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Abstract

The pentagram map was introduced by R. Schwartz in 1992 for convex planar
polygons. Recently, V. Ovsienko, R. Schwartz, and S. Tabachnikov proved Liouville
integrability of the pentagram map for generic monodromies by providing a Poisson
structure and the sufficient number of integrals in involution on the space of twisted
polygons.

In this paper we prove algebraic-geometric integrability for any monodromy, i.e., for
both twisted and closed polygons. For that purpose we show that the pentagram map
can be written as a discrete zero-curvature equation with a spectral parameter, study
the corresponding spectral curve, and the dynamics on its Jacobian. We also prove
that on the symplectic leaves Poisson brackets discovered for twisted polygons coincide
with the symplectic structure obtained from Krichever-Phong’s universal formula.

Introduction

The pentagram map was introduced by R. Schwartz in [1] as a map defined on convex
polygons understood up to projective equivalence on a real projective plane. Here is a
picture of this map for a pentagon and a hexagon:

Figure 1: The pentagram map defined on a pentagon and a hexagon
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This map sends an i-th vertex to the intersection of 2 diagonals: (i−1, i+1) and (i, i+2).
The definition implies that this map is invariant under projective transformations.

Surprisingly, this simple map stands at the intersection of many branches of mathematics:
dynamical systems, integrable systems, projective geometry, and cluster algebras. In this
paper we focus on integrability of the pentagram map.

Its integrability was thoroughly studied in the paper [3], where the authors considered
the pentagram map on a more general space Pn of the so-called twisted polygons. A twisted
polygon is a piecewise linear curve, which is not necessarily closed, but has a monodromy
relating its vertices after n steps (we state its precise definition in the next section). They
proved the Arnold-Liouville integrability for the pentagram map on this space:

Theorem 0.1 ([3]). There exists a Poisson structure on the space Pn invariant under the
pentagram map. The number of vertices of the polygons is n, and n ≥ 4. When n is even, the
Poisson brackets have 4 independent Casimirs, and n− 2 invariant functions in involution.
When n is odd, there are only 2 Casimirs, and 2q (where q = [n/2]) invariant functions in
involution.

The total dimension of Pn for all monodromies together is 2n, and this theorem implies
the Arnold-Liouville complete integrability on Pn. I.e., a Zariski open subset of Pn is foliated
into tori, and the time evolution is a quasiperiodic motion on these tori. The authors of [3]
posed an open question about integrability for regular closed polygons. Closed polygons
form a submanifold Cn of codimension 8 in Pn, but it is difficult to find out what happens
with Poisson brackets and integrability on this submanifold. One of the main results of the
present study is a solution of this problem (see Theorem C below) in the complexified case.

Note that R.Schwartz conjectured that the pentagram map is a quasi-periodic motion
in [1], introduced the integrals of motion and proved their algebraic independence in [2].

The central component of the algebraic-geometric integrability is a Lax representation
with a spectral parameter, which is introduced for the pentagram map in Theorem 2.2. This
Lax representation implies our main results, which can be formulated in the following 4
theorems.

Theorem A. Consider a spectral curve Γ0 ⊂ CP2 defined by the equation:

R(z, k) = k3 − k2

(

q
∑

j=0

Jjz
j−q

)

+ k

(

q
∑

j=0

Ijz
q−j

)

z−n − z−n = 0,

where Ij, Jj , 0 ≤ j ≤ q are complex parameters. Let the normalization of Γ0 be Γ. The genus
Γ is g = n− 2 for even n, and g = n− 1 for odd n. The Jacobian of Γ is J(Γ).

Then there exists the spectral map S : Pn → (Γ, J(Γ)), which has a non-degenerate
Jacobian matrix at a generic point, i.e., locally, S is one-to-one.

Notice that we consider polygons on a complex projective plane instead of a real projective
plane, which does not change any formulas for the pentagram map.

Next theorem, along with the previous one, establishes the algebraic-geometric integra-
bility:
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Theorem B. Let [D0,0] ∈ J(Γ) be the point that corresponds to a twisted polygon at time
t = 0 under the map S, and [D0,t] be the point describing the twisted polygon at time t. Then
[D0,t] is related to [D0,0] by the formulas:

• when n is odd,
[D0,t] = [D0,0 − tO1 + tW2] ∈ J(Γ),

• when n is even,

[D0,t] =

[

D0,0 − tO1 +

[

1 + t

2

]

W2 +

[

t

2

]

W3

]

.

For odd n the time evolution in J(Γ) is along a straight line, whereas for even n the evolution
resembles a “staircase.”

The point O1 ∈ Γ corresponds to (z = 0, k is finite), and the points W2,W3 ∈ Γ corre-
spond to (z = ∞, k = 0).

Theorem C. Closed polygons are singled out by the condition that (z, k) = (1, 1) is a triple
point of Γ. The latter is equivalent to 5 linear relations on Ij , Jj:

q
∑

j=0

Ij =

q
∑

j=0

Jj = 3,

q
∑

j=0

jIj =

q
∑

j=0

jJj = 3q − n,

q
∑

j=0

j2Ij =

q
∑

j=0

j2Jj .

The genus of Γ drops to g = n − 5 when n is even, and to g = n − 4 when n is odd. The
dimension of the Jacobian J(Γ) drops by 3 for closed polygons. Theorem A holds with this
genus adjustment, and Theorem B holds verbatim for closed polygons.

The relations on Ij , Jj found in Theorem 4 in [3] are equivalent to those in Theorem C.

Corollary. The dimension of the phase space Cn in the periodic case is 2n − 8. In the
complexified case, Cn is fibred over the base of dimension 2q − 3. The coordinates on the
base are Ij , Jj, 0 ≤ j ≤ n − 1, subject to the constraints from Theorem C. The fibres are
Jacobians (complex tori) of dimension 2q− 3 for odd n, and of dimension 2q− 5 for even n.
Note that the restriction of the symplectic form (which corresponds to the Poisson brackets
on the symplectic leaves) to the space Cn is always degenerate, therefore the Arnold-Liouville
theorem is not directly applicable for closed polygons. Nevertheless, the algebraic-geometric
methods guarantee that the pentagram map exhibits quasi-periodic motion on a Jacobian.

Finally, we prove that:

Theorem D. Krichever-Phong’s universal formula (defined in [5, 6]) provides a pre-symplectic
2-form on the space Pn. This 2-form becomes a symplectic form of rank 2g after the restric-
tion to the leaves: δIq = δJq = 0 for odd n, and δI0 = δIq = δJ0 = δJq = 0 for even n.
These leaves coincide with the symplectic leaves of the Poisson structure found in [3]. The
symplectic form is invariant under the pentagram map and coincides with the inverse of the
Poisson structure restricted to the symplectic leaves.

We would also like to point out that there is some similarity between the pentagram
map and the integrable model [7] which corresponds to the N = 2 SUSY SU(N) Yang-Mills
theory with a hypermultiplet in the antisymmetric representation.
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1 Definition of the pentagram map

In this section, we give a definition of a twisted polygon, following [3], introduce coordinates
on the space of such polygons, and give formulas of the map in terms of these coordinates.

Definition 1.1. A twisted n-gon is a map φ : Z → CP2, such that φ(k + n) = M ◦ φ(k)
for any k, and M ∈ PSL(3,C) is a projective transformation of the plane CP2. M is
called the monodromy of φ. Two twisted n-gons are equivalent if there is a transformation
g ∈ PSL(3,C), such that g ◦ φ1 = φ2. The space of n-gons considered up to PSL(3,C)
transformations is called Pn.

Notice that the monodromy is transformed as M → gMg−1 under transformations g ∈
PSL(3,C). The dimension of Pn is 2n, because a twisted n-gon depends on 2n variables
representing coordinates of φ(k), 0 ≤ k ≤ n − 1, on a monodromy matrix M (8 additional
parameters), and the equivalence relation reduces the dimension by 8.

The coordinates on Pn are introduced in the following way. If we assume that n is not
divisible by 3, then there exists the unique lift of the points φ(k) ∈ P2 to the vectors Vk ∈ C3

provided that det (Vj, Vj+1, Vj+2) = 1 for all j. We associate a difference equation to the
sequence of vectors Vk:

Vj+3 = ajVj+2 + bjVj+1 + Vj for all j.

The sequences (aj) and (bj) are n-periodic, i.e., aj+n = aj , bj+n = bj for all j. The monodromy
is a matrix M ∈ SL(3,C), such that Vj+n =MVj for all j. The variables ai, bi, 0 ≤ i ≤ n−1
are coordinates on the space Pn.

Notice, that sometimes this map is not defined. For example, it happens when 3 consec-
utive points lie on one line. When it is defined, and n = 3m+ 1 or n = 3m+ 2, the map is
given by the formulas:

T ∗(ai) = ai+2

m
∏

l=1

1 + ai+3l+2bi+3l+1

1 + ai−3l+2bi−3l+1
, T ∗(bi) = bi−1

m
∏

l=1

1 + ai−3lbi−3l−1

1 + ai+3lbi+3l−1
. (1.1)

The proof of these formulas is a direct calculation, which has been performed 1 in [3].

2 A Lax representation and the geometry of the spec-

tral curve

The key ingredient of the algebraic-geometric integrability is a Lax representation with a
spectral parameter. First, we show that the map (1.1) has such a representation. It implies
the conservation of all invariant functions from Theorem 0.1. The Lax representation orga-
nizes these invariant functions in the form of the so-called spectral curve. We investigate
some properties of the spectral curve, which are important for our purposes.

1There is a typo in the formula (4.14) for T ∗(bi) in [3].
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In the continuous case, a zero-curvature equation is a compatibility condition for an over-
determined system of linear differential equations, hence the name (for example, see [9] for
details). In the discrete case, a system of differential equations becomes a system of linear
difference equations on functions Ψi,t, i, t ≥ 0 of an auxiliary variable z (called a spectral
parameter):

{

Li,t(z)Ψi,t(z) = Ψi+1,t(z)

Pi,t(z)Ψi,t(z) = Ψi,t+1(z).
(2.1)

The indices i and t are integers and represent discrete space and time variables. The initial
polygon corresponds to t = 0. It is convenient to represent several functions Ψi,t, i, t ≥ 0 and
their relationship on a diagram:

Ψi,t+1
Li,t+1−−−→ Ψi+1,t+1 −→ ... −→ Ψi+n−1,t+1

Li+n−1,t+1−−−−−−→ Ψi+n,t+1

Pi,t

x





Pi+1,t

x





Pi+n−1,t

x





Pi+n,t

x





Ψi,t
Li,t−−→ Ψi+1,t −→ ... −→ Ψi+n−1,t

Li+n−1,t−−−−−→ Ψi+n,t

Equations (2.1) form an over-determined system, whose compatibility condition imposes
a relation on the functions Li,t and Pi,t. This relation is called a discrete zero-curvature
equation.

Definition 2.1. A discrete zero-curvature equation is the compatibility condition for sys-
tem (2.1), which reads explicitly as:

Li,t+1(z) = Pi+1,t(z)Li,t(z)P
−1
i,t (z), (2.2)

where Li,t is called a Lax function.

Theorem 2.2. A Lax function for the pentagram map is

Li,t(z) =





−bi 1 0
−ai/z 0 1/z

1 0 0



 =





0 0 1
1 0 bi
0 z ai





−1

The variables ai, bi, 0 ≤ i ≤ n− 1, depend on time t. Their dependence on t is not indicated
in the notation, but it will always be clear from the context which moment of time they
correspond to.

Proof. The proof is to check that formulas (1.1) are equivalent to equation (2.2) for an
appropriate choice of the function Pi,t. The matrix function Pi,t is different for n = 3m+ 1
and n = 3m+ 2. When n = 3m+ 1, the function Pi,t(z) is

Pi,t =





−aiλi−1 0 λi−1

λi−3 −ai+1λi bi−1λi−3

0 zλi−2 0



 , where λi =

m
∏

l=1

(1 + ai+3l+1bi+3l).
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If n = 3m+ 2, then Pi,t(z) is

Pi,t =





−aiλiλi−1(1 + ai+1bi) 0 λiλi−1(1 + ai+1bi)
λiλi−2(1 + ai+1bi) −ai+1λiλi+1(1 + ai+2bi+1) bi−1λiλi−2(1 + ai+1bi)

0 zλi+1λi−1(1 + ai+2bi+1) 0



 .

Notice that Pi+n,t ≡ Pi,t and Li+n,t ≡ Li,t for all i. The rest of the proof is a straightforward
calculation using the formulas:

• for n = 3m+ 1 : T ∗(ai) = ai+2
λi+1

λi−1
, T ∗(bi) = bi−1

λi−3

λi−1
,

1 + ai+1bi
1 + aibi−1

λi = λi−3,

• for n = 3m+ 2 : T ∗(ai) = ai+2
λi+1

λi
, T ∗(bi) = bi−1

λi−2

λi−1

,
1 + ai+3bi+2

1 + ai+1bi
λi+2 = λi−1.

A discrete analogue of the monodromy matrix is a monodromy operator:

Definition 2.3. Monodromy operators T0,t, T1,t, ..., Tn−1,t are defined as the following ordered
products of the Lax functions:

T0,t = Ln−1,tLn−2,t...L0,t,

T1,t = L0,tLn−1,tLn−2,t...L1,t,

T2,t = L1,tL0,tLn−1,tLn−2,t...L2,t,

...

Tn−1,t = Ln−2,tLn−3,t...L0,tLn−1,t.

Similarly to the continuous case, one can define Floquet-Bloch solutions:

Definition 2.4. A Floquet-Bloch solution ψi,t of a difference equation ψi+1,t = Li,tψi,t is an
eigenvector of the monodromy operator: Ti,tψi,t = kψi,t.

Definition 2.5. A spectral curve of the monodromy operator Ti,t(z) is

R(k, z) = det (Ti,t(z)− kI) = 0.

The Floquet-Bloch solutions are parameterized by the points (k, z) of the spectral curve.

Theorem 2.6. The spectral curve for the pentagram map is

R(k, z) = k3 − k2trTi,t + ktr (T−1
i,t )z

−n − z−n = 0, (2.3)

where the functions tr (T−1
i,t ) and trTi,t are equal to

tr (T−1
i,t ) =

q
∑

j=0

Ijz
q−j , trTi,t =

q
∑

j=0

Jjz
j−q. (2.4)

Here q is an integer part of n/2, i.e., q = [n/2]. The coefficients Ij , Jj are polynomials in
ai, bi, 0 ≤ i ≤ n− 1, and they coincide with the invariants introduced in [3].

The spectral curve is independent on i and t.
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Proof. If k1, k2, k3 are eigenvalues of the matrix Ti,t, then we have:

trTi,t = k1 + k2 + k3, tr (T−1
i,t ) = k−1

1 + k−1
2 + k−1

3 , det Ti,t = k1k2k3.

Since detLi,t = 1/z, equation (2.3) follows from Vieta’s formula. Equation (2.2) implies that
the monodromy operators satisfy the discrete-time Lax equation:

Ti,t+1(z) = Pi,t(z)Ti,t(z)P
−1
i,t (z),

i.e., monodromies Ti,t are conjugated to each other for different t. Consequently, the function
det (Ti,t(z)− kI) is independent on t. The monodromy operators Ti,t(z) with a fixed t and
different i’s are also conjugated to each other, therefore R(k, z) is independent on i.

The definition of Ij , Jj in [3] is:

tr (N0N1...Nn−1) =

q
∑

j=0

Ijs
w(j), tr (N−1

n−1...N
−1
1 N−1

0 ) =

q
∑

j=0

Jjs
−w(j), (2.5)

where Nj =





0 0 1
1 0 bj/s
0 1 ajs



 , w(j) = n+ 3j − 3q.

We observe that L−1
j = (gNjg

−1)/s, where g = diag (s, s2, 1), if we identify z = s−3. It
implies that formulas (2.4) and (2.5) are identical.

We will need the explicit expressions for some of the invariant functions (Proposition 5.3
in [3]):

for any n, Iq =

n−1
∏

j=0

aj, Jq = (−1)n
n−1
∏

j=0

bj ,

for even n, I0 =

q−1
∏

j=0

b2j +

q−1
∏

j=0

b2j+1, J0 = (−1)q
q−1
∏

j=0

a2j + (−1)q
q−1
∏

j=0

a2j+1.

Theorem 2.7. A homogenous polynomial R(k, z, w) = 0 corresponding to (2.3) defines an
algebraic curve Γ0 in CP2. For generic values of the parameters Ii, Ji, this curve is singular
only at 2 points: (1 : 0 : 0), (0 : 1 : 0) ∈ CP2. Its normalization Γ is a Riemann surface of
genus g = 2(n− q − 1).

Proof. A homogenous polynomial that corresponds to equation (2.3) is

R(k, z, w) = k3zn −
q
∑

j=0

Jjk
2zn+j−qw1−j+q +

q
∑

j=0

Ijkz
q−jwn+2+j−q − wn+3.

The equation R(k, z, w) = 0 defines an algebraic curve in CP2, which we denote by Γ0.
Singular points are the points where ∂kR = ∂zR = ∂wR = R = 0. One can check that
the only singular points with w = 0 are the points (1 : 0 : 0), (0 : 1 : 0) ∈ CP

2. Let us
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show that there are no singular points in the affine chart (k : z : 1). By Euler’s theorem
on homogenous functions, we have k∂kR+ z∂zR+ w∂wR = (n+ 3)R. Therefore, we have a
system of 3 equations for the singular points:











∂kR = 3k2zn −∑q
j=0 2Jjkz

n+j−q +
∑q

j=0 Ijz
q−j = 0

∂zR = nk3zn−1 −∑q
j=0(n + j − q)Jjk

2zn+j−q−1 +
∑q−1

j=0(q − j)Ijkz
q−j−1 = 0

R = k3zn −∑q
j=0 Jjk

2zn+j−q +
∑q

j=0 Ijkz
q−j − 1 = 0.

These polynomials may have a solution in common only if Ij, Jj satisfy some non-trivial
polynomial equation as follows, for example, from Sylvester’s resultant formula. This poly-
nomial can not vanish identically, because the system of equations has no solutions for
I0 = J0 = ... = Iq = Jq = 0. Therefore, for generic values of the parameters Ij , Jj there are
no singular points in the chart (k : z : 1). For the same reason, one may assume that all
branch points of Γ0 on z-plane are simple, since the branch points of index 3 are given by 3
equations: R = ∂kR = ∂2kR = 0.

According to the normalization theorem, there always exists the unique Riemann surface
Γ with a map σ : Γ → Γ0 biholomorphic away from the singular points. We will always work
with the normalized curve Γ. The genus g of Γ is called the geometric genus of the algebraic
curve Γ0. To find it, we have to analyze the type of singularities of Γ0, i.e., find the formal
series solutions at the singular points.

Lemma 2.8. The singularities of the curve Γ0 are as follows:

• if n is even, the equation R(k, z, 1) = 0 has 3 distinct formal series solutions at z = 0:

O1 : k1 =
1

Iq
− Iq−1

I2q
z +O(z2),

O2 : k2 = (−1)q

(

q−1
∏

j=0

a2j

)

1

zq
+O

(

1

zq−1

)

,

O3 : k3 = (−1)q

(

q−1
∏

j=0

a2j+1

)

1

zq
+O

(

1

zq−1

)

,

and also 3 solutions at z = ∞:

W1 : k1 = Jq +
Jq−1

z
+O

(

1

z2

)

,

W2 : k2 =

(

q−1
∏

j=0

b2j

)−1

1

zq
+O

(

1

zq+1

)

,

W3 : k3 =

(

q−1
∏

j=0

b2j+1

)−1

1

zq
+O

(

1

zq+1

)

.
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• if n is odd, the equation R(k, z, 1) = 0 has 3 distinct Puiseux series solutions at z = 0:

O1 : k1 =
1

Iq
− Iq−1

I2q
z +O(z2),

O2 : k2 =

√

−Iq
zn/2

+
J0

2z(n−1)/2
+O

(

1

z(n−2)/2

)

,

k3 = −
√

−Iq
zn/2

+
J0

2z(n−1)/2
+O

(

1

z(n−2)/2

)

,

and 3 solutions at z = ∞:

W1 : k1 = Jq +
Jq−1

z
+O

(

1

z2

)

,

W2 : k2 =
1

√

−Jq
1

zn/2
+

I0
2Jq

1

z(n+1)/2
+O

(

1

z(n+2)/2

)

,

k3 = − 1
√

−Jq
1

zn/2
+

I0
2Jq

1

z(n+1)/2
+O

(

1

z(n+2)/2

)

.

If σ : Γ → Γ0 is a normalization of Γ0, the singularities of Γ0 correspond to several points
on Γ:

• for odd n, σ−1(1 : 0 : 0) = O2, σ−1(0 : 1 : 0) = {W1,W2},

• for even n, σ−1(1 : 0 : 0) = {O2, O3}, σ−1(0 : 1 : 0) = {W1,W2,W3}.

The point O1 ∈ Γ is non-singular.

Proof. The proof is a computation using equation (2.3).

Now we can complete the proof of Theorem 2.7. First, we find the number of branch
points of Γ, and then we use the Riemann-Hurwitz formula to find the genus of Γ.

The number of branch points of Γ on z-plane equals the number of zeroes of the function:

∂kR(k, z) = 3k2 − 2k

(

J0
zq

+
J1
zq−1

+ ...+
Jq−1

z
+ Jq

)

+

(

I0
zn−q

+
I1

zn−q+1
+ ...+

Iq−1

zn−1
+
Iq
zn

)

with an exception of the singular points. The function ∂kR(z, k) is meromorphic on Γ,
therefore the number of its zeroes equals the number of its poles. For any n, ∂kR has poles
of total order 3n at z = 0, and ∂kR has zeroes of total order n at z = ∞. For even n the
Riemann-Hurwitz formula implies that 2−2g = 6−(3n−n), thus the genus of Γ is g = n−2.
For odd n we have 2 − 2g = 6 − (3n− n + 2), and g = n − 1. The difference between odd
and even values of n occurs because O2,W2 are branch points for odd n.
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3 Direct and inverse spectral transforms

In this section we prove Theorems A and B. Recall that Theorem A reads as follows:

Theorem A. At a generic point, the spectral map S : Pn = (ai, bi, 0 ≤ i ≤ n−1) → (Γ, [D])
has a non-degenerate Jacobian matrix, i.e., locally, it is one-to-one. The spectral curve Γ is
defined in Theorem 2.7, and [D] is a point in the Jacobian J(Γ).

Remark 3.1. Γ is determined by 2q+2 parameters: Ij , Jj, 0 ≤ j ≤ q, and a point [D] in the
Jacobian of Γ is determined by g parameters, therefore the dimensions of the spaces on the
left and the right hand sides of the map S match. Since the map S is locally biholomorphic,
it implies the functional (and algebraic) independence of the invariants Ij , Jj, 0 ≤ j ≤ q.
Their independence was proved in [3] by a different method.

The proof of Theorem A consists of two parts: the direct spectral transform (the con-
struction of the map S itself) and the inverse spectral transform (the construction of the
map S−1). Combined together, they imply the functional independence of the parameters
Ij , Jj, 0 ≤ j ≤ q and coordinates in J(Γ).

3.1 Direct spectral transform.

Given a set of parameters (ai, bi, 0 ≤ i ≤ n − 1), we construct the spectral curve and the
Floquet-Bloch solution ψ0,0. The vector function ψ0,0 is defined up to a multiplication by
a scalar function. To get rid of this ambiguity, we normalize ψ0,0 by dividing it by the
sum of its components. As a result, the vector function ψ0,0 always satisfies the identity:
∑3

i=1 ψ0,0,i ≡ 1. The Abel map assigns a point in the Jacobian J(Γ) of the curve Γ to each
divisor on Γ. We denote the pole divisor of ψ0,0 by D0,0, and the corresponding point in J(Γ)
by [D0,0]. A pair Γ and [D0,0] ∈ J(Γ) is called the spectral data, and it is used to define the
map S.

Notice that once we define the function ψ0,0, all other functions ψi,t with i, t ≥ 0 are
uniquely determined using equations (2.1). However, in Theorem B below we need to nor-
malize each vector ψi,t, and we denote the normalized vectors by ψ̃i,t. The vectors ψ0,0 and
ψ̃0,0 are identical in this notation. The following proposition establishes the number of poles
of the normalized Floquet-Bloch solution with any values of i, t.

Proposition 3.2. A Floquet-Bloch solution ψ̃i,t is a meromorphic vector function on Γ. It
is uniquely defined if we require

∑3
j=1 ψ̃i,t,j ≡ 1. Its pole divisor Di,t has degree g + 2.

Proof. Firstly, we show that ψ̃i,t is a meromorphic function. By definition, it is a solution to
the linear equation: (Ti,t − k)u = 0. By Cramer’s rule, the components of the vector u are
rational functions in the entries of the matrix Ti,t − k and, consequently, they are rational
functions in k and z. The normalized solution (u divided by the sum of its components
u1 + u2 + u3) is also a rational function in k and z, i.e., a meromorphic function on Γ.

Secondly, we find the behavior of ψ̃i,t at the branch points. Let the expansion of k(z)
at the branch point (k0, z0) ∈ Γ be k(z) = k0 ± k1

√
z − z0 + O(z − z0). If k1 = 0, then the

10



equation R(k, z) = 0 implies that ∂zR(k0, z0) = 0, i.e., the point (k0, z0) ∈ Γ is singular. It
is not possible by Theorem 2.7, so k1 6= 0. One can check that the corresponding expansion
of ψ̃i,t at the branch point is ψ̃i,t = v±w

√
z − z0+O(z− z0), where the vectors v and w are

determined as follows:

Ti,t(z0)v = k0v, (Ti,t(z0)− k0)w = k1v,

3
∑

i=1

vi = 1,

3
∑

i=1

wi = 0.

The latter equations determine v, w uniquely, and they imply that k0 corresponds to a Jordan
block of the matrix Ti,t(z0).

Thirdly, we find the number of the poles of ψ̃i,t. If u1 + u2 + u3 = 0, then the function
ψ̃i,t may develop a pole. For generic values of the parameters ai, bi, we may assume that
these poles are distinct from the branch points of Γ. Let ki, 1 ≤ i ≤ 3 be the solutions
of equation (2.3) for a fixed value of z. Then Qi = (ki, z), 1 ≤ i ≤ 3, correspond to 3
points on Γ, and we can form a matrix Ψ̃i,t(z) = {ψ̃i,t(Q1), ψ̃i,t(Q2), ψ̃i,t(Q3)}. Obviously,
this matrix depends on the ordering of the roots k1, k2, k3. However, an auxiliary function
F (z) = det 2Ψ̃i,t(z) is independent on that ordering. Consequently, F (z) is a well-defined
meromorphic function on Γ. Generically, it is not singular at the points z = 0 and z = ∞,
which follows from Proposition 3.3 below. One can check using the above series expansion
of ψ̃i,t that F (z) has zeroes precisely at the branch points of Γ, and that these zeroes are
simple. In Theorem 2.7 we found that the number of the branch points of Γ is ν = 2g + 4.
The pole divisor of F (z) equals 2π(Di,t). Consequently, we have deg Di,t = ν/2 = g+ 2.

3.2 Inverse spectral transform.

The construction of the map S−1 consists of 3 parts (which we describe in detail below):

• Proposition 3.3 establishes analytic properties of the Floquet-Bloch solution ψi. These
properties allow us to reconstruct the components ψi,j , 1 ≤ j ≤ 3, up to a multiplication
by constants. Since the construction of S−1 doesn’t depend on time t, we drop the
index t in Propositions 3.3, 3.4, 3.7.

• Given a spectral curve Γ with marked points Oi,Wi, 1 ≤ i ≤ l, where l = 2 or 3
depending on whether n is odd or even, and a point [D] ∈ J(Γ), Proposition 3.4 allows
us to reconstruct Lax matrices L′

j , 0 ≤ j ≤ n− 1:

L′

j(z) =





0 0 c′j
d′j 0 b′j
0 e′jz a′j





−1

, 0 ≤ j ≤ n− 1,

n−1
∏

i=0

c′id
′

ie
′

i = 1.

• If n is not divisible by 3, Proposition 3.7 allows us to perform the unique reduction
from L′

j to Lj , which completes the construction of S−1. It will be evident from the
construction that S ◦ S−1 = Id, which concludes the proof of Theorem A.

Proposition 3.3. The divisors of the functions ψi,j , 0 ≤ i ≤ n − 1, 1 ≤ j ≤ 3 have the
following properties:

11



• when n is odd,

(ψi,1) ≥ −D + (1− i)O2 + (1 + i)W2, (ψi,2) ≥ −D − iO2 +W1 + (1 + i)W2,

(ψi,3) ≥ −D + (2− i)O2 + iW2;

• when n is even,

(ψ2k,1) ≥ −D − kO2 + (1− k)O3 + kW2 + (1 + k)W3,

(ψ2k,2) ≥ −D − kO2 − kO3 +W1 + kW2 + (1 + k)W3,

(ψ2k,3) ≥ −D + (1− k)O2 + (1− k)O3 + kW2 + kW3,

(ψ2k+1,1) ≥ −D − kO2 − kO3 + (1 + k)W2 + (1 + k)W3,

(ψ2k+1,2) ≥ −D − (1 + k)O2 − kO3 +W1 + (1 + k)W2 + (1 + k)W3,

(ψ2k+1,3) ≥ −D − kO2 + (1− k)O3 + kW2 + (1 + k)W3.

Proof. First we establish the necessary properties of ψ0. They are different for even and odd
n. When n is even, the expansion of T0,t(z) at z = 0 is:

T0,t(z) =





(−1)q
∏q−1

i=0 a2i 0 (−1)q−1
∏q−1

i=1 a2i
C1 (−1)q

∏q−1
i=0 a2i+1 C2

0 0 0





1

zq
+O

(

1

zq−1

)

,

where C1, C2 are some non-trivial polynomials in ai, bi.

Using Lemma 2.8, the definition of the Floquet-Bloch solution, and the identity ψ0,1 +
ψ0,2 + ψ0,3 ≡ 1, one can check that ψ0 is holomorphic at the points O1, O2, O3 and that

ψ0(O3) =





0
1
0



 , ψ0,3(O2) = 0, a0 = lim
Q→O1

ψ0,3(Q)

ψ0,1(Q)
.

Similarly, the expansion of T−1
0,t (z) at z = ∞ is:

T−1
0,t (z) =





0
∏q−1

i=1 b2i 0

0
∏q−1

i=0 b2i 0
∏q−1

i=1 b2i−1 C3

∏q
i=1 b2i−1



 zq +O(zq−1),

which, along with the identity T−1
0 ψ0 = k−1ψ0, implies that ψ(Q) is holomorphic at the

points W1,W2,W3 and that

ψ0(W3) =





0
0
1



 , ψ0,2(W1) = 0, b0 = lim
Q→W2

ψ0,2(Q)

ψ0,1(Q)
, bn−1 = − lim

Q→W1

ψ0,1(Q)

ψ0,3(Q)
.

12



We provide a similar analysis for odd n:

T0,t(z) =











O(z−q)

∏q
i=1(−a2i−1)

zq
+O(z1−q) O(z−q)

∏q
i=0(−a2i)
zq+1

+O(z−q) O(z−q)

∏q
i=1(−a2i)
zq+1

+O(z−q)

O(z−q) O(z1−q) O(z−q)











,

T−1
0,t (z) =





O(zq) O(zq) zq
∏q

i=1 b2i +O(zq−1)

zq
∏q−1

i=0 b2i +O(zq−1) O(zq) zq
∏q

i=0 b2i +O(zq−1)
O(zq) zq+1

∏q
i=1 b2i−1 +O(zq) O(zq)



 ,

which implies that:

ψ0(O2) =





0
1
0



 , ψ0(W2) =





0
0
1



 , ψ0,2(W1) = 0, ψ′

0,3(O2) = 0, (3.1)

a0 = lim
Q→O1

ψ0,3(Q)

ψ0,1(Q)
, b0 = lim

Q→W2

ψ0,2(Q)

ψ0,1(Q)
, bn−1 = − lim

Q→W1

ψ0,1(Q)

ψ0,3(Q)
. (3.2)

Notice that a cyclic permutation of indices (n − 1, n − 2, ..., 1, 0) changes Ti → Ti+1 and
ψ̃i → ψ̃i+1. For even n, it also permutes ψ̃i(O2) ↔ ψ̃i(O3) and ψ̃i(W2) ↔ ψ̃i(W3). This
observation allows us to write formulas similar to (3.2) for ai, bi, i > 0:

ai = lim
Q→O1

ψi,3(Q)

ψi,1(Q)
, b2k = lim

Q→W2

ψ2k,2(Q)

ψ2k,1(Q)
, b2k+1 = lim

Q→W3

ψ2k+1,2(Q)

ψ2k+1,1(Q)
. (3.3)

We can use the vectors ψi, i > 0 instead of ψ̃i, i > 0 in formulas (3.3), because they do not
depend on the normalization. Formulas for b2k and b2k+1 coincide for odd n.

Now using formulas (3.3) and the equation ψi+1 = Liψi, one can check that the compo-
nents of ψi have the required properties.

Proposition 3.4. Given the spectral curve Γ with marked points Oi,Wi, 1 ≤ i ≤ l, where
l = 2 for odd n, and l = 3 for even n, and a point [D] in the Jacobian J(Γ), one can recover
a sequence of n matrices:

L′

j(z) =





0 0 c′j
d′j 0 b′j
0 e′jz a′j





−1

, 0 ≤ j ≤ n− 1,
n−1
∏

i=0

c′id
′

ie
′

i = 1.

This sequence is unique up to gauge transformations: L′

j → gj+1L
′

jg
−1
j , where gj, 0 ≤ j ≤

n− 1, are non-degenerate diagonal matrices.

Proof. The procedure to reconstruct the matrices L′

j , 0 ≤ j ≤ n− 1, consists of 3 steps:

1. We pick an arbitrary divisor D of degree g + 2 in the equivalence class [D] ∈ J(Γ).

13



2. We observe that the degree of all divisors in Proposition 3.3 is −g. According to
the Riemann-Roch theorem, it means that each function ψi,j is determined up to a
multiplication by a constant. We pick arbitrary non-zero constants, and thus obtain a
sequence of vectors ψi.

3. For each i, we find the matrix L′

i from the equation ψi+1 = L′

iψi. One can check using
Proposition 3.3 that the matrices L′

i are uniquely determined for all i at this step.

The remaining part is to prove that
∏n−1

i=0 c
′

id
′

ie
′

i = 1 and that the matrices L′

j are defined
uniquely up to gauge transformations.

Since ψ′

n = kψ′

0, the determinant of the product T ′

0 = L′

n−1L
′

n−2...L
′

0 equals k1k2k3 = z−n.

On the other hand, we have det T ′

0 =
(

zn
∏n−1

i=0 c
′

id
′

ie
′

i

)−1
. Consequently,

∏n−1
i=0 c

′

id
′

ie
′

i = 1.

Assume that we have a divisor D′ of degree g + 2 equivalent to D. Two divisors are
equivalent if and only if there is a meromorphic function f on Γ with zeroes at D and with
poles at D′. Therefore, a choice of the divisor D′ instead of D at step 1 is equivalent to
multiplying all functions ψi, 0 ≤ i ≤ n, by the function f . Clearly, such multiplication does
not change the matrices L′

i, which we obtain at step 3.

A different choice of constants at step 2 is equivalent to a transformation ψi → giψi,
where gi is a non-degenerate diagonal matrix. As a result, the matrix L′

i, which we obtain at
step 3, is transformed to gi+1L

′

ig
−1
i , i.e., we obtain a gauge-equivalent sequence of matrices

L′

i.

Remark 3.5. The reason to introduce the marked points Oi,Wi in the statement of Propo-
sition 3.4 is the following. When n is even, there is no natural way to distinguish the points
O2, O3 and W2,W3. Since the divisors in Proposition 3.3 are not symmetric with respect to
swaps O2 ↔ O3, W2 ↔W3, different markings of the curve Γ may result in 4 non-equivalent
sequences of matrices L′

j, 0 ≤ j ≤ n− 1.

Remark 3.6. Note that one can define the spectral transform S ′ for the matrices L′

j , 0 ≤
j ≤ n− 1, in the same way as the transform S in Section 3.1. The space P ′

n of the matrices
L′

j is of dimension 5n− 1 and it is parameterized by the variables

(a′i, b
′

i, c
′

i, d
′

i, e
′

i, 0 ≤ i ≤ n− 1)

subject to the constraint
∏n−1

i=0 c
′

id
′

ie
′

i = 1. Then at generic points there is a bijection:
P ′

n/G ↔ (Γ, [D], Oi,Wi, 1 ≤ i ≤ l), where G denotes the action by gauge transformations
defined in Proposition 3.4. The last statement is a particular case of the general construction
proposed in [8].

Proposition 3.7. If n is not divisible by 3, any sequence of n matrices:

L′

j(z) =





0 0 c′j
d′j 0 b′j
0 e′jz a′j





−1

, 0 ≤ j ≤ n− 1,

n−1
∏

i=0

c′id
′

ie
′

i = 1

may be transformed to a unique sequence of matrices Lj(z) (defined in Theorem 2.2) with help
of gauge transformations: Lj = gj+1L

′

jg
−1
j , where gj = diag(αj , βj, γj) (0 ≤ j ≤ n− 1, gn =

g0) are diagonal matrices.
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Proof. The equation Lj = gj+1L
′

jg
−1
j reads as:





0 0 1
1 0 bj
0 z aj



 = gj+1





0 0 c′j
d′j 0 b′j
0 e′jz a′j



 g−1
j ,

and it implies a system of equations for αj , βj, γj, 0 ≤ j ≤ n− 1:

c′j
αj

γj+1
= d′j

βj
αj+1

= e′j
γj
βj+1

= 1.

The latter system of equations has a one-parameter family of solutions provided that

n−1
∏

i=0

c′id
′

ie
′

i = 1.

The parameter appears because a multiplication of all matrices gj by an arbitrary constant:
gj → µgj leaves the above equations invariant. The variables aj , bj are independent on µ
due to their defining equations:

aj = a′j
γj
γj+1

, bj = b′j
βj
γj+1

.

Remark 3.8. Another set of coordinates was proposed in [3]. It is related to ai, bi via the
formulas:

xi =
ai−2

bi−2bi−1

, yi = − bi−1

ai−2ai−1

. (3.4)

Notice, however, that the coordinates xi, yi may be defined independently of ai, bi. As
opposed to ai, bi, they are well-defined for all n, and there is no “non-divisibility by 3”
requirement. A Lax representation also exists for the variables xi, yi. It is related to the
function Lj(z) that we are using in the following way:

L̃j = −bj+1

aj

(

g−1
j+1Ljgj

)

=





1/xj+2 −1/xj+2 0
1/z 0 1/z

−yj+2 0 0



 =





0 0 −1/yj+2

−xj+2 0 −1/yj+2

0 z 1/yj+2





−1

,

where gj = diag(1, bj,−aj) is a gauge matrix. The matrix Pi,t, which determines the time
evolution, becomes independent on n:

P̃i,t(z) =





1− xi+2yi+2 0 1− xi+2yi+2

xi+1yi+1(1− xi+2yi+2) 1− xi+1yi+1 1− xi+2yi+2

0 −zyi+2(1− xi+3yi+3) 0



 .

All theorems of this paper hold with minor changes in the coordinates xi, yi without the
“non-divisibility by 3” requirement. Note that Proposition 3.7 is an obstacle to integrability
in the coordinates ai, bi, when n is a multiple of 3.
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3.3 Time evolution.

The remaining part of this section is to describe the time evolution of the pentagram map
and to prove:

Theorem B. The equivalence class of the pole divisor Di,t of ψ̃i,t changes as:

• when n is odd,
[Di,t] = [D0,0 − tO1 + iO2 + (t− i)W2] ∈ J(Γ),

• when n is even,

[Di,t] =

[

D0,0 − tO1 +

[

1 + i

2

]

O2 +

[

i

2

]

O3 +

[

1 + t− i

2

]

W2 +

[

t− i

2

]

W3

]

,

where degDi,t = g + 2, and D0,0 ≡ D determines the point in J(Γ) at t = 0. For odd n
the time evolution in J(Γ) takes place along a straight line, whereas for even n the evolution
goes along a “staircase” (i.e., its square goes along a straight line).

The time evolution of the pentagram map is described by the equation: ψi,t+1 = Pi,tψi,t,
where t is an integer parameter. The value t = 0 corresponds to an initial n-gon. Proposi-
tion 3.9 describes the time evolution at the level of divisors:

Proposition 3.9. The divisors of the functions ψi,t,j , 0 ≤ i ≤ n − 1, 1 ≤ j ≤ 3 have the
following properties:

• when n is odd,

(ψi,t,1) ≥ −D + tO1 + (1− i)O2 + (1 + i− t)W2,

(ψi,t,2) ≥ −D + tO1 − iO2 +W1 + (1 + i− t)W2,

(ψi,t,3) ≥ −D + tO1 + (2− i)O2 + (i− t)W2,

• when n is even,

(ψi,t,1) ≥ −D + tO1 +

[

1− i

2

]

O2 +

[

2− i

2

]

O3 +

[

1 + i− t

2

]

W2 +

[

2 + i− t

2

]

W3,

(ψi,t,2) ≥ −D + tO1 +

[−i
2

]

O2 +

[

1− i

2

]

O3 +W1 +

[

1 + i− t

2

]

W2 +

[

2 + i− t

2

]

W3,

(ψi,t,3) ≥ −D + tO1 +

[

2− i

2

]

O2 +

[

3− i

2

]

O3 +

[

i− t

2

]

W2 +

[

1 + i− t

2

]

W3,

where [x] is the greatest integer less than or equal to x.
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Proof. The proof is a direct verification using Proposition 3.3, formulas for Pi,t, and 2 addi-
tional formulas:

ψj(O1) ∝
(

1,
1

aj+1

+ bj , aj

)T

, bj−1 = − lim
Q→W1

ψj,1(Q)

ψj,3(Q)
,

where “∝” means “proportional to.”

Propositions 3.4, 3.7, and 3.9 allow us to reconstruct the time evolution of an n-gon
completely.

Now we are in a position to prove Theorem B itself:

Proof. The vector functions ψi,t with i, t 6= 0 are not normalized. The normalized vectors are
equal to ψ̃i,t = ψi,t/fi,t, where fi,t =

∑3
j=1 ψi,t,j . According to Proposition 3.9, the divisor of

each function fi,t is:

• for odd n,
(fi,t) = Di,t −D0,0 + tO1 − iO2 + (i− t)W2,

• for even n,

(fi,t) = Di,t −D0,0 + tO1 +

[−i
2

]

O2 +

[

1− i

2

]

O3 +

[

i− t

2

]

W2 +

[

1 + i− t

2

]

W3.

Since the divisor of any meromorphic function is equivalent to [0], the result of the theorem
follows.

Remark 3.10. For even n, it is not sufficient to know [Di,t] to recover the polygon uniquely
for each t. Proposition 3.4 additionally requires the marking of the spectral curve Γ for
each t. Only one marking is possible for odd n, but 4 are possible for even n. Notice that
Proposition 3.9 contains more information about the time evolution. If one specifies the
marking at t = 0, Proposition 3.9 determines the time evolution completely.

Remark 3.11. If we use a different normalization ψ0,0,0 ≡ 1 (i.e., if we divide the vector
function ψ0,0 by the first component instead of the sum of all components), the divisor D
becomes:

• D = Dg +O2 +W2 for odd n,

• D = Dg +O3 +W3 for even n,

where Dg is a generic divisor of degree g on Γ.
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4 Periodic case - closed polygons

In this section we prove:

Theorem C. Closed polygons are singled out by the condition that (z, k) = (1, 1) is a triple
point of Γ. The latter is equivalent to 5 linear relations on Ij , Jj:

q
∑

j=0

Ij =

q
∑

j=0

Jj = 3,

q
∑

j=0

jIj =

q
∑

j=0

jJj = 3q − n,

q
∑

j=0

j2Ij =

q
∑

j=0

j2Jj. (4.1)

The genus of Γ drops to g = n − 5 when n is even, and to g = n − 4 when n is odd. The
dimension of the Jacobian J(Γ) drops by 3 for closed polygons. Theorem A holds with this
genus adjustment, and Theorem B holds verbatim for closed polygons.

Proof. The monodromy matrix from the definition of the twisted n-gon equals T0,t(1).
Clearly, an n-gon is closed if and only if T0,t(1) = I. The latter condition implies that
(z, k) = (1, 1) is a self-intersection point for Γ0. The algebraic conditions implying that
(1, 1) is a triple point are:

• R(1, 1) = 0,

• ∂kR(1, 1) = ∂zR(1, 1) = 0,

• ∂2kR(1, 1) = ∂2zR(1, 1) = ∂2kzR(1, 1) = 0.

They are equivalent to 5 linear relations among Ij, Jj :

q
∑

j=0

Ij =

q
∑

j=0

Jj = 3,

q
∑

j=0

jIj =

q
∑

j=0

jJj = 3q − n,

q
∑

j=0

j2Ij =

q
∑

j=0

j2Jj .

Equivalent relations were found in Theorem 4 in [3].

The proofs of Theorems A and B apply, mutatis mutandis, to the periodic case with one
change: a count of the number of branch points ν of Γ and the corresponding calculation for
the genus g of Γ.

As before, the function ∂kR has poles of total order 3n above z = 0, and zeroes of total
order n about z = ∞. Now since R(z, k) has a triple point (1, 1), ∂kR has a double zero at
(1, 1). But z = 1 is not a branch point of the normalization Γ. Consequently, ∂kR has double
zeroes on 3 sheets of Γ above z = 1. The Riemann-Hurwitz formula for even n becomes:
2−2g = 6−ν, ν = 3n−n−6 = 2n−6, and for odd n: 2−2g = 6−ν, ν = 3n−n−6+2 = 2n−4.
Therefore, we have g = n− 5 for even n, and g = n− 4 for odd n.

Remark 3.1 implies that there are no other relations among Ii, Ji, 0 ≤ i ≤ q, except
for (4.1) in the periodic case. The dimension of the Jacobian J(Γ) is 3 less than for twisted
polygons. Therefore, closed polygons form a subspace of codimension 8 in Pn.
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Corollary 4.1. The dimension of the phase space Cn in the periodic case is 2n− 8. In the
complexified case, Cn is fibred over the base of dimension 2q − 3. The coordinates on the
base are Ij , Jj, 0 ≤ j ≤ n − 1, subject to the constraints from Theorem C. The fibres are
Jacobians (complex tori) of dimension 2q− 3 for odd n, and of dimension 2q− 5 for even n.
Note that the restriction of the symplectic form (which corresponds to the Poisson brackets
on the symplectic leaves) to the space Cn is always degenerate, therefore the Arnold-Liouville
theorem is not directly applicable for closed polygons. Nevertheless, the algebraic-geometric
methods guarantee that the pentagram map exhibits quasi-periodic motion on a Jacobian.

5 The symplectic form

Definition 5.1 ([5, 6]). Krichever-Phong’s universal formula defines a pre-symplectic form
on the space of Lax operators, i.e., on the space Pn. It is given by the expression:

ω = −1

2

∑

z=0,∞

res Tr
(

Ψ−1
0 T−1

0 δT0 ∧ δΨ0

) dz

z
.

The matrix Ψ0,t is defined in Proposition 3.2. In this section we drop the index t, because
all variables correspond to the same moment of time.

The leaves of the 2-form ω are defined as submanifolds of Pn, where the expression
δ ln kdz/z is holomorphic. The latter expression is considered as a one-form on the spectral
curve Γ.

Remark 5.2. A heuristic principle justified by many examples is that when ω is restricted
to these leaves, it becomes a symplectic form of rank 2g, where g is the genus of Γ. Moreover,
one can prove ([8]) that ω does not depend on the normalization of the eigenvectors used to
construct the matrix Ψ0,t, and on gauge transformations Lj → gj+1Ljg

−1
j , gj ∈ GL(3,C),

when restricted to the leaves.

Remark 5.3. There exist different variations of the universal formula, which provide 2 or
even more compatible Hamiltonian structures for some integrable systems. However, it seems
likely that other modifications of the universal formula lead to degenerate 2-forms for the
pentagram map.

Theorem D. The 2-form ω defined above equals:

ω =
∑

(i,j)∈Λ

(δ ln ai ∧ δ ln aj − δ ln bi ∧ δ ln bj),

where the set Λ consists of pairs (i, j), 0 ≤ i ≤ n − 1, i < j ≤ n− 1, such that either both i
and j are even, or i is odd and j is arbitrary.

The 2-form ω is a symplectic form of rank 2g, where g is the genus of the spectral curve
Γ, when restricted to the leaves: δIq = δJq = 0 for odd n, and δI0 = δIq = δJ0 = δJq = 0
for even n. These leaves coincide with the symplectic leaves of the Poisson bracket found in
Proposition 4.12 in [3]. The inverse of ω coincides with the Poisson bracket on the symplectic
leaves.
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Proof. First we find the equations which define the leaves of the 2-form ω.

Lemma 5.4. The one-form δ ln kdz/z is holomorphic on the spectral curve Γ when restricted
to the leaves: δIq = δJq = 0 for odd n, and δI0 = δIq = δJ0 = δJq = 0 for even n.

Proof. Using Lemma 2.8, one can calculate the principal parts of the one-form δ ln kdz/z at
the points O2,W2 for odd n, and at the points O2, O3,W2,W3 for even n. The equations
defining the leaves follow after equating these principal parts to zero.

Now we proceed to the computation of ω. Note that

Tr
(

Ψ−1
0 T−1

0 δT0 ∧ δΨ0

)

=
n−1
∑

k=0

Tr
(

Ψ−1
0 L−1

0 ...L−1
k δLkLk−1...L0 ∧ δΨ0

)

=

=

n−1
∑

k=0

Tr
(

Ψ−1
k L−1

k δLk ∧ δΨk

)

−
n−2
∑

k=0

Tr
(

L−1
0 ...L−1

k δLk ∧ δ(Lk−1...L0)
)

,

where Ψk = Lk−1...L0Ψ0 (this transformation is similar to the one used in [8]). Notice that
the last sum does not have any poles except at the points z = 0 and z = ∞ and vanishes
after the summation over both residues. Therefore,

ω = −1

2

n−1
∑

j=0

res
0,∞

Tr
(

Ψ−1
j L−1

j δLj ∧ δΨj

) dz

z
.

To compute ω, we use a normalization of ψ0 in which ψ0,1 ≡ 1. It corresponds to the
case when the first line of Ψ0 is (1, 1, 1). Note that a different normalization is used in
Proposition 3.3. Therefore, when we use Proposition 3.3 in this proof, we have to keep
in mind Remark 3.11. In particular, this remark implies that the vector ψi may acquire
additional poles at the points O2,W2 or O3,W3.

The matrices Ψj , j > 0, are not normalized. A normalized matrix Ψ̃j, j > 0, is related to
Ψj by a diagonal matrix Fj : Ψ̃j = ΨjFj. The matrices Fj , j > 0, may have poles or zeroes
at z = 0,∞. We have the formula:

Tr
(

Ψ−1
j L−1

j δLj ∧ δΨj

)

= Tr
(

Ψ̃−1
j L−1

j δLj ∧ δΨ̃j

)

− Tr
(

Ψ̃−1
j L−1

j δLjΨ̃j ∧ δ lnFj

)

Notice that the product L−1
j δLj is

L−1
j δLj =





0 0 0
−δbj 0 0
−δaj 0 0



 ,

and the first line of δΨ̃j is always zero due to the normalization. Consequently, we obtain
the formula:

ω =
1

2

n−1
∑

j=0

res
0,∞

Tr
(

Ψ̃−1
j L−1

j δLjΨ̃j ∧ δ lnFj

) dz

z
.
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We can rewrite the last formula as:

ω =
1

2

n−1
∑

j=0

∑

i

res
Oi,Wi

Tr
(

ψ∗

jL
−1
j δLjψ̃j ∧ δ ln fj

) dz

z
,

where ψ∗

j is an eigen-covector: ψ∗

jTj = kψ∗

j . Covectors are normalized by ψ∗

j ψ̃j = 1, and

ψ̃j,1 ≡ 1. One can check that ψ∗

jL
−1
j δLjψ̃j = −ψ∗

j,3δaj −ψ∗

j,2δbj . The formula for ω becomes:

ω = −1

2

n−1
∑

j=0

∑

i

res
Oi,Wi

(ψ∗

j,3δaj + ψ∗

j,2δbj) ∧ δ ln fj
dz

z
=
∑

i

ωOi
+
∑

i

ωWi
. (5.1)

We use formula (5.1) to compute ω. We compute the terms ωOi
and ωWi

with different i
separately, and then sum them up.

Lemma 5.5. The contribution from the point O1 is independent on the parity of n and is
given by:

ωO1
= −1

2

n−1
∑

j=2

δ ln aj ∧ δ ln
(

j
∏

k=1

ak

)

.

Proof. First, we prove 2 formulas:

ψ̃j(O1) =

(

1,
1

aj+1
+ bj , aj

)T

, ψ∗

j (O1) = (0, 0, 1/aj), (5.2)

then we find fj(O1), and compute ωO1
using formula (5.1).

The vectors ψ0, ψ
∗

0 and the matrix T0 are related to ψ̃j , ψ
∗

j , Tj by a permutation of the
variables a0, ..., an−1 and b0, ..., bn−1. Therefore, formulas (5.2) are equivalent to 2 formulas
(which we prove below):

ψ0(O1) =

(

1,
1

a1
+ b0, a0

)T

, ψ∗

0(O1) = (0, 0, 1/a0).

Proposition 3.3 and formulas (3.2) imply that ψ0(O1) = (1, x, a0)
T for some constant x.

Using the value of T−1
0 at z = 0:

T−1
0 (0) =





0 0 Iq/a0
0 0 (1 + a1b0)Iq/(a0a1)
0 0 Iq



 ,

and the formula T−1
0 (0)ψ0(O1) = Iqψ0(O1), we find that x = (1/a1) + b0.

One can check that the equation ψ∗

0T0 = kψ∗

0 implies that ψ∗

0(O1) = (0, 0, y) for some
constant y. Since ψ∗

0ψ0 = 1, we find that y = 1/a0.

To find fj(O1), we have to compare ψ̃j and Lj−1...L0ψ0 at the point O1. One can check
that L0ψ0(O1) = (1/a1, ∗, 1)T . Therefore, f1(O1) = a1. When i > 0, we have Liψ̃i =
(1/ai+1, ∗, 1)T . Consequently, we find that fi(O1)/fi−1(O1) = ai. Multiplying the latter
equations with 2 ≤ i ≤ j by each other, we obtain that fj(O1) =

∏j
k=1 ak.

Substituting fj(O1) and ψ
∗

j (O1) into formula (5.1), we obtain ωO1
.
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Similarly, the contribution from the point W1 is given by:

Lemma 5.6. For both even and odd n,

ωW1
=

1

2

n−1
∑

j=1

δ ln bj ∧ δ ln
(

j−1
∏

k=0

bk

)

.

Proof. In the same way as in Lemma 5.5, we find that

ψ̃j(W1) = (1, 0,−1/bj−1)
T , ψ∗

j (W1) = (1,−1/bj , 0), fj(W1) = (−1)j
j−1
∏

k=0

b−1
k ,

which implies the formula for ωW1
.

The computation at the points O2, O3,W2,W3 is trickier, because it differs for even and
odd n.

Lemma 5.7. If n is odd, then

ωO2
= −1

2

n−1
∑

j=1

δ ln aj ∧ δ ln
(

j−1
∏

k=0

q
∏

i=0

ak+2i

)

.

Proof. First, we need to prove 2 formulas:

ψ̃j =

(

1,
(−1)q+1

∏q
i=0 aj+2i

√

−Iq
1√
z
+O(1),

(−1)q
∏q−1

i=0 aj+2i
√

−Iq
√
z +O(z)

)T

at O2, (5.3)

ψ∗

j (O2) =

(

1

2
, 0,− 1

2aj

)

. (5.4)

Note that a cyclic permutation of the variables aj → aj+1, bj → bj+1 (for all j) permutes the
eigenvectors and covectors as follows: ψ̃j → ψ̃j+1, ψ

∗

j → ψ∗

j+1. Therefore, we only need to

find ψ̃0 at O2 and ψ∗

0(O2) to prove formulas (5.3) and (5.4).

Proposition 3.3 implies that ψ0 = (1, α/
√
z + O(1), β

√
z + O(z))T around the point O2.

Since T0ψ0 =
(√

−Iqz−n/2 +O(z−q)
)

ψ, we find that

α =
(−1)q+1

∏q
i=0 a2i

√

−Iq
.

One can check that
(

T−1
0

)

32
= Iqz/an−1 + O(z2), and since T−1

0 ψ0 = ψ0O(z
n/2) in the

neighborhood of O2, we deduce that β = −α/an−1. Formula (5.3) with j = 0 is proven.

The equation ψ∗

0ψ0 = 1 implies that ψ∗

0 = (α′ +O(
√
z), β ′

√
z +O(z), γ′ +O(

√
z)) at the

point O2. Using the identity ψ∗

0T0 =
(√

−Iqz−n/2 +O(z−q)
)

ψ∗

0 , we find that

β ′

q
∏

i=0

(−a2i) = α′
√

−Iq, β ′

q
∏

i=1

(−a2i) = γ′
√

−Iq, α′ + β ′
(−1)q+1

∏q
i=0 a2i

√

−Iq
= 1.
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Solving these equations for α′, β ′, γ′, we obtain that ψ∗

0(O2) = (1/2, 0,−1/(2a0)).

Now we find the value of δ ln fj(O2). Since (L0ψ0)1 = ψ0,2 − b0ψ0,1, we obtain that
δ ln f1(O2) = −δ lnα. The argument similar to the one used in the proof of Lemma 5.5,
along with the condition δIq = 0, implies that

δ ln fj(O2) = −δ ln
(

j−1
∏

k=0

q
∏

i=0

ak+2i

)

.

Finally, using formula (5.1), we obtain that

ωO2
=

1

2

n−1
∑

j=1

2 · 1
2
δ ln aj ∧ δ ln fj(O2) = −1

2

n−1
∑

j=1

δ ln aj ∧ δ ln
(

j−1
∏

k=0

q
∏

i=0

ak+2i

)

.

The coefficient “2” in the last formula appears because O2 is a branch point. The local
parameter around the point O2 is

√
z, and one has to use the formula 2(d

√
z)/

√
z instead

of dz/z to compute the residue at O2.

Lemma 5.8. If n is odd, then

ωW2
= −1

2

n−1
∑

j=1

δ ln bj ∧ δ ln
(

j−1
∏

k=0

q
∏

i=1

bk+2i+1

)

.

Proof. The computation of ωW2
is very similar to that of ωO2

in Lemma 5.7. By computing
ψ0, ψ

∗

0(W2), δ ln f1(W2), we find the expressions for δ ln fj(W2) and ψ
∗

j (W2) with arbitrary j:

δ ln fj(W2) = −δ ln
(

j−1
∏

k=0

q
∏

i=1

bk+2i+1

)

, ψ∗

j (W2) =

(

0,
1

2bj
, 0

)

. (5.5)

From Proposition 3.3 and formula (3.2) it follows that ψ0 = (1, b0+β/
√
z+O(1/z), α

√
z+

O(1))T near the point W2. From the identity (T−1
0 ψ0)1 = k−1ψ0,1 we find that α

∏q
i=1 b2i =

√

−Jq. The identity (T0ψ0)1 = kψ0,1, along with the formulas:

T0(W2) =





Jq −Jq/b0 0
0 0 0

−Jq/bn−1 Jq/(b0bn−1) 0



 , T0(z)13 = Jq/(b0b1z) +O(z−2) near W2,

implies that βb1 = α. Solving the above equations for β, we find that β =
(

∏q
j=1 b2j+1

)

/
√

−Jq.

Since (L0ψ0)1 = β/
√
z+O(1/z), we obtain that δ ln f1(W2) = −δ ln β. On the symplectic

leaf we have δJq = 0, therefore δ ln f1(W2) = −δ ln (∏q
i=1 b2i+1).

Now we find the covector ψ∗

0 at the point W2. The identity ψ∗

0ψ0 ≡ 1 implies that
ψ∗

0 = (A + O(1/
√
z), B + O(1/

√
z), C/

√
z + O(1/z)), and that A + b0B + αC = 1. The

identity (ψ∗

0T
−1
0 )2 = k−1ψ∗

0,2 implies that C
∏q

i=1 b2i−1 = B
√

−Jq. One can check that since
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the product ψ∗

0T0 has zero of order n at W2, it must be that A = 0. Solving the above
equations for B, we find that B = 1/(2b0), and that ψ∗

0(W2) = (0, 1/(2b0), 0).

The arguments identical to those used in Lemmas 5.5, 5.7 prove formulas (5.5). Substi-
tuting formulas (5.5) into formula (5.1), we obtain:

ωW2
=

1

2

n−1
∑

j=1

2 · 1
2
δ ln bj ∧ δ ln fj(W2) = −1

2

n−1
∑

j=1

δ ln bj ∧ δ ln
(

j−1
∏

k=0

q
∏

i=1

bk+2i+1

)

.

The coefficient “-2” appears in the last formula because the local parameter at W2 is z−1/2,
and the formula −2d(z−1/2)/z−1/2 should be used instead of dz/z to compute the residue.

Now we find the contribution to ω from the points O2, O3,W2,W3 for even n.

Lemma 5.9. If n is even, then

ωO2
= −1

2

q−1
∑

j=1

δ ln a2j ∧ δ ln
j−1
∏

k=0

a2k, ωO3
= −1

2

q−1
∑

j=1

δ ln a2j+1 ∧ δ ln
j−1
∏

k=0

a2k+1.

Proof. We prove that the following identities hold:

ψ∗

2j(O2) = (1, 0,−1/a2j), δ ln f2j(O2) = −δ ln
j−1
∏

k=0

a2k, ψ∗

2j+1(O2) = (0, 0, 0),

ψ∗

2j+1(O3) = (1, 0,−1/a2j+1), δ ln f1(O3) = −δ ln η,

δ ln f2j+1(O3) = −δ ln
(

η

j−1
∏

k=0

a2k+1

)

, ψ∗

2j(O3) = (0, 0, 0).

These identities and formula (5.1) imply the lemma. The parameter η vanishes from the
final formulas on the symplectic leaf δ ln (a1a3...a2q−1) = 0.

Note that a cyclic permutation of the variables aj → aj+1, bj → bj+1 (for all j) permutes
the eigenvectors and covectors as follows: ψ̃2j(O2) → ψ̃2j+1(O3), ψ̃2j(O3) → ψ̃2j+1(O2),
ψ∗

2j(O2) → ψ∗

2j+1(O3), ψ
∗

2j(O3) → ψ∗

2j+1(O2). The use of these permutations and the usual
argument to find the functions fj, j > 0, imply that the identities above are equivalent to
the following 4 formulas (which we prove below):

δ ln f2(O2) = −δ ln a0, ψ∗

0(O2) = (1, 0,−1/a0), δ ln f1(O3) = −δ ln η, ψ∗

0(O3) = (0, 0, 0).

Proposition 3.3 implies that ψ0 = (1, O(1), O(z))T at the point O2. One can check that the
principal part of (L1L0ψ0)1 at O2 is −a0/z, which implies that δ ln f2(O2) = −δ ln a0.

Let the covector ψ∗

0(O2) be (α, β, γ). The equation (ψ∗

0T0)1 = kψ∗

0,1 implies that β = 0.

Since ψ∗

0(O2)ψ0(O2) = 1, we find that α = 1. One can check that since the product ψ∗

0T
−1
0

has zero of order q at O2, it must be that γ = −1/a0. Therefore, we obtain that ψ∗

0(O2) =
(1, 0,−1/a0).
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Proposition 3.3 implies that ψ0 = (1, η/z +O(1), O(1))T at the point O3. The principal
part of (L0ψ0)1 at O3 is η/z, therefore δ ln f1(O3) = −δ ln η. Since the product ψ∗

0ψ0 is
holomorphic at O3, it must be that ψ∗

0,2(O3) = 0 and ψ∗

0(O3) = (α, 0, β) for some α, β. One
can check that the equation ψ∗

0T0 = kψ∗

0 implies that α = β = 0, thus ψ∗

0(O3) = (0, 0, 0).

Lemma 5.10. If n is even, then

ωW2
=

1

2

q−1
∑

j=1

δ ln b2j ∧ δ ln
j
∏

k=0

b2k, ωW3
=

1

2

q−1
∑

j=1

δ ln b2j+1 ∧ δ ln
j
∏

k=0

b2k+1.

Proof. The proof of this lemma is very similar to the proof of Lemma 5.9. We prove that:

ψ∗

2j(W2) = (0, 1/b2j , 0), ψ∗

2j+1(W2) = (0, 0, 0), δ ln f2j(W2) = δ ln

j
∏

k=1

b2k,

ψ∗

2j+1(W3) = (0, 1/b2j+1, 0), ψ∗

2j(W3) = (0, 0, 0),

δ ln f1(W3) = δ ln ξ, δ ln f2j+1(W3) = δ ln

(

ξ

j
∏

k=1

b2k+1

)

.

These identities, along with formula (5.1) and the equations for the symplectic leaves:
δ ln (b0b2...b2q−2) = δ ln (b1b3...b2q−1) = 0, imply the statement of the lemma. Due to a
cyclic permutation aj → aj+1, bj → bj+1, ψ̃2j(W2) → ψ̃2j+1(W3), ψ̃2j(W3) → ψ̃2j+1(W2),
ψ∗

2j(W2) → ψ∗

2j+1(W3), ψ
∗

2j(W3) → ψ∗

2j+1(W2) (for all j), we only need to prove 4 formulas:

δ ln f2(W2) = δ ln b2, ψ∗

0(W2) = (0, 1/b0, 0), δ ln f1(W3) = δ ln ξ, ψ∗

0(W3) = (0, 0, 0).

Proposition 3.3 implies that ψ0 = (1, b0 + O(1/z), O(1))T at the point W2. By definition of
f2, we have ψ̃2 = f2L1L0ψ0. We deduce that f2ψ0,1 = (L−1

0 L−1
1 ψ̃2)1 = b2z + O(z2) at W2.

Since ψ0,1 = 1, we find that δ ln f2(W2) = δ ln b2.

Let the covector ψ∗

0(W2) be (α, β, γ). One can check that the highest order terms of the
equation ψ∗

0T
−1
0 = k−1ψ∗

0 imply that α = γ = 0. Since ψ∗

0ψ0 = 1, we find that β = 1/b0, and
ψ∗

0(W2) = (0, 1/b0, 0).

Proposition 3.3 implies that ψ0 = (1, O(1), O(z))T at the point W3. Therefore, (L0ψ0)1 is
a constant, which we denote by 1/ξ. Hence, δ ln f1(W3) = δ ln ξ. Since ψ∗

0ψ0 is holomorphic
at W3, it must be that ψ∗

0(W3) = (α, β, 0) for some α, β. One can check that ψ∗

0T0 = kψ∗

0

implies α = β = 0. Therefore, ψ∗

0(W3) = (0, 0, 0).

Proof of Theorem D (continued).

Finally, by using the contributions at different points that we have found in Lemmas 5.5-
5.10, one can show that their sum equals the expression in the statement of the theorem for
both even and odd n.

The remaining part of the proof is to show that the inverse of ω coincides with the Poisson
structure found in [3]. It is easier to do using the variables xi, yi defined by (3.4).
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As is shown in Proposition 4.12 in [3], the Poisson bracket in the variables xi, yi is:

{xi, xj} = (δi,j−1 − δi,j+1)xixj , {yi, yj} = (δi,j+1 − δi,j−1)yiyj,

and all other brackets vanish. The symplectic leaves for these brackets have positive codi-
mension, therefore the corresponding 2-form is not unique. One of the possible 2-forms
is

ω0 =

q−1
∑

j=0

δ ln x2j+1 ∧ δ ln
(

j
∏

k=0

x2k

)

−
q−1
∑

j=0

δ ln y2j+1 ∧ δ ln
(

j
∏

k=0

y2k

)

.

Substituting formulas (3.4) into ω0 and using the equations for the symplectic leaves, one
can show that ω0 equals ω. Consequently, ω has the same rank as ω0 when restricted to the
symplectic leaves, i.e., its rank is 2g.
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