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An exact and explicit ladder-tensor-network ansatz is presented for non-equilibrium steady state
of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair
of Lindblad operators acting on the edges of the chain only. We show that the steady-state density
operator of a finite system of size n is – apart from a normalization constant – a polynomial of order
2n− 2 in the coupling constant. Efficient computation of physical observables is faciliated in terms
of a transfer-operator reminiscent of a classical Markov process. In the isotropic case we find cosine
spin profiles, 1/n2 scaling of the spin current, and long-range correlations in the steady state. This
is a fully non-perturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)].
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Introduction.- Heisenberg model [1] of coupled quan-
tum spins 1/2 is the oldest many body quantum model
of strong interactions. In spite of being extremely simple
it exhibits (in particular its anisotropic version, the XXZ
model) a rich variety of equilibrium and non-equilibrium
physical behaviors. In nature it provides an excellent de-
scription of the so called spin-chain materials [2], and it
is believed to provide the key for understanding of var-
ious collective quantum phenomena in low dimensional
strongly interacting systems, such as magnetic or su-
perconducting transitions in two dimensions. Although
equilibrium (thermodynamic) properties of XXZ chain
are well understood in terms of Bethe Ansatz (BA) [3],
as the model represents a paradigmatic example of quan-
tum integrable systems, its non-equilibrium properties at
finite temperature are subject to live debates [4].

Ground states of strongly correlated systems generi-
cally satisfy area laws [5] for block entropy characteriz-
ing bipartite quantum entanglement, so they can be effi-
ciently described by the so called matrix product states
(MPS) or more general tensor networks [6]. MPS of
small rank can provide even exact description of ground
states, say in valence bond solids exemplified by the fa-
mous AKLT model [7]. In fact, even BA eigenfunctions
can be written in terms of MPS [8]. On the other hand,
using the approach of open quantum systems and Marko-
vian master equations [9], non-equilibrium steady states
(NESS) of large one-dimensional locally interacting and
dissipationless quantum systems put between a pair of
unequal macroscopic reservoirs [10, 11], can be described
in terms of a fixed point, or ‘ground state’ in the Li-
ouville space, for a Hermitian super-operator with non-
Hermitian boundary terms [12]. Application of the den-
sity matrix renormalization group (DMRG) for simula-
tion of such problems showed that a sort of super-area law
is generically valid, and the density operator of NESS can
be well described by a matrix product operator (MPO)
of low rank [13]. However, no far-from-eqilibrium ana-
logues of AKLT model have been known so far, and the
purpose of this Letter is to show an explicit construction

of an exact MPO form of NESS for a boundary driven
XXZ spin chain. More precisely, a matrix element of the
many-body density operator is a contraction of a very
appealing ladder tensor network (LTN).

We have recently proposed a new method [14] to solve
for a Liouvillian fixed point of the XXZ chain, perturba-
tively in the system-bath coupling constant. This method
which expresses NESS in the form of a matrix product
operator with near-diagonal infinite rank matrices – rem-
iniscent of a classical Markov process in the auxiliary
space – suggests new ways of integrability of strongly
non-equilibrium quantum lattice gasses and appears to
be unrelated to BA. In this Letter we show that – quite
nontrivially – a fully non-perturbative extension of this
method exists (in the strong driving limit of maximal
bias, µ = 1 in notation of Ref. [14]), with the constituent
matrices satisfying the same cubic matrix algebra (essen-
tially different from quadratic algebras characterizing ex-
actly solvable classical probabilistic lattice gasses, the so-
called exclusion processes [15]), but with modified bound-
ary relations. From our exact analysis, we: (i) prove
ballistic transport (size n independent spin current) in
the easy-plane regime, (ii) derive coupling independent
cosine spin-profiles, 1/n2 scaling of the spin current and
long-range spin-spin correlations in the isotropic regime,
and (iii) prove insulating behavior in the easy-axis regime
with kink-shaped spin profiles and exponentially (in n)
decaying currents. We note that the physics of near-
equilibrium XXZ chain is essentially different. There one
has perturbative and numerical evidence of spin diffusion
[16, 17] in the easy-axis regime, and alternative super-
diffusive anomalous scaling in the isotropic point [16] in-
dicating very rich phenomenology of the model.
Non-equilibrium steady state.- We consider the Marko-

vian master equation in the Lindblad form [9, 11]

dρ(t)

dt
= −i[H, ρ(t)] +

∑
k

2Lkρ(t)L†k − {L
†
kLk, ρ(t)} (1)

for an open XXZ spin 1/2 chain with the Hamiltonian

H =
∑n−1
j=1 hj , hj := 2σ+

j σ
−
j+1 +2σ−j σ

+
j+1 +∆σz

jσ
z
j+1 and
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symmetric Lindblad driving of coupling strength ε acting
on the edges of the chain only L1 =

√
εσ+

1 , L2 =
√
εσ−n .

We write Pauli operators on a tensor product space
Fn = (C2)⊗n, as σsj = 12j−1 ⊗ σs ⊗ 12n−j , 1d being a

d-dimensional unit matrix, where σ± = 1
2 (σx ± iσy) and

σx,y,z are the standard Pauli matrices.
NESS is a fixed point of the flow (1) ρ∞ = limt→∞ ρ(t)

− i[H, ρ∞] + εD̂ρ∞ = 0, (2)

with the dissipator map

D̂ρ := 2σ+
1 ρσ

−
1 −{σ

−
1 σ

+
1 , ρ}+2σ−n ρσ

+
n −{σ+

n σ
−
n , ρ}. (3)

We shall now construct an explicit form of ρ∞ in terms
of LTN ansatz, or equivalently, in terms of a product of
two MPOs, which is exact for any value of the coupling
parameter ε. In fact, our simple explicit form allows us
to study analytic dependence of NESS on ε.
Theorem. Normalized fixed-point solution of Eq. (2)
reads ρ∞ = (trR)−1R with

R = SnS
†
n (4)

and Sn being a non-Hermitian matrix product operator

Sn =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σs1⊗σs2 · · ·⊗σsn (5)

where σ0 ≡ 12 and A0,A± is a triple of near-diagonal
matrix operators acting on an infinite-dimensional aux-
iliary Hilbert space H spanned by an ortho-normal basis
{|0〉, |1〉, |2〉, . . .}:

A0 = |0〉〈0|+
∞∑
r=1

a0r|r〉〈r|,

A+ = iε|0〉〈1|+
∞∑
r=1

a+r |r〉〈r+1|, (6)

A− = |1〉〈0|+
∞∑
r=1

a−r |r+1〉〈r|,

with matrix elements (writing λ := arccos ∆ ∈ R ∪ iR)

a0r = cos (rλ) + iε
sin (rλ)

2 sinλ
,

a+2k−1 = c sin (2kλ) + iε
c sin ((2k−1)λ) sin (2kλ)

2(cos ((2k−1)λ) + τ2k−1) sinλ
,

a+2k = c sin (2kλ)− iε
c(cos (2kλ) + τ2k)

2 sinλ
, (7)

a−2k−1 = − sin ((2k−1)λ)

c
+ iε

cos ((2k−1)λ) + τ2k−1
2c sinλ

,

a−2k = − sin ((2k+1)λ)

c
− iε

sin (2kλ) sin ((2k+1)λ)

2c(cos (2kλ) + τ2k) sinλ
.

Constant c ∈ C− {0} and signs τr ∈ {±1} are arbitrary,
i.e. all choices of c, τr give identical operator Sn (5).

Proof. We start by showing the following useful identity

[H,Sn] = −iε(σz ⊗ Sn−1 − Sn−1 ⊗ σz). (8)

It is important to observe that the ansatz (5) does not
contain any σz

j operator, while [H,Sn] can only contain
terms with a single σz

j . Eq. (8) implies that all the terms
of [H,Sn] where σz

j appear in the bulk 1 < j < n should
vanish, resulting in exactly the same argument as in [14]
leading to the same eight 3-point algebraic conditions:

[A0,A±A∓] = 0, {A0,A
2
±} = 2∆A±A0A±,

2∆{A2
0,A±} − 4A0A±A0 = {A∓,A2

±} − 2A±A∓A±,

2∆[A2
0,A±] = [A∓,A

2
±]. (9)

However, the boundary conditions should be different as
in the perturbative case [14]. Namely the remaining set
of terms where σz

j appears at j = 1 or j = n in [H,Sn]
is reproduced exactly by right-hand-side of (8) if the fol-
lowing additional algebraic conditions are satisfied

〈0|A− = 〈0|A+(A−A+ − iε1) = 〈0|A+A
2
− = 0,

A+|0〉 = (A−A+ − iε1)A−|0〉 = A2
+A−|0〉 = 0,

〈0|A0 = 〈0|, A0|0〉 = |0〉, 〈0|A+A−|0〉 = iε. (10)

Note simple extra terms with amplitude −iε in compar-
ison to Eqs. (12) of Ref. [14]. Indeed, in order to get,
e.g. a term with σz

1 in [h1, Sn], s1 in (5) has to be + and
then the condition 〈0|A+(A−A+− iε1) = 0 ensures that
exactly Sn−1 will be constructed on the sites (2, . . . , n).

Verifying (9) and (10), which imply (8), for the repre-
sentation (6,7) results in trigonometric identities.

The rest of the proof is to show that (8) implies (2),
or i[H,R] = εD̂R (a). Left-hand-side of (a) can be
transformed to [iH,Sn]S†n + Sn[iH,Sn]† = ε{Sn(σz ⊗
S†n−1)−Sn(S†n−1⊗σz)+(σz⊗Sn−1)S†n− (Sn−1⊗σz)S†n}
(b). Eq. (10) implies that the first left-most (right-
most) nontrivial operator of every term of Sn is σ+

(σ−). Thus we write Sn =: σ0 ⊗ Sn−1 + σ+ ⊗ Pn−1 =:
Sn−1 ⊗ σ0 +Qn−1 ⊗ σ−, defining Qn−1 and Pn−1 as op-
erators over Fn−1, so the expression (b) furher equals

ε{2σz⊗Sn−1S†n−1−σ+⊗Pn−1S†n−1−σ−⊗Sn−1P
†
n−1−

2Sn−1S
†
n−1 ⊗ σz − Qn−1S†n−1 ⊗ σ− − Sn−1Q

†
n−1 ⊗ σ+}

(c). On the other hand, writing the dissipator (3),
as a sum of two local terms D̂ = D̂L ⊗ 1̂n−1 +
1̂n−1 ⊗ D̂R, we have for the right-hand-side of (a):
(εD̂L ⊗ 1̂n−1)(SnS

†
n) + (1̂n−1 ⊗ εD̂R)(SnS

†
n) (d). The

first term of (d) can further be written out as (εD̂L ⊗
1̂n−1)[(σ0⊗Sn−1+σ+⊗Pn−1)(σ0⊗S†n−1+σ−⊗P †n−1)] =

εD̂L(σ0)⊗Sn−1S†n−1+εD̂L(σ−)⊗Sn−1P †n−1+εD̂L(σ+)⊗
Pn−1S

†
n−1+εD̂L(σ+σ−)Pn−1P

†
n−1. Since, D̂L(σ0) = 2σz,

D̂L(σ±) = −σ±, D̂L(σ+σ−) = 0, we arrive at exactly the
first three terms of (c). In an analogous way the second
term of (d) results in the last three terms of (c). QED

Corrolaries.- Let us now derive some implications of
our ansatz (4,5): (i) Let |ν〉, ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n
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FIG. 1. LTN contracting to a NESS density matrix element
(12). Thin (thick) lines represent bond dimension 2 (d).

denote the canonical many-body basis of Fn, σz
j |ν〉 =

(1− 2νj)|ν〉. Then the matrix elements of MPO (5) can
be written out as (± ≡ ±1)

〈ν′|Sn|ν〉 = 〈0|Aν1−ν′1Aν2−ν′2 · · ·Aνn−ν′n |0〉. (11)

(ii) This many-body matrix is upper triangular, i.e.
〈ν′|Sn|ν〉 = 0 if seq(ν′) > seq(ν) (where seq(ν) :=∑n
j=1 νj2

n−j) following from 〈0|A− = 0 (10) hence
Eq. (4) is the Cholesky decomposition of the many-body
density matrix. We also have unit diagonal 〈ν|Sn|ν〉 = 1,
following from 〈0|A0 = 〈0| (10), implying that NESS
is always of full rank. (iii) Inserting the identity 1 =∑
µ |µ〉〈µ| into (4), the matrix elements of density oper-

ator are obtained via contraction of a LTN (Fig. 1)

〈ν′|R|ν〉 =
∑

µ∈{0,1}n
〈0|Aµ1−ν′1Aµ2−ν′2 · · ·Aµn−ν′n |0〉

×〈0|Āµ1−ν1Āµ2−ν2 · · · Āµn−νn |0〉. (12)

Ās denote the complex-conjugate matrices, obtained
from (6) by complex-conjugating the amplitudes (7),
equivalent to flipping the sign of ε, Ās = As|−ε for a
suitably chosen c (say as in Ref. [14]). (iv) As the ma-
trices (6) represent a nearest-neighbor hopping process
in the auxiliary space H, they can – for any fixed chain
length n – be truncated to a finite d = 1 + bn/2c dimen-
sional Hilbert space Hd spanned by {|0〉, |1〉 . . . |d− 1〉},
still making the expressions (5,11,12) exact. (v) Since
hopping amplitudes (6,7) are all linear functions of the
coupling ε, the un-normalized NESS density operator R
is a polynomial in ε of order not larger than 2n. In fact
the order is 2n − 2 as easily checked by explicit compu-
tation. (vi) LTN (12) can be understood as an MPO on
a tensor product auxiliary space H⊗H, namely

R =
∑

s∈{0,±,z}n
〈0|⊗〈0|Bs1Bs2 · · ·Bsn |0〉⊗|0〉

n∏
j=1

σ
sj
j , (13)

introducing effectively d2 dimensional matrices

Bs = (trσs)−1
∑

ν,ν′,µ∈{0,1}

σsν′,νAµ−ν′ ⊗ Āµ−ν . (14)

Computation of observables.- Eq. (13) is a starting
point for computation of expectations of physical observ-
ables 〈A〉 = trρ∞A = trRA/trR. For example, the nor-
malization constant reads trR = 〈0|⊗〈0|B0

n|0〉⊗|0〉, and

a general expectation of a Pauli operator product can be
computed straightforwardly as

〈
n∏
j=1

σ
sj
j
†〉 =

〈0|⊗〈0|Bs1 · · ·Bsn |0〉⊗|0〉
〈0|⊗〈0|B0

n|0〉⊗|0〉

n∏
j=1

trσsj

2
. (15)

For observables which are only products of σz
j , say mag-

netization profile 〈σz
j〉, spin-spin correlations 〈σz

jσ
z
k〉, etc.,

one can use the same trick as in [14] to further sim-
plify the calculations. Namely, B0 and Bz leave the
auxiliary subspace K of diagonal vectors, spanned by
{|r〉 ⊗ |r〉, r = 0, 1, 2, . . .}, invariant, B0,zK ⊆ K. As
the initial (final) vector |0〉 ⊗ |0〉 is also a member of K,
we can reduce the domain of our operators to K defining
the transfer matrices (TMs), T := B0|K,V := Bz|K, or
explicitly – using identification |r〉 ⊗ |r〉 → |r〉

T =

∞∑
r=0

(∣∣a0r∣∣2 |r〉〈r|+ |a+r |22
|r〉〈r+1|+ |a

−
r |

2

2
|r+1〉〈r|

)
,

V =

∞∑
r=0

( |a+r |2
2
|r〉〈r+1| − |a

−
r |

2

2
|r+1〉〈r|

)
, (16)

where we take |c| = 1 and supplement (7) by a00 := 1,
a+0 := iε, a−0 := 1, so that the physical observables are
computed in terms of d dimensional matrix products

〈σz
j〉 = 〈0|Tj−1VTn−j |0〉/〈0|Tn|0〉, (17)

〈σz
jσ

z
k〉 = 〈0|Tj−1VTk−j−1VTn−k|0〉/〈0|Tn|0〉, etc.

Another class of interesting physical observables are the
spin current Jj = i(σ+

j σ
−
j+1−σ

−
j σ

+
j+1), local energy hj , or

similar, which can be all formulated in terms of expec-
tations of a non-Hermitian one-sided hopping operator
wj := σ−j σ

+
j+1. The product B+B− also leaves the diag-

onal space K invariant, so we introduce another vertex
operator W := 1

4B+B−|K, or explicitly

W =
1

4

∞∑
r=0

{
a0rā

0
r+1

(∣∣a+r ∣∣2 |r〉〈r+1|+
∣∣a−r ∣∣2 |r+1〉〈r|

)
+(a0r)

2ā+r ā
−
r |r〉〈r|+ a+r a

−
r (ā0r+1)2|r+1〉〈r+1|

}
, (18)

in terms of which the hopping expectation reads as

〈wj〉 = 〈0|Tj−1WTn−j−1|0〉/〈0|Tn|0〉. (19)

Eqs. (16,18,7) imply ImW = − ε4T so the spin current
〈Jj〉 = −2Im〈wj〉 is independent of the position j, man-
ifesting local conservation law of magnetization.

Let us now discuss some explicit results. We note that
formulae (17,19) give efficient computational prescription
which yields any observable of this type in O(n2) arith-
metic operations. In order to ensure numerical stability
and to avoid singularities we suggest to choose the signs
τk in computation of auxiliary hopping amplitudes (7) as
τk = 1 for cos kλ ≥ 0, and τk = −1 for cos kλ < 0. For
certain values of parameters even closed form results can
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be obtained. Analogously to the perturbative case [14],
TMs have effective finite rank m + 1, i.e. they close on
Hm+1, for a dense set of anisotropies, λ = πl/m, which
densely cover the easy-plane regime |∆| < 1. This hap-
pens because then a+m = 0 for odd m, or a−m = 0 for even
m, and the auxiliary hopping process gets cut. For ex-
ample, for ∆ = 1/2 = cosπ/3, we calculate spin profiles
and currents by iterating a reduced TM T′ = T|H3

T′ =

 1 ε2/2 0
1/2 (1 + ε2)/4 (9 + ε2)/24
0 3(1 + ε2)/8 (1 + ε2)/4

 (20)

combined with the reduced 3 × 3 vertex matrices
V′ = V|H3

,W′ = W|H3
, Explicit expressions for

〈σz
j〉, 〈σz

jσ
z
k〉, 〈Jj〉 can easily be obtained by means of di-

agonalization of T′. We obtain exponential convergence
towards the thermodynamic limit (TL), n → ∞, with
the rate given by the ratio of two leading eigenvalues
of T′, and asymptotically flat spin profiles 〈σz

j〉 ≈ 0.
We prove ballistic transport by explicitly calculating the

limit 〈Jj〉|n→∞ =
(
√
81+74ε2+9ε4−7−3ε2)ε

4(1+ε2) , having a non-

monotonic ε-dependence starting as ∼ ε/2 for small ε
(consistent with [14]), having a maximum at ε∗ ≈ 1.63,
and decaying asymptotically as ∼ 4/(3ε) for large ε,
qualitatively agreeing with similar results for the non-
interacting XX [18] and XY chains [19]. Similar finite
dimension analysis can be made for some larger denomi-
nators m. On the other hand, for ∆ ≥ 1, the TM T has
always infinite rank. In the easy-axis regime |∆| > 1, ex-
plicit computations reveal a kinked shaped spin density
profile – agreeing with numerical simulations of negative
differential conductance [20] – and asymptotically expo-
nentially decaying current, 〈Jj〉 ∝ (|∆| +

√
∆2 − 1)−n,

consistent with suggested ideally insulating behavior [21].
At the end, let us briefly focus on the isotropic case

∆ = 1. In this case, our hopping matrices (6) have to
be regularized by taking τ2k−1 = 1, τ2k = −1, and c =
1/λ before taking the limit λ → 0, yielding the hopping
amplitudes: a0r = 1+iεr/2, a+0 = iε, a+2k−1 = 2k+iεk(k−
1
2 ), a+2k = 2k+iεk2, a−0 = 1, a−2k−1 = iε, a−2k = iε(k+ 1

2 )/k.
The following formulae can be verified with some effort

[T, [T,V]] = −ε
2

4
(2V + {T,V}), (21)

〈0|(T−V) = 〈0|, (T + V)|0〉 = |0〉, (22)

〈0|Tn|0〉
〈0|Tn−1|0〉

' ε2
(

(4n− 3)2

32π2
− α

)
+ 1 +O(n−1), (23)

where α ≈ 0.0346. Multiplying (21) by 〈0|Tj−1 from
the left, and Tn−j−2|0〉 from the right, and using (23)
we obtain in the continuum limit M(x ≡ j−1

n−1 ) = 〈σz
j〉

a differential equation M ′′(x) = −π2M(x) + O( 1
n ), and

from (22) the boundary conditions M(0) = −M(1) =
1 + O( 1

ε2n2 ) + O( 1
n ), yielding a magnetization profile

M(x) = cosπx, or 〈σz
j〉 ' cosπ j−1n−1 , for arbitrary ε �

ε∗ = 2π/n. Similarly we use (21-23) and the contin-
uum approximation to calculate the connected correla-
tor C(x ≡ j−1

n−1 , y ≡
k−1
n−1 ) := 〈σz

jσ
z
k〉 − 〈σz

j〉〈σz
k〉, for

j 6= k. However, as it turns out that the leading or-
der O(n0) of C(x, y) exactly vanishes, we solve the cor-
responding differential equations perturbatively in the
next order in 1/n. Straightforward but tedious calcula-
tion gives C(x, y) ' π

4nf(min(x, y),max(x, y)) + O( 1
n2 ),

where f(x, y) = 2πx(y−1) sin(πx) sin(πy)+cos(πx)((1−
2y) sin(πy)+π(y−1)y cos(πy)). This is another, now an-
alytic, indication of long-range correlations in far from
equilibrium quantum NESS recently observed numeri-
cally or in non-interacting systems [22]. Eq. (23) and
ImW = − ε4T imply anomalous sub-diffusive scaling
〈Jj〉 = ε

4 〈0|T
n−1|0〉/〈0|Tn|0〉 ≈ (π2/8)ε−1n−2, again

valid for any ε � ε∗(n). For ε � ε∗ we reproduce the
perturbative result [14], 〈Jj〉 = 1

2ε, 〈σ
z
j〉 = 1

4ε
2(n+1−2j).

Discussion.- Explicit LTN/MPO ansatz has been writ-
ten describing the many-body density matrix of NESS
of strongly boundary driven XXZ chain, for any bath-
coupling strength. Computation of the physical observ-
ables in NESS is facilitated in terms of tridiagonal trans-
fer matrices which are reminiscent – except for non-
conservation of ‘probability’ – to a classical Markov pro-
cess in the auxiliary space. Results in TL can be obtained
by studying the spectral properties of the transfer opera-
tor. Studying Liouvillian gap or relaxation rates to NESS
and related uniqueness of NESS is yet to be addressed.
Our method seems to open a new ground for construct-
ing exactly solvable non-equilibrium quantum problems
in one dimension, and seems to be unrelated [23] to ex-
isting algebraic methods [8, 15]. New exactly solvable
models could perhaps be constructed by studying alter-
native cubic algebras of type (9). Discussions with M.
Žnidarič and support by the grants J1-2208 and P1-0044
of ARRS (Slovenia) are acknowledged.
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