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Abstract

We present the group fused Lasso for detection of multipengk-points shared by a set of co-
occurring one-dimensional signals. Change-points arectled by approximating the original signals
with a constraint on the multidimensional total variati@ading to piecewise-constant approximations.
Fast algorithms are proposed to solve the resulting opéticia problems, either exactly or approxi-
mately. Conditions are given for consistency of both aldpons as the number of signals increases,
and empirical evidence is provided to support the resultsiomilated and array comparative genomic
hybridization data.

1 Introduction

Finding the place (or time) where most or all of a set of onaatisional signals (qrofileg jointly change

in some specific way is an important question in several fidddsommon situation is when we want to find
change-points in a multidimensional signal, e.g., in aadlid image processingl[1, 2], to detect intrusion in
computer networks [8,4], or in financial and economics tieres analysis [5]. Another important situation
is when we are confronted with several 1-dimensional sggmdlich we believe share common change-
points, e.g., genomic profiles of a set of patients. Therlafd@lication is increasingly important in biology
and medicine, in particular for the detection of copy-numlzgiation along the genomgl [6], or the analysis
of microarray and genetic linkage studies [7]. The commaeea# in biological applications is the search
for data patterns shared by a set of individuals, such asecgatients, at precise places on the genome; in
particular, sudden changes in measured values. As oppo$eel segmentation of multidimensional signals
such as speech, where the dimension is fixed and collectinng dada means having longer profiles, the
length of signals in genomic studies (i.e., the number obgsomeasured along the genome) is fixed for a
given technology while the number of signals (i.e., the nendj individuals) can increase when we collect
data about more patients. From a statistical point of vieis, therefore of interest to develop methods that
identify multiple change-points shared by several sigtladg can benefit from increasing the number of
signals.

There exists a vast literature on the change-point detegiioblem [[8/ 9]. Here we focus on compu-
tationally efficient methods to segment a multidimensiasighal by approximating it with a piecewise-
constant one, using quadratic error criteria. It is welbkn that, in this case, the optimal segmentation of
ap-dimensional signal of length into k£ segments can be obtained@r{n?pk) by dynamic programming
[10,11,12]. However, the quadratic complexityrins prohibitive in applications such as genomics, where
n can be in the order dfo® to 107 with current technology. An alternative to suglobal procedures, which
estimate change-points as solutions of a global optintmgbroblem, are fagbcal procedures such as bi-
nary segmentation [13], which detect breakpoints by ikezbt applying a method for single change-point
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detection to the segments obtained after the previous ehpoigt is detected. While such recursive meth-
ods can be extremely fast, in the order@fnplog(k)) when the single change-point detectoildényp),
guality of segmentation is questionable when compared glithal procedures [14].

Forp = 1 (a single signal), an interesting alternative to thesealaind local procedures is to express
the optimal segmentation as the solution of a convex opétiaa problem, using the (convex) total variation
instead of the (non-convex) number of jumps to penalize eepiese-constant function in order to approx-
imate the original signal [1%, 16]. The resulting piecewtsmstant approximation of the signal, defined
as the global minimum of the objective function, benefitsrfriiheoretical guaranties in terms of correctly
detecting change-points [17,/18], and can be implemenfegdeettly in O(nk) or O(nlog(n)) [19,[17,)20].

In this paper we propose an extension of total-variatioretbasethods for single signals to the mul-
tidimensional setting, in order to approximate a multidirsienal signal with a piecewise-constant signal
with multiple change-points. We define the approximatiothassolution of a convex optimization problem
which involves a quadratic approximation error penalizgdhe sum of the Euclidean norms of the mul-
tidimensional increments of the function. The problem candformulated as a group Lassal[21], which
we show how to solve exactly and efficiently. Alternativelyg provide an approximate yet often compu-
tationally faster solution to the problem using a group LARScedure([21]. In the latter case, using the
particular structure of the design matrix, we can find the firshange-points ¥ (npk), thus extending the
method of [17] to the multidimensional setting.

Unlike most previous theoretical investigations of chapgat methods (e.g.[ [17, 18]), we are not
interested in the case where the dimensids fixed and the length of the profilesincreases, but in the
opposite situation wherne is fixed andp increases. Indeed, this corresponds to the case in genaméeg,
for example,n would be the fixed number of probes used to measure a signal dhe genome, ang
the number of samples or patients analyzed. We want to desigethod that benefits from increasing
p in order to identify shared change-points, even though idneasto-noise ratio may be very low within
each signal. As a first step towards this question, we givelitons under which our method is able to
consistently identify a single change-pointamcreases. We also show by simulation that the method is
able to correctly identify multiple change-pointsjas+ +oo, validating its relevance in practical settings.

The paper is organized as follows. After fixing notation ict8m[2, we present the group fused Lasso
method in Sectioh]3. We propose two efficient algorithms teesib in Sectiorl 4, and discuss its theoretical
properties in Sectioh] 5. Lastly, we provide an empiricallgation of the method and a comparison with
other methods in the study of copy number variations in caimc8ectior[ 6. A preliminary version of this
paper was published in [22].

2 Notation

For any two integers < v, we denote byu, v] the interval{u,u + 1,...,v}. For anyu x v matrix M
we notel; ; its (i, j)-th entry, and| M || = \/Zle > i1 Mﬁj its Frobenius norm (or Euclidean norm in

the case of vectors). For any subsets of indides: (ai,...,ap4)) € [1,u])4l and B = (b1,....bp) €
[1,v]'Pl, we denote byl 4 5 the |A| x | B| matrix with entriesM,, ;, for (i, 5) € [1,|A[] x [1,|B]]. For
simplicity we will usee instead of[1, u] or [1, ], i.e., 4; , is thei-th row of A and 4, ; is the j-th column
of A. We notel,, , theu x v matrix of ones, and, thep x p identity matrix.

3 Formulation

We considerp real-valued profiles of length, stored in ann x p matrix Y. Thei-th profile Y, ; =
(Yi4,...,Y,,) is thei-th column of Y. We model each profile as a piecewise-constant signal dedup



by noise, and assume that change-point locations tend tbded across profiles. Our goal is to detect
these shared change-points, and benefit from the possigly fumbenp of profiles to increase the statisti-
cal power of change-point detection.

3.1 Segmentation with a total variation penalty

Whenp = 1 (a single profile), a popular method to find change-points sigaal is to approximate it by a
piecewise-constant function using a quadratic errorriite i.e., to solve

n—1

in |Y —U|?® subjectt 1 —Uy) < 1
U%%” Ul su1eco;5(U+1 U) <k, (1)

wherej is the Dirac function, equal tif its argument is nulll otherwise. In other wordd,](1) expresses the
best approximation of” by a piecewise-constant profilé with at mostk jumps. It is well-known that{|1)
can be solved i (n2k) by dynamic programming [10, 11,12]. Although very fast wheis of moderate
size, the quadratic dependencyrimenders it impractical in current computers whereaches millions or
more, which is often the case in many application such as eetation of genomic profiles.

An alternative to the combinatorial optimization probleff) (s to relax it to a convex optimization
problem, by replacing the number of jumps by the convex teddhtion (TV) [15], i.e., to consider:
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For a given\ > 0, the solutionU € R™ of (@) is again piecewise-constant. Recent work has shoatn th
(2) can be solved much more efficiently thah (1):/[19] propoadast coordinate descent-like methad, [17]
showed how to find the firgt change-points iteratively i®(nk), and [20] proposed &(n In(n)) method
to find all change-points. Adding penalties proportionathte/; or /5 norm of U to (2) does not change
the position of the change-points detected [16, 23], anadpacity of TV denoising to correctly identify
change-points when increases has been investigated_ if [17, 18].

Here, we propose to generalize TV denoising to multiple f[@efby considering the following convex
optimization problem, fol” € R"*?:

1 n—1
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The second term i [3) can be considered a multidimensiovait penalizes the sum of Euclidean norms
of the increments of/, seen as a time-dependent multidimensional vector, andesdo the classical 1-
dimensional TV whem = 1. Intuitively, when)\ increases, this penalty will enforce many increment vector
Uit1,e — U, to collapse td), just like the total variation in({2) in the case bidimensional signals. This
implies that the positions of non-zero increments will be same for all profiles. As a result, the solution to
(3) provides an approximation of the profilEsby ann x p matrix of piecewise-constant profiléswhich
share change-points.

While () is a natural multidimensional generalization lo¢ tclassical TV denoising methadd (2), we
more generally investigate the following variant:
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where(d;),_, ,_, are position-dependant weights which affect the penaizaif the jump differently at
different positions. While[{4) boils down tg1(3) for uniformeightsd; = 1,i = 1,...,n — 1, we will see
that the unweighted version suffers from boundary effeststhat position-dependent schemes such as:
. n
Vie[l,n—1], d;= m, )
are both theoretically and empirically better choices.

To illustrate the grouping effect of the penalty [ih (4), Rigid compares the segmentation of three sim-
ulated profiles obtained with and without enforced sharihghange-points across profiles. We simulated
three piecewise-constant signals corrupted by indepéradighitive Gaussian noise. All profiles have length
500 and share the samiechange-points, though with different amplitudes, at pas#g 38, 139, 268, 320
and 397. On the left-hand side, we show the firshange-points captured by TV denoising with weights
(5) applied to each signal independently. On the right, vesvstiie first5 change-points captured by formu-
lation (4). We see that the latter formulation finds the atirdhange-points, whereas treating each profile
independently leads to errors. For example, the first twagiaoints have a small amplitude in the second
profile and are therefore very difficult to detect from thefpyeanly, while they are very apparent in the first
and third profiles.

Figure 1: First5 change-points detected on three simulated profiles by T\didig of each profile (left)
and by joint TV denoising (right).

3.2 Reformulation as a group Lasso problem

It is well-known that the 1-dimensional TV denoising prahl€2) can be reformulated as a Lasso regres-
sion problem by an appropriate change of variable [17]. We slbow that our generalizatiofi] (4) can be
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reformulated as a group Lasso regression problem, whidhbe&iconvenient for theoretical analysis and
implementation[21]. To this end, we make the change of &5, v) € R™~D*P x R*P given by:

’Y = Ul,. )
Bie = Uitr.e ~ Uie fori=1,...,n—1.

I dz
In other wordsd;3; ; is the jump between théth and the(: + 1)-th positions of thej-th profile. We
immediately get an expression foras a function of3 and~:

Ul,‘ = 77
i—1
Uie=7+Y diBje fori=2...n.
j=1
This can be rewritten in matrix form as
U= 1n,1’7+Xﬁa (6)
whereX is then x (n — 1) matrix with entriesX; ; = d; for i > j, and0 otherwise. Making this change
of variable, we can re-express (4) as follows:

1 n—1
i —||Y - XB -1 24 ol 7
o 5l B—Lnav|+ ; | Bl W
For any$ € R(™~1xP, the minimum iny is attained withy = 1, ,,(Y — X 3)/n. Plugging this into[{7), we
get that the matrix of jumpgs is solution of

n—1
1. -
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whereY and X are obtained fronY” and X by centering each column.
Equation [(8) is now a classical group Lasso regression @nol21], with a specific design matriX

and groups of features corresponding to the rows of the xatriThe solutions of (8) is related to the
solutionU of our initial problem[(4) by equation{6).

4 Implementation

Although [4) and[(B) are convex optimization problems that & principle be solved by general-purpose
solvers [[24], we want to be able to work in dimensions thatheaillions or more, making this compu-
tationally difficult. In particular, the design matriX in (8) is a non-sparse matrix of sizex (n — 1),
and cannot even fit in a computer's memory wheis large. Moreover, we would ideally like to obtain
solutions for various values of, corresponding to various numbers of change-points, ierabe able to
select the optimal number of change-points using stadistidteria. In the single profile casg & 1), fast
implementations irD(nk) or O(nlnn) have been proposed [19,/17] 20]. However, none of these agetho
is applicable directly to the > 1 setting since they all rely on specific properties of ghe 1 case, such as
the fact that the solution is piecewise-affineNiand that the set of change-points is monotically decreasing
with A.

In this section we propose two algorithms to respectiexdgctlyor approximatelysolve [4) efficiently.
We adopt the algorithms suggested byl [21] to solve the gragsd probleni{8) and show how they can be
implemented very efficiently in our case due to the particsteucture of the regression problem. We have
placed in Annex A several technical lemmas which show hovifidently perform several operations with
the given design matriX that will be used repeatedly in the implementations progdszow.
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4.1 Exact solution by block coordinate descent

A first possibility to solve the group Lasso problei (8) is édidw a block coordinate descent approach,
where each group is optimized in turn with all other groupsdixit can be shown that this strategy converges
to the global optimum, and is reported to be stable and aftidil,[25]. As shown by [21], it amounts to

iteratively applying the following equation to each block 1,...,n — 1 in turn, until convergence:
1 A
Bie < — (1 - —> Si, 9)
i 1S: ) 4+

wherey; = || X, [|? = i(n — i)d} /n andS; = X, (Y — X37), and where3~* denotes th¢n — 1) x p
matrix equal tg3 except for the-th row B f = 0. The convergence of the procedure can be monitored by
the Karush-Kuhn-Tucker (KKT) conditions:

/\52'0
* =0 VB0,
| Bie |l i 7 (10)

| =X, (Y —XB) <A VBie=0.

X (Y - XB) +

Since the number of blocks can be very large and we expect only a fraction of non-zerokislat the op-
timum (corresponding to the change-points), we implentethies block coordinate descent with an active
set strategy. In brief, a set of active groupporresponding to non-zero groups is maintained, and ttee alg
rithm alternates between optimiziriyover the active groups il and updating4 by adding or removing
groups based on violation of the KKT conditions. The renglfpseudo-code is shown in Algorithrh 1. The
inner loop (lines 3-7) corresponds to the optimizationsodn the current active groups, using iteratively
block coordinate descerii] (9). After convergence, grouasttave been shrunk tbare removed from the
active set (line 8), and the KKT conditions are checked datsif the active set (lines 9-10). If they are not
fulfilled, the group that most violates the conditions iseditb the active set (line 11), otherwise the current
solution satisfies all KKT conditions and is therefore thebgll optimum (line 13).

Although it is difficult to estimate the number of iterationeeded to reach convergence for a certain
level of precision, we note that by Lemrmh 5 (Annex A), compataof X 'Y in line 1 can be done in
O(np), and each group optimization iteration (lines 3-7) recmicemputingXIiX.,A (line 5), done in
O(]A]) (see Lemmal6 in Annex A), then computisg (line 5) in O(|.A|p) and soft-thresholding (line 6) in
O(p). The overall complexity of each group optimization itevatis thereforeD(|.A|p). Since each group
in A must typically be optimized several times, we expect coriplehat is at least quadratic 4| and
linear in p for each optimization over an active sdt(lines 3-7). To check optimality of a solution after
optimization over an active set, we need to computé& " X3 (line 9) which takesO(np) (see Lemma
[4, Annex A). Although it is difficult to upper bound the numlmdriterations needed to optimize ovel,
this shows that a best-case complexity to findhange-points, if we correctly add groups one by one to
the active set, would b€ (npk) to checkk times the KKT conditions and find the next group to add, and
O(pk?) in total if each optimization over an active sdtis in O(p|.A4|?). In Sectior 6, we provide some
empirical results on the behavior of this block coordinageant strategy.

4.2 Group fused LARS implementation

Since exactly solving the group Lasso with the method desdrin Sectiomi 411 can be computationally
intensive, it may be of interest to find fast, approximateisohs to [8). We propose to implement a strategy
based on the group LARS, proposed(in/[21] as a good way to zippately find the regularization path of
the group Lasso. More precisely, the group LARS approxim#te solution path of {8) with a piecewise-
affine set of solutions and iteratively finds change-point$e resulting algorithm is presented here as



Algorithm 1 Block coordinate descent algorithm

Require: centered datd’, regularization parametex.
1: Initialize A« 0, 8 =0,C + X Y.

2: loop

3. repeat

4: Picki € A.

5: ComputeS; « Cjo — X, , X537,

6: Updateg; o according to[(P).

7: until convergence

8: Remove inactive groupsd <+ A\ {i € A : f; ¢ = 0}.
9:  Check KKT:S «+ C — XTXp.

10: @ ¢ argmax ;g4 || Siell?, M =| Sie 2.
11:  if M > A% then
12: Add a new group:A « AU {a}.

13: else

14: return S.
15:  endif

16: end loop

Algorithm [2, and is intended to approximately sol{é¢ (8). @dexpoints are added one by one (lines 4
and 8), and for a given set of change-points the solution metraight along a descent direction (line 6)
with a given step (line 7) until a new change-point is addetw(8). We refer to[[21] for more details and
justification for this algorithm.

While the original group LARS method requires storage andimation of the design matrix [21],
implausible for largen here, we can again benefit from the computational tricksidealin Annex A to
efficiently run the fast group LARS method. Computiid Y in line 1 can be done i®(np) using Lemma
[B. To compute the descent direction (line 6), we first compuite O(|.A|p) using Lemmal, theain O(np)
using Lemmal7. To find the descent step (line 7), we need te sobolynomial equations of degree 2, the
coefficients of which are computed@(p), resulting in @) (np) complexity. Overall the main loop for each
new change-point (lines 2—10) tak@$np) in computation and memory, resulting@(npk) complexity in
time andO(np) in memory to find the firsk change-points. We provide in Sectidn 6 empirical resuls th
confirm this theoretical complexity.

5 Theoretical analysis

In this section, we study theoretically to what extent thénestor [4) recovers correct change-points. The
vast majority of existing theoretical results for offlinegegentation and change-point detection consider the
setting wherep is fixed (usuallyp = 1), andn increases (e.g..[2]). This typically corresponds to cases
where we can sample a continuous signal with increasingitsieasd wish to locate more precisely the
underlying change-points as the density increases.

We propose a radically different analysis, motivated nigtdly applications in genomics. Here, the
length of profilesn is fixed for a given technology, but the number of profitesan increase when more
samples or patients are collected. The property we woutdttikstudy is then, for a given change-point
detection method, to what extent increasppr fixed n allows us to locate more precisely the change-
points. While this simply translates our intuition thatreasing the number of profiles should increase the
statistical power of change-point detection, and whils itoperty was empirically observed in [7], we are



Algorithm 2 Group fused LARS algorithm
Require: centered dat& , number of breakpoints.
1: Initialize A« 0, ¢+ X Y.
2. fori=1tokdo

3 if i=1then

4 First change-point & < argmin ;¢ iy 17 [| &0 ||, A < {@}.

5. endif

6: Descent direction: compute < (X.T,AX-,A>_ éue,thena = XX qw.

7. Descent step: for each € [1,n — 1]\ A, find if it exists the smallest positive solutian, of the

second-order polynomial in:
e — Atue |* = || o0 — aaue |,

wherev is any element of4.
8:  Next change-pointii - argmin ey -1 || &0 ||, A < AU {@}.
9: Update¢ < ¢ — aga.
10: end for

not aware of previous theoretical results in this setting particular we are interested in the consistency
of our method, in the sense that it should correctly deteettthe change-points if enough samples are
available.

5.1 Consistent estimation of a single change-point

As a first step towards the analysis of this “fixedncreasingp” setting, let us assume that the observed
centered profile§” are obtained by adding noise to a set of profiles witkirayle shared change-point
between positions andu + 1, for someu € [1,n — 1]. In other words, we assume that

Y =XB"+W,

wherej* is an(n —1) x p matrix of zeros except for the-th row 3; ,, andW' is a noise matrix whose entries
are assumed to be independent and identically distributddrespect to a centered Gaussian distribution
with variances2. In this section we study the probability that the first cheupgint found by our procedure

is the correct one, whemincreases. We therefore consider an infinite sequence qjsjt(nﬁ;ji " and
) 27

letting 5, = >, (8;,)°, we assume that” = lim,, ., §; exists and is finite. We first characterize the
first selected change-point asncreases.

Lemma 1. Assume, without loss of generality, that- n/2, and let, fori € [1,n — 1],

Glzdzi(n—i)az_’_BQd?dzx i2(n—u)? ifi<u, (11)
o n? u?(n—1i)? otherwise.

Whenp — +o0, the first change-point selected by the group fused Lassis (Ahrgmax ;c(; , 1) Gi With
probability tending tol.

Proof of this result is given in Annex B. From it we easily dedwonditions under which the first
change-point is correctly found with increasing probapils p increases. Let us first focus on the un-
weighted group fused Lasdd (3), corresponding to the geftin= 1 fori =1,...,n — 1.
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Theorem 2. Leta = u/n be the position of the change-point scaled in the intefal], and

2n) (12)

If 02 < 52, the probability that the first change-point selected byuheveighted group fused Las$a (3) is
the correct one tends tbasp — +oo. Wheno? > 52, it is not the correct one with probability tending to
1.

This theorem, the proof of which can be found in Annex C, deseseveral comments.

¢ To detect a change-point at positian= an, the noise leveb? must not be larger than the critical
value &2 given by [I2), hence the method is not consistent for alltips. 72 decreases mono-
tonically froma = 1/2 to 1, meaning that change-points near the boundary are moreuliffo
detect correctly than change-points near the center. That difficult change-point is the last one
(u = n — 1) which can only be detected consistentlyffis smaller than

_ 23 _
Ty iy = —— toln h.

e For a given level of noise?, change-point detection is asymptotically correct for any [e, 1 — €],

wheree satisfiesr? = 57__, i.e.,
[ 2
o —1/2
€= = + o(n .

This shows in particular that increasing the profile lengthcreases the relative interval (as a fraction
of n) where change-points are correctly identified, and that areget as close as we want to the
boundary fom large enough.

e Wheng? < 52, the correct change-point is found consistently whémcreases, showing the benefit
of the accumulation of many profiles.

Theoreni 2 shows that the unweighted group fused La$so (&ys@ifom boundary effects, since it may
not correctly identify a single change-points near the lolauyis the noise is too large. In fact, Lemima 1 tells
us that if we miss the correct change-point position, it isduse we estimate it more towards the middle
of the interval (see proof of Theorelm 2 for details). The darthe noise, the more biased the procedure
is. We now show that this issue can be fixed when we considewéighted group fused Lassa (4) with
well-chosen weights.

Theorem 3. The weighted group fused Las§o (4) with weights givehlbyaiBgctly finds the first change-
point at any position with probability tending toasp — +oc.

The proof of Theorer]3 is postponed to Annex D. It shows thattkighting schemé5) cancels the
effect of the noise and allows us to consistently estimayechange-point, independently of its position in
the signal, as the number of signals increases.



5.2 Consistent estimation of a single change-point with fldoating position

An interesting variant of the problem of detecting a chapget common to many profiles is that of de-
tecting a change-point with similar location in many prdjlallowing fluctuations in the precise location
of the change-point. This can be modeled by assuming thaqurdfees are random, and that th¢h profile
has a single change-point of valgeat positionU;, where(;, Ui)i:l,...,p are independent and identically
distributed according to a distributiaR = Pz ® Py (i.e., we assumg; independent frond/;). We denote
3% = Ep,8? andp; = Py(U = i) for i € [1,n — 1]. Assuming that the support d?; is [a,b] with

1 <a <b<n-—1,the following result extends Theorém 2 by showing that thet hange-point discov-
ered by the unweighted group fused Lasso is in the suppdr;afnder some condition on the noise level,
while the weighted group fused Lasso correctly identifiesange-point in the support ¢, asymptotically
without conditions on the noise.

Theorem 4. 1. Leta = U/n be the random position of the change-point[énl] and o,;, = a/n and
apr = b/n the position of the left and right boundaries of the suppdrtPp scaled to|0, 1]. If
1/2 € (am,anr), then for any noise levet?, the probability that the first change-point selected by
the unweighted group fused Laskb (3) is in the suppofyofends tol asp — +oo. If 1/2 < ayy, OF

ap < 1/2, let
_ 1 .
Ly - ) ) aji;i@ if @ > 3,
Op, = ’I’Lﬁ [(1 — EOZ) +Var(0¢) ] X 1_%2_0{21:; i 1 (13)
7%—011V1—% IToy < 5 -

The probability that the first selected change-point is i $bpport ofP;; tends tol wheno? < &}%U.
Wheno? > &}%U, it is outside of the support df;; with probability tending tdl.

2. The weighted group fused Lassb (4) with weights give)dingts the first change-point in the support
of Py with probability tending tol asp — + o0, independently of? and of the support o .

This theorem, the proof of which is postponed to Annex EstHates the robustness of the method to
fluctuations in the precise position of the change-pointeshdetween profiles. Although this situation
rarely occurs when we are considering classical multidsraral signals such as financial time series or
video signals, it is likely to be the rule when we considerfifge coming from different biological samples,
where for example we can expect frequent genomic alteatidrihe vicinity of important oncogenes or
tumor suppressor genes. Although the theorem only givesditoan on the noise level to ensure that the
selected change-point lies in the support of the distriloutf change-point locations, a precise estimate of
the location of the selected change-point as a functiof gfwhich generalizes Lemnia 1, is given in the
proof.

5.3 The case of multiple change-points

While the theoretical results presented above focus ondtetion of a single change-point, the real interest
of the method is to estimate multiple change-points. Theresion of Theoreril 2 to this setting is, however,
not straightforward and we postpone it for future efforte ®@njecture that the group fused Lasso estimator
can, under certain conditions, consistently estimate iplelthange-points. More precisely, in order to
generalize the proof of Theordm 2, we must analyze the patheofectory¢; o), and check that, for some
Ain @) or (4), they reach their maximum norm precisely at thie tthange-points. The situation is more
complicated than in the single change-point case sincerderdo fulfill the KKT optimality conditions,
the vectors(¢; o) must hit a hypersphere at each correct change-point, antireraain strictly within the
hypersphere between consecutive change-points. Thisrobalgy be ensured if the noise level is not too
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high (like in the single change-point case), and if the pms# corresponding to successive change-points
on the hypersphere are far enough from each other, whicll d@unsured if two successive change-points
are not too close to each other, and are in sufficiently diffedirections. Although the weighting scheme
(8) ensures consistent estimation of the first change-ilgpendently of the noise level, it may however
not be sufficient to ensure consistent estimation of sutesgqthange-points.

Although we propose no theoretical results besides thesieaares for the case of multiple change-
points, we provide experimental results below that confinat,twhen the noise is not too large, we can
indeed correctly identify several change-points, withbatility of success increasing toasp increases.

5.4 Estimating the number of change-points

The number of change-points detected by the group fusedlinghie multidimensional signal depends
on the choice of\ in (@) and [(4). In practice, we propose the following schem®rider to estimate a
segmentation and the number of change-points. We try totsselethat over-segments the multidimensional
signal, that is, finds more change-points that we would niiynexpect for the given type of signal or
application. Then, on the set éfchange-points found, we perform post-processing usinghalsileast-
squares criteria. Briefly, for each given subset’ofk k change-points, we approximate each signal between
successive change-points with the mean value of the pairitet interval; then, we calculate the total sum
of squared errors (SSE) between the set of real signals @@ fhiecewise-constant approximations to
them. Though it may appear computationally intensive omawepossible to do this for all subsets of
k' < k change-points, a dynamic programming strategy (€.9.,rf@&ans that the best subsetif< &
change-points can be calculated foridlie {1, ..., k} in O(k?).

It then remains to choose the “beét’c {1, ..., k} using, for example, a model-selection strategy. The
optimal SSE fork’ + 1 (which we may callSSE(k’ + 1) to ease notation), will be smaller thatb E (k')
but at a certain point, adding a further change-point willhao physical reality, it only improves the SSE
due to random noise. Here, we implemented a method propng26,i6] where we first normalize the SSE
for ¥ = 1,...,k into a scoreJ (k') such that/(1) = k andJ(k) = 1, in such a way the/(k’) has an
average slope of 1 betweenl andk; we then try to detect a kink in the curve by calculating thecokte
second derivative of (£’), and selecting thé’ after which this second derivative no longer rises above a
fixed threshold (typically.5).

6 Experiments

In this section we test the group fused Lasso on several atediand real data sets. All experiments were
run under Linux on a machine with two 4-core Intel Xeon 3.1&Girbcessors and a total of 16Gb of RAM.
We have implemented the group fused Lasso in MATLAB; the pgekdFLseg is available for downlodli

6.1 Speed trials

In a first series of experiments, we tested the behavior ofjtbep fused Lasso in terms of computational
efficiency. We simulated multidimensional profiles with ieais lengthsn between2* and 223, various
dimensiong betweenl and2'®, and various number of shared change-poinketweent and2’. In each
case, we first ran the iterative weighted group fused LARSt{(@&4.2) to detect successive change-points,
and recorded the correspondidgalues. We then ran the exact group fused Lasso implememtayi block
coordinate descent (Sectiobn4.1) on the samalues. Figurél2 shows speed with respect to increasing one
of p, n andk while keeping the other two variables fixed, for both impletagons. The axes ateg-log,

IAvailable atht t p: /7 cbi 0. ensnp. fr/ GFLseg
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so the slope gives the exponent of the complexity (resp. andk). For the weighted group fused LARS,
linearity is clearest fok, whereas fon andp, the curves are initially sub-linear, then slightly supeear for
extremely large values of andp. As these time trials reach out to the practical limits ofeat technology,
we see that this is not critical - on average, even the longieds here took less than 200 seconds. The
weighted fused group Lasso results are perhaps more ititgyess it is harder to predict in advance the
practical time performance of the algorithm. Surprisingien increasing: (p andk fixed) or increasing

p (n andk fixed), the group fused Lasso eventually becomes as fadteitadive, deterministic group fused
LARS. This suggests that at the limits of current technoldfgy is small (say, less than 10), the potentially
superior performance of the Lasso version (see later) magvem be punished by a slower run-time with
respect to the LARS version. We suggest that this may be die tbasso optimization problem becoming
relatively “easier” to solve when or p increases, as we observed that the Lasso algorithm coveuigkly

to its final set of change-points. The main difference betwibe Lasso and LARS performance appears
when the number of change-points increases: with resgeetivirical complexities cubic and linear fin

as predicted by the theoretical analysis, Lasso is alregi30Ximes slower than LARS when we seek 100
change-points.

3 2 3

10 10 10

10°

10"

10°

time (s)

time (s)

time (s)
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10
-1

10

-2 N e . -
- 10 ,
GFLars GFLars L ,
GFLasso GFLasso - i GFLasso |
107 10° 107

2 4 6 8 0 5 0 1 2 3

10° 10 10 10 10 10 10 10 10 10 10

Figure 2:Speed trials for group fused LARS (top row) and Lasso (bottonrow). Left column:varying
n, with fixedp = 10 andk = 10; center columnyaryingp, with fixedn = 1000 andk = 10; right column:
varying k, with fixedn = 1000 andp = 10. Figure axes arvg-log. Results are averaged over 100 trials.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fusedsd dsr detecting a single change-point. We
first generated multidimensional profiles of dimensigonvith a single jump of height at a positionu, for
different values of andu. We added to the signals an i.i.d. Gaussian noise with vegiap = 10.78,
the critical value corresponding te = 0.8 in Theoren{2. We ran 1000 trials for each valueucénd p,
and recorded how often the group fused Lasso with or withaig/kats correctly identified the change-point.
According to Theorerhl2, we expect that, for the unweightedigrfused Lasso, fad0 < u < 80 there is
convergence in accuracy lowhenp increases, and far > 80, convergence in accuracy to zero. This is
indeed what is seen in Figuré 3 (left panel), with= 80 the limit case between the two different modes of
convergence. The center panel of Figure 3 shows that wheteflaelt weights[(5) are added, convergence
in accuracy to 1 occurs across all as predicted by Theoref 3. In addition, the right-hané-gdnel

of Figure[3 shows results for the same trials except thatgdwmoint locations can vary uniformly in the
interval u + 2. We see that, as predicted by Theorlgm 4, the accuracy of thghted group fused Lasso
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Figure 3:Single change-point accuracy for the group fused Lass@ccuracy as a function of the number
of profilesp when the change-point is placed in a variety of positions 50 to v = 90 (left and centre
plots, resp. unweighted and weighted group fused Lassoy, er50+2 to u = 90+ 2 (right plot, weighted
with varying change-point location), for a signal of lend0.

remains robust against fluctuations in the exact changd-fomation.

6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results todhse of many shared change-points, we further
simulated profiles of length = 100 with a change-point atll of positions10, 20, ...,90. We consider
dimensiong betweenl and500. Jumps at each change-point of each profile were drawn fromussEan
with mean 0 and variance 1; we then added centered Gaussisa with 02 € {0.05,0.2,1} to each
position in each profile. For each valuepodindo?, we ran one hundred trials of both implementations, with
or without weights, and recorded the accuracy of each mettefthed as the percentage of trials where the
first 9 change-points detected by the method are exactly tihge change-points. Results are presented in
Figure[4 (from left to right, resps? = 0.05,0.2,1). Clearly, the group fused Lasso outperforms the group
fused LARS, and the weighted version of each algorithm atapas the unweighted version. Although
the group LARS is usually considered a reliable alternativéhe exact group Lassb [21], this experiment
shows that the exact optimization by block coordinate dasoey be worth the computational burden if
one is interested in accurate group selection. It also dstraies that, as we conjectured in Section 5.3, the
group fused Lasso can consistently estimate multiple a@oints as the number of profiles increases.

6.4 Application to gain and loss detection

We now consider a possible application of our method for thteation of regions with frequent gains
(positive values) and losses (negative values) among afdeNA copy number profiles, measured by
array comparative genomic hybridization (aCGH) technpl{fi/]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentation ektpnals; then, check the presence of gain or
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profilesvhen
change-points are placed at the nine positipits 20, . . ., 90} and the variance? of the centered Gaussian
noise is eithen.05 (left), 0.2 (center) and (right). The profile length is 100.

loss on each interval of the segmentation by summarizing peafile by its average value on the interval.
Note that we do not assume that all profiles share exactlyaime £hange-points, but merely see the joint
segmentation as an adaptive way to reduce the dimensiorearave noise from data.

In practice, we used group fused LARS on each chromosomeiniig a set ofl00 candidate change-
points, and selected a subset of them by post-processirgsasited in Sectidn 5.4. Then, in each piecewise-
constant interval between successive shared changespwiatcalculate the mean of the positive segments
(shown in green in Figures 5(a) 6(c)) and the mean of thative segments (shown in red). The larger
the mean of the positive segments, the more likely we are lievieethat a region harbors an important
common gain; the reasoning is analogous for important comiogses and the mean of the negative seg-
ments. Obviously, many other statistical tests could baezhout to detect frequent gains and losses on
each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain andvatssthe state-of-the-art H-HMM method
[27], which has been shown to outperform several other nakstimothis setting. As [27] have provided their
algorithm online with several of their data sets tested airtarticle, we implemented our method and theirs
(H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regieiasie amplified, one deleted, that are shared
in 8 short profiles, though only 6 of the profiles exhibit eatthe amplified or deleted regions. Performance
is measured by area under ROC curve (AUC), following [27]nRng H-HMM with the default parameters,
we obtained an AUC (averaged over 10 trialsp®6 + .01, taking on average 60.20 seconds. The weighted
group fused LARS, asked to select 100 breakpoints and felliolay dynamic programming, took 0.06
seconds and had an AUC 06f97. Thus, the performance of both methods was similar, thouegighted
group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell linemalligpublished in[[28, 29]. As in [27], we
concentrated on the 18 NSCLC adenocarcinoma (NA) cell liregirel5 shows the score statistics obtained
on Chromosome 8 when using either weighted group fused LARBIMM. Weighted group fused LARS
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first selectedl00 candidate change-points per chromosome, then followedhizaition of the number of
change-points by dynamic programming, took in total 4.6ads and finally selected 260 change-points.
In contrast, H-HMM took 38 minutes (100 iterations, as givenhe code provided by the authors). The
H-HMM scores should look like those shown in Figure 4 (topedanf [27]; the difference is either due to
the stochastic nature of the algorithm or using a differembiber of iterations than given in the sample code
by the authors. In any case, at the MYC locus (rigax 107 bp), both methods strongly suggest a common
gained region. However, the supposed advantage of H-HMMety sparsely predict common gains and
losses is not clear here; for example, it gives high commam ganfidence to several fairly large genomic
regions between 9 and 24107 bp.
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Figure 5:Joint scores for a set of 18 NSCLC adenocarcinoma cell line§(a) using weighted group fused
LARS;[5(b) using H-HMM with the actual code provided by [27].

6.5 Application to bladder tumor aCGH profiles

We further considered a publicly available aCGH data setrobladder tumor samples [30]. Each aCGH
profile gave the relative quantity of DNA for 2215 probes. Wenoved the probes corresponding to sex
chromosomes because the sex mismatch between some patidrite reference made the computation of
copy number less reliable, giving us a final list of 2143 pmbe

Results are shown in Figuré 6. 97 change-points were sdlbgtthe weighted group fused LARS; this
took 1.1 seconds (Figuké 6(c)). The H-HMM method (FiddreBi@ok 13 minutes for 200 iterations (after
100 iterations convergence had not occured). We used thpretensive catalogue of common genomic
alterations in bladder cancer provided in Table Z_id [31]dtidate the method and compare with H-HMM.
Our method (Figurgl6(c)) concurred with the known frequeathplified chromosome arms 20q, 8q, 19q,
1q, 20p, 17q, 19p, 5p, 2p, 10p, 3g and 7p, and frequentlydpst9q, 11p, 10q, 13q, 8p, 17p, 184q, 2q,
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Figure 6:Bladder cancer profiles.[6(a) shows one of the original 57 profiles and its associatesbthed
version. [6(b) shows the result of superimposing the smdotleesions of the57 bladder tumor aCGH
profiles obtained using weighted group fused LARS followgdlimnension-selectior.] 6(c) shows the result
of transforming the set of smoothed outputs into “scores aimplification/deletion (see Sectién 6.4) and
[B(d) the corresponding output for the H-HMM methad1[27]. fiel black lines indicate chromosome
boundaries.

5q, 18p, 14q and 16g. The only known commonly-lost regionciwishowed unconvincing common loss
here was 6q. As for the H-HMM method (Figure 6(d)), it selecmall number of very small regions of
gain and loss, which are difficult to verify with respect te thell-known frequently amplified arms in [31].
As is suggested, the method may therefore be useful fortajetie precise location of important genes.
However, as can be seen in Figlie 6(a)-(b), many, but noalédkations are much larger than those found
with H-HMM, and where for example there are clearly sevesahlized gains and losses in chromosome
8, H-HMM finds nothing at all. Perhaps the complexity of reaagements in chromosome 8 is not easily
taken into account by the H-HMM algorithm. Note finally thhetweighted group fused LARS was more
than 700 times faster than H-HMM.
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7 Conclusion

We have proposed a framework that extends total-variatamed approximation to the multidimensional
setting, and developed two algorithms to solve the regultionvex optimization problem either exactly
or approximately. We have shown theoretically and emglyidhat the group fused Lasso can consis-
tently estimate a single change-points, and observed iexgetally that this property is likely to hold also
when several change-points are present. In particular,bserged both theoretically and empirically that
increasing the number of profiles is highly beneficial to detgproximatively shared change-points, an
encouraging property for biological applications where #tcumulation of data measured on cohorts of
patients promises to help in the detection of common genaitecations.

Although we do not assume that all profiles have the same ehpoigts, we estimate only shared
change-points. In other words, we try to estimate the unioth@ change-points present in the profiles.
This can be useful by itself, eg, for dimension reductiorwéfwanted to detect change-points of individual
profiles, we may either post-process the results of the giuserl Lasso, or modify the formulation by, e.g.,
adding a TV penalty to each profile in addition to the grougdgsenalty. Similarly, for some applications,
we may want to add & /¢, norm to the group fused Lasso objective function in orderdostrain some
or all signals to be frequently null. Finally, from a comptidgaal point of view, we have proposed efficient
algorithms to solve an optimization problein (4) which ispheximal operator of more general optimization
problems where a smooth convex functionallbfs minimized with a constraint on the multidimensional
TV penalty; this paves the way to the efficient minimizatidnsach functionals using, e.g., accelerated
gradient methods [32].

Annex A: Computational lemmas

In this Annex we collect a few results useful to carry out thetfimplementations claimed in Sectidn 4.
Remember that the x (n — 1) matrix X defined in[(6) is defined by; ; = d; for ¢ > j, 0 otherwise.
Since the design matriX of the group Lasso probleril(8) is obtained by centering eatlmm of X to
Zzero mean, its columns are given by:

.
Vi=1,...,n—1, Xei= <3—1>di,...,(1—1>di,3di,...,idi : (14)
n n n n
_—

We first show how to compute efficiently " R for any matrixR:
Lemma 5. For any R € R"*P, we can computé = X " R in O(np) operations and memory as follows:
1. Compute the x p matrixr of cumulative sums; , = Zj.zl Rjo by the induction:

® Tle = Rl,o .

e Fori=2...,n,7ie=ri—1e+ Rie-

2. Fori=1,...,n—1, computeC; ¢ = d; (iT,e/n — Tis) -
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Proof. Using [13) we obtain théth row of C = X TR, fori =1,...,n — 1, as follows:

— (% — 1) d; (ZZ:R) + %di (ji;R-,-)

Next, we show how to compute efficiently submatrices of(the- 1) x (n — 1) matrix X " X

Lemma 6. For any two subsets of indice$ = (a1,...,a4)) andB = (b1,...,byp) in [1,n — 1], the
matrix X , X, 5 can be computed i® (| 4| B|) in time and memory with the formula:

min(a;, bj) [n — max(a;, b;)] .

V(.)€ [LIAN X [LIB) . | X aXen| = dod, (15)

1,J n

Proof. Let us denotd/ = X, X, 5. Forany(i,j) € [1,|A|] x [1,|B]], denotingu = min(a;, b;) and
v = max(a;, bj), we easily get from(14) an explicit formula f&f ;, namely,

‘/Z',j — XT X.,bj

®,a;

i (1) (1) o0 (3 0]

n

= 4,0, ")

n

O

The next lemma provides another useful computational tiickompute efficientlyX " X R for any
matrix R:

Lemma 7. For any R € R("~1*?_ we can comput€’ = X X R in O(np) by
1. Compute, foi = 1,...,n — 1, R; e = d;R; .
2. Compute the x p vectorS = (Z?;ll z‘R,-v.) /n.
3. Compute thén — 1) x p matrix T defined byl; o = 37— R; , by the induction:

L4 Tn—l,o - Rn—l,o-
efori=n—2...,1,Tie="Tii1e+ Rie.
4. Compute thén — 1) x p matrixU defined by; » = 3%_, (S — 7j..) by the induction:

L4 Ul,o = S_Tl,o-
° fOI”L.ZQ,...,TL—l,UZ".: i—l,o“‘S_T’i,o-

5. Compute, fot = 1, e, = 1, C@. = diUL.
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Each step in Lemmia 7 has complexit{np) in memory and time, leading to an overall complexity in
O(np) to computeX " X R. We note that ifR is row-sparse, i.e., is several rows Bfare null, then the
first two steps have complexity(sp), wheres is the number of non-zero rows iR. Although this does
not change the overall complexity to compf€ X R, this leads to a significant speed-up in practice when
s L n.

Proof. Let us denoteD the (n — 1) x (n — 1) diagonal matrix with entrie®, ; = d;. By Lemma6, we
know thatX "X = DV D, with V; ; = min(4, ) [n — max(i, )] /n, for 1 < 4,5 < n — 1. Since step
1 computesR = DR and step 5 compute8 = DU, we just need to show that tHé& computed in step
4 satisfied/ = VR to conclude thal' = DVR = DVDR = X" XR. By step 4,U is defined by the
relationU; o — Uj—16 = S — T;e fori = 1,...,n — 1 (with the conventiorl/y , = 0), therefore we just
need to show thatV; , — Vl-_lv.)R =S-T,.fori =1,...,n—1toconclude. Fob < j <i<n—1,

we note thal/; ; = j(n — i)/n (with the conventiorl, , = 0) andV;_; ; = j(n — i + 1)/n, and therefore
Vij—Vicij=—j/n.Forl <i<j<n-—1,wehaveV,; =i(n—j)/nandVi_; = (i —1)(n —j)/n

and thereford/; ; — Vi_1 ; = 1 — j/n. Combining these expressions we get,ifef 1,...,n — 1:
- - fz ol
(Vie — Vicre) R=— 2; - +;Rj,.:s—n,.,
whereS andT are defined in steps 2 and 3. This concludes the proofthatX " X R. O

Next we show thaf X " X) ~! has a tridiagonal structure, resulting in fast matrix nplittation.

Lemma 8. For any setd = (al, . 7“|A\) of distinct indices with < a; < ... < a4 < n—1, the matrix
(X.T,AX-A) is invertible, and for anyA| x p matrix R, the matrix

C=(XIa%ea) R
can be computed i@(|A|p) in time and memory by
1. Fori=1,...,]|A| — 1, compute

d_ Rit1e—d;'Rise

i1

Qi1 — G4

2. Compute the successive rows baccording to:

1 ( Rie
Clv. = da11 < CL117 - Al) 7

Cie=d' (A1 —A;) fori=2,... A -1, (16)
|Al»
Clate = das <A|A_1 T aA|>

Proof. Let us denotd/ = X AX 4. By Lemmd. 6 we know that, for < i < j < |A4],

a;(n — aj)
—

‘/i,j = daidaj
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V' being symmetric semi-separable, one can easily checRilminvertible and admits as inverse a tridiag-
onal matrix with the following entries [33]:

1 1
x/’i—il:d;?( + ) fori=1,...,|A|
’ CNG T G-l Gl Gy
11 17)
-1 =1 _ dai dai+1 for i — A
Vit = Vi =~ fori=L.. Al -1,

where by convention we defing = 0 anda 4, = n. This tri-diagonal structure allows successive rows
of C' to be expressed as a sum of just a few terms. More precisely,<oi < |A|, we obtain:

d-' d-'R; 1 1 d;'d;' R;
ai—1%a; “Vi—le —2 a; %a; 1 Vi+1e
CZ-, e Uit S +daz~ Ri,o < + > . i i+
a; — a;—1 A; — A;—1 Qi1 — A4 Ai+1 — Q4
-1 -1 -1 -1

_ dy Rie—d, " Ri 1. N dy; Rie —dy Ritie
=d,.

' a; — Q-1 Ait1 — 4

=d;' (Ao — A)

Similarly, fori = 1 andi = | A| we easily recovei (16). O

Annex B: Proof of Lemmal[l

The solution of[(#) is constant, i.e., correspondg te 0 (no change-point), as long as the KKT conditions
(10) are satisfied fof = 0. This translates t§f X, ;Y || < A for all i. The first change-point occurs when

A = max; || X|;Y'||, and the change-point is precisely located in the posititvat reaches the maximum.
Therefore the first change-point is the row with the largestliiean norm of the matrix:
e=X"Y=X"Xp+X"W.
The entries of the matrix are therefore jointly Gaussian. Since only thx#h row 3, . of 3 is non-zero, we
get
E(@)=X"Xp"=X"X.uf}..
Using Lemmab we compute:

n_ Fue 18
did, 2= gx  foru <i<n—1. (18)

n u,e

) S did, W g for1<i<uw,
Bie) =[5 =

On the other hand, by (14) we have for any [1,n — 1],

R e

xTw]

i?

Since
E (Wi—’l—.Wj7.) = 5i,j0'21p7

whered; ; is the Dirac function, we have far<i < j <n — 1:
_ T r_
E ([XTW} | [XTW} | >
7‘7. J7.

= d;d, [z (%—1) <%—1> —I—(j—z')% <%—1> +(n—j)%%} 0’1, (19)
_i(”—j) 2

= did;——26°1, .
n
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In summary, we have shown thats jointly Gaussian with® (¢; o) given by [18) and covariance between
¢i,e andé; o given by [19).

In particular, if we denoté; = || ¢4 ||%, then, fori < u, Fyn/ (d?i(n —i)o?) follows a non-central
x? distribution withp degrees of freedom and non-centrality paramgl2i(n — u)?/ [n(n —i)o?]. In
particular,

*2221'2(”—@4)2 2i(n—1) o

and sincdim,_, . 3, = 32, we get thatF;/p converges in probability to

(n —u)*

- L
MLV 2 =9 2 (20)
n n

2
Gi= """ = P2’
p

A similar computation shows that for> u, F; /p converges in probability to

- u? (n — i) i(n —1)
G; = B*d?d? — +d; a2, (21)
n n

Note that[(2D) and.(21) are equivalently definedid (11). Newl = argmax ;c[y ,,_1) Gi. Foranyv € V
andj ¢ V, the probability of the evenk;, > F; tends tol, becaus&r, > G;. By the union bound the
probability of the eveninax;¢y F; < max,cy F), also converges tb, showing that the probability to select
a change-point iV converges td asp — +oc. O

Annex C: Proof of Theorem|[2

By Lemmall, we know that the first change-point selected bys(#) argmax ie[1,n) Gi With probability
tending tol asp increases, wheré€; is defined in[(1ll). We will therefore asymptotically seldwt torrect
change-point if and only if G,, = max;c[; ,_1) Gi. Remember we assume, without lack of generality, that
u > n/2. Foru < i < n — 1, we observe thaf?; given by [21) is a decreasing function iés a sum of
two decreasing functions. Therefore, it always holds that= max;c [, ,—1) Gi, and we just need to check
whether or notz,, = max;cp; ., G; holds.

Fori € [1,u], G; given by [20) is a second-order polynomialiofwhich is equal td) at: = 0 and
strictly positive fori = u. ThereforeG, = max;c); ;) G; if and only if G, > G,—1. Let us therefore
compute:

e =2 e ) T i — ) — (i 1) —
Gy—Gu-1=0 [u? — (u 1)]+n[u(n u) — (u—1)(n —u+1)]

n2
B22u—1)(n—-u)? o*n—2u+1)
- n? + n
1 1 1 (22)
=2|n(1-a)lla-=—)+o*(z—a+—
2n 2 2n
1 1
9 (52 _ 52 Lt
(62— 0?) <a : 2n> |
wherea = u/n and
X 21— a)’(a—g)
52 = n? - LZ
2 2n
This shows that, when > 1/2 + 1/(2n), G, > G,—; ifand only if ¢ < &. On the other hand, when
a=1/20r1/2+1/(2n), we have always that,, > G,_1. O

21



Annex D: Proof of Theorem[3

As for the proof of Theorerh]2, we need to check whether orGipt= max;c(; ,,—1) Gi, whereG; is
defined in[(11), to deduce whether the method selects theatainange-point or a different position with
probability tending tal whenp increases. Substituting weightsdefined in[(b) inta&;, we obtain:

Gi202+52x{i(n—u)/u(n—i) if i <u, 23

u(n—1)/i(n—u) otherwise.
It is then easy to see that (23) is increasingbn], and decreasing om, n — 1], showing that we always
haveargmax ;c(; ,,_1) Gi = u. The result then follows from Lemnia 1. O
Annex E: Proof of Theorem[4

Following the proof of Lemmal1, let us estimafe= || ¢, || for i € [1,n — 1]. For anyj € [1, p], we first
observe by[(18) that

I didy =Yg if i< U;,
XTxe] = (24)
i,j didy, ==,—p; otherwise
Therefore,
zp:[XTXﬁ} - 3217: 52[ U1 < U, V2 U1(i > U, 25
=5 dy, j i <Uj)+ (n—14)° U1 >Uj)| , (25)
j=1 =1

and by independence ¢f andU;:

P n—1
EZ[XTXﬁ]'—ﬁz [Z:pud2 (n—1i)® + Z pudi(n—u)2i2] .

j=1 u=1+1

==

Since(8;, U;)i=1,... p are independent of the noise, we obtain thgip converges in probability to

= 522—222 [ipudiuz(n ' Z pudy, (n —1)”
u=1

=0 o (26)
u=i+1 n

As in Lemmd 1l we can conclude that the method will select tisitipn

i = argmax G
u€(l,n—1]
with probability tending to 1 ag increases.

Let us now assume that the supportff is an interval[a, b] (corresponding to a possible range of
fluctuation of a change-point). Then, we observe that fora, G; in (26) reduces to

Gi = 0+§ jpud2 w? 2| 4 2= 2
n
(27)

-9 12 o
= P By - 0 + 2 D2,
Let us now consider the two possible weighting schemes.
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e Inthe unweighted casé = 1fori =1,...,n — 1, we obtain from[(2]7) that foi < a:

G — 5212}3(7;2— U)? N z'(nn— 1)02. (28)

While the first term in[(28) is strictly increasing @ a|, the second term moves the maximunyf
towardsn /2. This shows that the maximum 6f; is always at least whena < n/2. By symmetry,
it is also always smaller or equal towhenb > n/2. Whenn/2 € [a,b], we deduce that for any
o2 >0, 4 € [a,b]. Otherwise, let us suppose without lack of generality th&t < a < b. Then,G;
being quadratic ofp, a] and equal t® at0, the maximum of=; will not occur beforeu if and only if
G._1 < G,. A computation similar to the one in the proof of Theollegm 2vehthat

Ga_Ga—1:2(5}2n—0'2) <am_l+i>’

where

52 nB2E(1 — a)2(am — %)

This shows thaty, > G, if and only if 02 < 52,. Sinceb > n/2, we also know that < b, i.e.,
U € [a,b] in that case. The cade< a < b < n/2 can be treated similarly. To conclude the proof it
suffices to observe that

E(1—a)?=(1-Ea)*+vara).

In the weighted casé; = ﬁ fori =1,...,n— 1, we obtain from[(2B) and (27) that for< a:

n—1

Gi= g E["Z,U] to2. (29)

This is always an increasing functionbn [1, ], showing that the maximum &f; can not be strictly
smaller thamz. By symmetry, it can also never be larger tharirom which we conclude that it is
always between andb, i.e., in the support of?;.

O
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