ē − 2Φ†Φ) ĒE i

√
2 E Φ†

√
2Φ −i

√
2 Ē Φ 2ΦΦ† − 1

2
(E + Ē + 2Φ†Φ)Im−2





(also see [30, 35]). We have

E =
1− i g̃21

g̃11
, Φ⊺ =

1√
2 g̃11

(g̃31, . . . , g̃m−2,1) ,

where ⊺ denotes transposition. In the following we consider the case m = 3, where (4.3) becomes the system
of Ernst equations

(ReE + Φ̄Φ) (∂2
ρ + ρ−1∂ρ + ∂2

z ) E = (Eρ)2 + (Ez)2 + 2 Φ̄ [Φρ Eρ +Φz Ez] ,
(ReE + Φ̄Φ) (∂2

ρ + ρ−1∂ρ + ∂2
z )Φ = EρΦρ + Ez Φz + 2 Φ̄ [(Φρ)

2 + (Φz)
2] ,

which determine solutions of the stationary axially symmetric Einstein-Maxwell equations (without further
matter fields). If E = 1 and Φ = 0, then g̃ reduces to

g0 =





1 0 0
0 1 0
0 0 −1



 , (5.20)

which corresponds to the Minkowski metric.

Example 5.8 (Demiański-Newman). Let n = 2 and

Γ =

(

0 i
−i 0

)

, P̃ =

(

p 0
0 −1/p

)

, R̃ =

(

r 0
0 −1/r

)

, (5.21)

with p, r as in (5.15). Solving g0γU = UΓ and ΓV = V g0γ, and recalling that U and V enter the solution
formula (4.12) only up to an overall factor, leads to

U =





1 −u
u 1
s i s



 , V =

(

1 v −t
−v 1 i t

)

. (5.22)

According to Proposition 5.1, part (1), in order to obtain solutions of the Ernst equations it remains to
determine conditions under which g̃ is Hermitian. By explicit evaluation one finds that this is so if one of
the following sets of conditions is satisfied.

(1) b̄ = −b, j′ = −j, v = ū and t = s̄.

(2) b ∈ R and

st = −2
v + i

ū+ i
Imu , |v + i|2 Imu+ |u− i|2 Imv = 0 , 2 Imu+ |s|2 = 0 . (5.23)

The Ernst potential E is again of the form (5.18), where now

a = −b
1 + uv − st

u− v + i st
, l = j b

1− uv

u− v + i st
, m = −j b

u+ v

u− v + i st
,
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and using the definitions (5.15). The second Ernst potential is given by

Φ =
2 (qe + i qm)

r+ − jj′ r− − i a

b (r+ + jj′ r−) + 2 (m+ i l)
, (5.24)

where

qe = − j b√
2

s (v − i) + t (u+ i)

u− v + i st
, qm = i

j b√
2

s (v − i)− t (u+ i)

u− v + i st
.

In both cases, the parameters a, l,m, qe, qm are real and satisfy

m
2 − a

2 + l
2 − q2e − q2m = b2 . (5.25)

Cases (1) and (2) correspond to a hyperextreme, respectively non-extreme, Demiański-Newman space-time
(see e.g. [31]). qe and qm are the electric and magnetic charge, respectively. Whereas (1) can be neatly
expressed via (5.7), we have been unable so far to find a corresponding formulation for the conditions (2) in
terms of the matrices P̃ , R̃,U ,V , also see Remark 5.11. �

Example 5.9 (Harrison transformation). We can generate solutions of (5.23) via a Harrison transformation.
A non-extreme Kerr-NUT solution (without charge) corresponds to the data

UK =





1 −u0

u0 1
0 0



 , V K =

(

1 v0 0
−v0 1 0

)

,

with real u0, v0. The matrix

H =
1

1− |c|2





1 i |c|2 i
√
2 c

−i |c|2 1
√
2 c

i
√
2 c̄ −

√
2 c̄ −1− |c|2





with c ∈ C satisfies (5.10) and (5.11). Then U ′ = H UK and V ′ = V K H satisfy g0γU
′ = U ′Γ and

ΓV ′ = V ′g0γ, since UK and V K satisfy these conditions. Without effect on the solution of the chiral model,
we can rescale these matrices to

U =
1

1 + iu0 |c|2





1 + iu0 |c|2 −(u0 − i |c|2)
u0 − i |c|2 1 + iu0 |c|2√
2 (i− u0) c̄ i

√
2 (i− u0) c̄



 ,

V =
1

1− i v0 |c|2
(

1− i v0 |c|2 v0 + i |c|2
√
2 (i + v0) c

−(v0 + i |c|2) 1− i v0 |c|2 −i
√
2 (i + v0) c

)

,

which have the form (5.22) and indeed satisfy (5.23). Using (5.16), the resulting Ernst potentials E and Φ
can be written in the form (5.18), respectively (5.24), where now

a = −b
1 + u0v0
u0 − v0

, l = j b
1− u0v0
u0 − v0

1 + |c|2
1− |c|2 , m = −j b

u0 + v0
u0 − v0

1 + |c|2
1− |c|2 ,

and

qe =
2jb [(u0v0 − 1)Rec− (u0 + v0) Imc]

(1− |c|2)(u0 − v0)
, qm = −2jb [(u0 + v0)Rec+ (u0v0 − 1) Imc]

(1− |c|2)(u0 − v0)
.

�

Example 5.10 (hyperextreme multi-Demiański-Newman). Let

Γ =















0 i
−i 0

. . .

0 i
−i 0















,

P̃ = block-diag(P̃ 1, . . . , P̃N )

R̃ = block-diag(R̃1, . . . , R̃N )

U = (U1, . . . ,UN )

, V =







V 1

...
V N






,
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with

P̃ i =

(

pi 0
0 −1/pi

)

, R̃i =

(

ri 0
0 −1/ri

)

, U i =





1 −ui

ui 1
si i si



 , V i =

(

1 ūi −s̄i
−ūi 1 i s̄i

)

,

where r̄i = −1/pi and j′i = −ji. Then the conditions of Proposition 5.1 are obviously satisfied (with γ and g0
given by (5.19), respectively (5.20)). It follows that (4.12) determines a solution of the (Einstein-Maxwell-)
Ernst equations. This is a superposition of N hyperextreme Demiański-Newman solutions. �

Remark 5.11. Whereas the hyperextreme multi-Demiański-Newman solutions are obtained in a straight-
forward way, this is not so in the non-extreme case. So far a suitable condition on the matrix data is lacking.
Similar problems are known in other approaches, see e.g. [36]. �

Example 5.12. Let n = 2N . With the choices made in Remark 5.3, Proposition 5.1, part (1), implies that
the expression given by (4.12) with g0 in (5.20), satisfies (γg̃)2 = I3 and tr(γg̃) = 1. In order to obtain a
solution of the Ernst equations, it suffices to arrange that g̃ is Hermitian. A sufficient condition is given by
part (2) of Proposition 5.1. This leads to a huge family of solutions of the Einstein-Maxwell equations. The
hyperextreme Demiański-Newman solution is just the simplest example in this family. Furthermore, such
solutions can be superposed in the simple way described in Remark 5.2 and Example 5.10. An exploration
of the corresponding space-times would be a difficult task. �

6 Conclusions

Theorem A.3, of which Proposition 3.1 is a corollary, can actually be formulated and proved without explicit
use of the two nonlinear equations involving only P , respectively R. In such a formulation, the theorem
generates solutions of the nonlinear integrable equation (2.5), respectively (2.7), from solutions of linear
equations. However, the equations for P and R arise as integrability conditions of the latter. In previous
work [1, 18–20], we chose P and R as d- and d̄-constant matrices, which indeed reduces the equations that
have to be solved to only linear ones, and we recovered (and somewhat generalized) known soliton solution
families. In case of the non-autonomous chiral model and, more specifically, its reduction to the Ernst
equation, it turned out to be necessary to go beyond this level, and thus to consider genuine solutions of
the nonlinear equations for P and R, in order to obtain relevant solutions like those associated with multi-
Kerr-NUT space-times and their (electrically and magnetically) charged generalizations. This also suggests
a corresponding application of the theorem to other integrable PDDEs.

There are several problems not sufficiently clarified in this work, and they are partly of a rather difficult
nature. Our method typically yields huge classes of exact solutions and the task remains to understand their
behavior and to reveal their properties, at best in relation to the structure of the (constant) matrices that
parametrize the family of solutions. In the present work we simply identified sub-families of solutions of
the Ernst equation(s) by comparing the resulting Ernst potential(s) with that of well-known exact solutions
already found via different methods. There seems to be more, however, in particular solutions associated
with matrix data involving Jordan blocks. Perhaps the solutions resulting from such data can be obtained
alternatively via certain limits of solutions from the family associated with diagonal matrix data. But at
present it is far from clear what the generated class of solutions really embraces, not to talk about the
possibility to make sense of the limit14 n → ∞ (where n× n is the size of the matrices that parametrize the
solutions).

We addressed the non-autonomous chiral model and the Ernst equations in a new way, starting from a
universal non-iterative solution generating result within the bidifferential calculus approach. The resulting
solutions are parametrized by matrices, subject to conditions required by reductions, for which there may
not always be a nice way to implement them (which is apparently the case for non-extreme multi-Demiański-
Newman solutions). The only task which then remains is to solve a Sylvester equation, which generically
can always be done. This reducibility of the solution generating problem to a Sylvester equation is a
common feature of many integrable PDDEs. But this is the first time we came across a Sylvester equation
involving non-constant matrix data. A particularly nice feature of this approach to (soliton-like) solutions of

14See e.g. [37, 38] for results on the operator Sylvester equation.
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integrable PDDEs is the fact that solutions can be superposed by simply composing their matrix data into
bigger block-diagonal matrices.

In Appendix B we recovered two familiar Lax pairs for the non-autonomous chiral model from the general
linear equation (2.10) in the bidifferential calculus framework. Our way toward exact solutions in Section 4
is more closely related to Maison’s Lax pair than to that of Belinski and Zakharov. We eliminated the
θ-dependence, whereas in the Lax pair of Belinski and Zakharov the θ-dependence is kept and it involves
derivatives with respect to this “spectral parameter”.

Our results extend beyond the Einstein-Maxwell case and are also applicable to higher-dimensional gravity
theories (see e.g. [12–17]).

Acknowledgment. During the course of this work, N. K. has been at the Max-Planck-Institute for Dy-
namics and Self-Organization in Göttingen.

Appendix A: Via a Darboux transformation and a projection to a

non-iterative solution generating result

Lemma A.1. Let P be invertible. The transformation

(φ, g) 7→ (φ′, g′) = (φ +X P X−1, X P X−1 g) , (A.1)

where X is an invertible solution of (2.10) with A = dφ = (d̄g) g−1, and d̄P = (dP )P , maps a solution of
the Miura transformation equation (2.13) into another solution.

Proof: Using (2.10) and d̄P = (dP )P , a direct computation leads to

(d̄g′) g′
−1 − dφ′ = A− dφ−X P X−1[A− (d̄g) g−1]XP−1X−1 ,

which vanishes if A = dφ = (d̄g) g−1. �

(A.1) is an essential part of a Darboux transformation, cf. [1]. In the following we will use this result to
derive a theorem which covers Proposition 3.1 as a special case, see Remark A.5.

Lemma A.2. Let (φ, g) be a solution of the Miura transformation equation (2.13) in Mat(n, n,B). Let
U ∈ Mat(m,n,B) and V ∈ Mat(n,m,B) be d- and d̄-constant. If

φ = V U φ̂ , (A.2)

with some φ̂ ∈ Mat(n, n,B), then

φ = Uφ̂V , g = (Ug−1V )−1 (A.3)

solve the Miura transformation equation (2.13) in Mat(m,m,B).
Proof: Since (φ, g) is assumed to solve (2.13), we have

d̄g−1 = −g−1 dφ = −g−1 V U dφ̂ .

Multiplying by U from the left and by V from the right, we obtain

d̄g−1 = −g−1 dφ ,

which is equivalent to (2.13). �

Theorem A.3. Let (−R,S) be a solution of the Miura transformation equation (2.13) in Mat(n, n,B), i.e.

d̄S = −(dR)S , (A.4)

and S invertible. Let X be an invertible solution of the linear equation (2.10), now in Mat(n, n,B) and with
invertible P , hence

d̄X = (dX)P − (dR)X , d̄P = (dP )P . (A.5)
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In addition we require that

XP −RX = V U Y , d̄R = R dR , d̄Y = (dY )P , (A.6)

where U ∈ Mat(m,n,B) and V ∈ Mat(n,m,B) are d- and d̄-constant, and Y ∈ Mat(n, n,B). Then also

φ = UY X−1V and g = (US−1XP−1X−1V )−1

solve the Miura transformation equation (2.13), and thus (2.5), respectively (2.7).

Proof: Since we assume that (−R,S) solves the Miura transformation equation (2.13) in Mat(n, n,B),
according to Lemma A.1 this also holds for the pair

φ = −R+XPX−1 , g = XPX−1 S .

Using the first of (A.6), we find that (A.2) holds with φ̂ = Y X−1. Now (A.3) yields the asserted formulas
for φ and g. According to Lemma A.2, φ and g solve the Miura transformation equation (2.13).

Together with (A.5), the first of (A.6) implies

V U (d̄Y − (dY )P ) = (R dR− d̄R)X ,

which is satisfied if the last two conditions of (A.6) hold. �

Remark A.4. This theorem generalizes a previous result in [1], which has been applied in [1, 18–20] with
d- and d̄-constant P ,R, in which case only linear equations have to be solved in order to generate solutions
of (2.5), respectively (2.7).

The above derivation shows that the theorem may be regarded as a combination of a Darboux transfor-
mation (Lemma A.1), on the level of matrices of arbitrary size, and a projection mechanism (Lemma A.2).
The projection idea can be traced back to work of Marchenko [39]. More generally, the above result can be
formulated in terms of suitable operators, replacing the matrices that involve a size n. �

Remark A.5. In the above theorem we set15 S = R−1 and Y = P , and we rename XP−1 to X. Then φ
is given by the expression in (3.15). The expression for g in the theorem takes the form

g = (URX(XP )−1V )−1 = (I −U(XP )−1V )−1 (UV )−1 ,

assuming temporarily invertibility of UV . Together with φ, this remains a solution of (2.13) if we drop the
last factor, so that

g = (I −U(XP )−1V )−1 .

This expression also makes sense if UV is not invertible. We can still translate it into a simpler form. From
the first of (A.6), which now has the form of the last of (3.14), we obtain

(RX)−1 − (XP )−1 = (RX)−1V U (XP )−1 .

Multiplication by U from the left and by V from the right, and use in our last formula for g, leads to the
expression for g in (3.15). �

Appendix B: Linear systems for the non-autonomous chiral model

B.1 Maison’s Lax pair

Using the bidifferential calculus determined by (4.1), (2.10) with A = (d̄g) g−1 takes the form

Xρ + ρ−1Xθ = (gρ + ρ−1gθ) g
−1X −Xz P eθ , Xz = gz g

−1X + (Xρ − ρ−1Xθ)P eθ ,

15We note that (A.4) and the second of (A.6) imply d̄(RS) = 0, i.e. RS is d̄-constant.
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and (2.11) reads

e−θ (Pρ + ρ−1Pθ) = −Pz P , Pz = eθ (Pρ − ρ−1Pθ)P .

Disregarding a constant solution (cf. section B.2), we can eliminate the θ-dependence in the latter equations
via

P = e−θ P̃ ,

with P̃ independent of θ, and obtain

P̃ρ = ρ−1P̃ (I − P̃ 2) (I + P̃ 2)−1 , P̃z = 2ρ−1P̃ 2 (I + P̃ 2)−1 .

Furthermore, setting

X = ec1θ X̃ , g = ec2θ g̃ ,

with X̃, g̃ independent of θ, the above linear system becomes

X̃ρ(I + P̃ 2) = (g̃ρ + c2 ρ
−1g̃) g̃−1X̃ − g̃z g̃

−1 X̃ P̃ − c1 ρ
−1X̃ (I − P̃ 2) ,

X̃z (I + P̃ 2) = g̃z g̃
−1X̃ + (g̃ρ + c2 ρ

−1g̃) g̃−1X̃ P̃ − 2c1 ρ
−1X̃ P̃ .

Choosing

P̃ = p I

with a function p(ρ, z), the equations for P̃ can easily be integrated, which results in16

p = ρ−1
(

z + b±
√

(z + b)2 + ρ2
)

,

where b is an arbitrary constant. In terms of

X̂ = g̃−1X̃

the above linear system, simplified by setting c1 = c2 = 0, then takes the form

X̂ρ = − p

1 + p2
(g̃−1g̃z + p g̃−1g̃ρ) X̂ , X̂z =

p

1 + p2
(g̃−1g̃ρ − p g̃−1g̃z) X̂ .

This system is equivalent to a linear system for the non-autonomous chiral model, first found by Maison in
1979 [4] (also see [24]).

B.2 The Belinski-Zakharov Lax pair

Using instead of θ the variable

λ = −ρ eθ ,

(4.1) translates into

df = −fz ζ1 − ρ−1λ fρ ζ2 , d̄f = −(ρ λ−1fρ + 2 fλ) ζ1 + fz ζ2 . (B.7)

We consider the linear system (2.10) with P = I, which trivially solves (2.11), i.e.

d̄X = AX + dX .

Writing

A = − ρ

λ
A ζ1 +B ζ2 , (B.8)

16We note that p is P̃ 1 in Section 4.2.
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the integrability condition (2.12) takes the form

Bρ −Az = [A,B] , (ρA)ρ + (ρB)z = 0 ,

assuming that A,B are λ-independent. Solving the first (zero curvature) condition by

A = gρ g
−1 , B = gz g

−1 ,

the second equation becomes the non-autonomous chiral model equation

(ρ gρ g
−1)ρ + (ρ gz g

−1)z = 0 .

The above linear equation leads to

Xρ =
ρU + λV
ρ2 + λ2

X − 2ρλ

ρ2 + λ2
Xλ , Xz =

ρV − λU
ρ2 + λ2

X +
2λ2

ρ2 + λ2
Xλ ,

where

U = ρA , V = ρB .

This is the Belinski-Zakharov Lax pair [6] (also see [8], chapter 8). We note that the “spectral parameter”
λ has its origin in a coordinate of the self-dual Yang-Mills equation. We also note that A = (d̄g) g−1 (using
gλ = 0).
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