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Abstract—In this work we investigate the information loss in We start by defining the information loss rate in Secfidn I
(nonlinear) dynamical input-output systems and provide sme and show that this quantity is equal to the difference betwee
general results. In particular, we present an upper bound orthe — the antropy rates of the input and output processes. Thiseho
information loss rate, defined as the (non-negative) diffence . . .
between the entropy rates of the jointly stationary stochatsc esta_lbllshes the PPI for _dynamlcal sy;tems n Seg@h ”_I’
processes at the input and output of the system. stating that the information loss rate is non-negative.sThi

We further introduce a family of systems with vanishing result is then complemented by an upper bound that can
information loss rate. Itis shown that not only linear filters belong  pe evaluated easily. In SectibnllV we introduce a family of
to that family, but — under certain circumstances — also finie- 4y namical systems for which we show that the information
precision implementations of the latter, which typically consist of loss rate vanishes. This famil t onl . |
nonlinear elements. es. 1hi y not only comprises a large

class of stable linear filters (see Sectioh V), but also their
l. INTRODUCTION finite-precision counterparts, commonly used in digitahsil

Transmission and processing of information is the primagrocessing. Aside from the latter, Sectfod VI discussesesom
concern in many fields of communications, signal processimgther examples illustrating our theoretical results.
and machine learning. The typical impairments considemed i This document is an extended version of a paper submitted
these contexts are noise and interference, incompletesdtta to an IEEE conference.
and coarse observations, eliciting both information-te&o Il. PROBLEM STATEMENT & PRELIMINARIES
and energy-centered analyses. In contrary, the effect of de . , , , ,
terministic input-output systems on the information conte /e consider a discrete-time regular two-sided stationary
i.e., the entropy rate, of a signal has not yet been thorqugﬁFOChaSt'C procesX taking values from a countable set
analyzed. Still, nonlinear dynamical systems — capable Let X, denote the RV of then-th sample and let
changing information content — are omnipresent in commech = (X Xit1,-.., Xp), thus X = X, For the
nication systems in the roles of high-power amplifiers of fréctual value ofX, we write z,,. We further consider an-

quency mixers. Another example is the energy detector, a loffner countable sep’ which needs not be identical @'

complexity receiver architecture for wireless commuriarad. et H(X”). denotel the zeroth-order entropy 4f, and let
(X) = lim, .o y H(X]") denote the entropy rate dX.

To obtain a better understanding of the effects of theseesystH S i
components, an information-theoretic treatment is eflent The restriction to countak_JIe sets ensures that entropids an
In this paper, we establish a framework for analyzingNtropy rates are well-defined. _ o
the effects of discrete-time dynamical systems with a finite 1ne following class of dynamical systems is treated in this

dimensional state vector on the entropy rate of a signaIJthY"Or :

the analysis of continuous-valued stochastic processébevi Definition 1 (Finite-Dimensional Dynamical System).et

left for future work, here we focus on (jointly) stationanput vy, = f(Xg_varzl_—]b), 0 < M,N < oo, be the RV of

and output processes taking values from countable alphabéte n-th output sample of a dynamical system with a finite-
The data processing inequality (DPL! [1, pp. 35]) statefimensional state vector subject to the input prodéssiere,

that the entropy of a discrete random variable (RV) canngt xN+1 x yM _, y js a function such that the sequence of

increase by passing the RV through a static nonlinearityak output samplesy,,, constitutes a two-sided stochastic process

shown that the same result holds for entropy rates of jointly jointly stationary withX.

stationary stochastic processes on finite alphabets, twsth f )

static nonlinearities_[2] and general dynamical systenis [_yeflmtlon 2 (Information Loss Rate)Let X and Y be

Continuous-valued processes passing through linear filtéintly stationary processes on countable sets relatedhas i
were already analyzed by Shannon in terms of differenti f|n|t|on[]]._The average information lost per sample is give
entropy rates[[4],[[5], which in our opinion are not adequaf®y the conditional entropy rate

measures of information Iqss, cf. _Sect@ V The condnion_a HX|Y) = lim ~H(XP[Y?). )
entropy, used to characterize the information lost by passi n—oo n

a continuous RV through a static nonlinearityl [6] or by Characterizing the information loss as a conditional gatro
multiplying two integers([l7], appears to be more appropriatrate is quite intuitive: The conditional entropy rate dexsothe
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average number of bits per sample unknown about the input Proof: While the proof for static functions (i.e) =
sequence after observing the output sequence; i.e., thageve N = 0) is relatively simple [[2], for dynamical systems we
information lost per sample by passing the sequence throumdve to show that

the system in question.

[ : 1 n n n
Before proceeding with the analysis, we will introduce two HX|Y) = lim — (H(X7,Y7") - H(¥T")) (7)
Lemmas: 1 1
= lim —H(X?) - lim —H(Y]")  (8)
Lemma 1. For any set of discrete RVE]* and any function neen noeon
f(Zg, Zy,...), 1 < k,l,--- <n, the following holds: i.e., that
n n 1 1
H(ZT, f(Zy, Zu,...)) = H(ZT) (2) lim —H (X" Y{") = lim —H(XD). 9)
n—oo n n—oo n
Proof: See [1, Prob. 2.4]. B Consider that, fon > max{M, N}
Lemma 2. Let X and Y be jointly stationary stochastic H(XT,YP) = H(YR’X{L7Y1n—1) (10)
processes on countable sets. Then, for< oo, . 1 I
1 1 = H(f( n7N7Yn71\1)7X1 JY) (11)
H(X) = lim —HX[V]) = lim —HX}, YY), W gxp, v (12)
Proof: Clearly, where(a) is due to Lemmall. By repeated application,
H(XTIVM) < HXT) < HXT, YY) @3) H(XP, Y = HXP, Y=, (13)
for all n, thus also in the limit. Now, sinceéf (X}, VM) = Since this holds for alh > max{M, N}, it also holds in the

H(X?|YM)+H(YM) and since all involved entities are nonlimit and with Lemm&_2 we obtain

negative, 1 max{ ] 1
g lim —H (X}, YN — i —H(XP) (14)

] 1 L e e
H(X) < lim ~HXPY) + lim ~HEP). 4 40 s
— H(X|Y) = H(X) - H(Y). (15)
Thus in the limit the upper and lower bound are equal and thjs completes the proof. u
proof is completed. u The significance of this Theorem lies in the fact that the

Since the input and output alphabets of the dynamicgformation loss can be inferred by comparing the entropy
systems can be countable, it may occur that the entropy ofades of the input and output processes. Note that the same
single sample becomes infinite. Yet, by the maximum entroppes not hold for differential entropy rates, as we will agu
property of the uniform distribution, in SectionV.

By the non-negativity of the conditional entropy rate the
following Corollary to Theorenf]l shows that the entropy
rate of the system output cannot be larger than the entropy
which approaches infinity at a slower rate thBim, ... n. rate of the system input. This result, originally statedi3j [

Thus the term on the right irLi(4) approaches zero even fgy; finite alphabets, further justifies our intuitive defiait of
processesY with infinite zeroth-order entropy or infinite jnformation loss:

entropy rate.

HYM)<MH(Y) < ‘ ylligloo Mlog |V (5)

Corollary 1 (DPI for Dynamical Systems)Let X andY be
1. | NFORMATION LOSSRATE IN DYNAMICAL SysTEms Jointly stationary processes on countable sets relatedras i
Definition[1. Then, the entropy rate of the output proc¥ss

In this Section, which comprises the main contribution afannot be larger than the entropy rate of the input prockss
this work, we present some general results on the informatipe.,

loss rate induced by a system satisfying Definifibn 1. We will H(Y) < HX). (16)
start by proving a Theorem which essentially states that the -

information loss rate is identical to the difference of epir Generally, the computation of entropy rates is a non-trivia
rates: problem, where closed-form solutions exist only for simple
processes (e.g., Markov chains). Since functions of s&iitha
processes rarely allow such a simplified treatment, thd-avai
ability of bounds is of vital importance. We will thus presen
an upper bound on the information loss rate, which is simple

H(X|Y)=H(X)-H(Y) (6) to evaluate:

Theorem 1. Let X andY be jointly stationary processes on
countable sets related as in Definitioh 1. Then, the infoiomat
loss rate is given by the difference of entropy rates:



Theorem 2 (Upper Bound) Let X andY be jointly stationary

processes on countable sets related as in Definffion 1. Then, |

the information loss rate is bounded by |
|

H(X|Y) < log | £t 17 System| Y System
(X|Y) < max gl [fo]l A7) x z

whereT = XV x YM, 9 € T are the possible values of the _
RVO, = {X"~L,v" L}, and f;'[] denotes the preimage Fig. 1. Cascade of systems
under fy, an instantiation of the functiotfe, (-) = f (-, ©,).

Proof: This result can be interpreted as relating the information
B 1 loss rate of a dynamical system to the information loss rate
HX|Y) = lim — (H(X{,Y7") - H(YT")) (18) induced by a static function. In particular, we let the stati

H(X;, Y| X1yt taking effect onY,, and upper bound the information loss

n function be parameterized by previous input and outputeglu
_ rate by the maximum cardinality of the preimage under

K3

—

@ 1 <
= im —
n—oo n
n ‘ While this upper bound may be rather conservative, it is
- ZH(YilYf_l) (19) particularly simple to evaluate if the system function from
i=1 Definition [ is available. We will illustrate the use of this

® 1 (& i1 il result in Sectiof VI-C.
= nlggo n ZH(Xi’le YY) Finally, we present a result about the cascade of systems
. =1 (see Fig[):
— > HY;X{ Yf‘l)> (20) Theorem 3(Cascading Systems).et X, Y, andZ be jointly
i=1 stationary stochastic processes on countable g&tg), and
1 & i1 Z, respectively, wher® is generated by passing through a
= nh_ﬁ}o n ZH(Xi|X1 Y7 (21) system satisfying Definitidd 1, ar#lis generated by passing

=1 Y through another such system. Then, the information loss

where (a) is due to the chain rule of entropy arnftl) is due rate induced by the cascade is

to the fact that conditioning reduces entropy. The expoessi _ _ _

under the sum i {21) is a non-negative decreasing sequence i H(X|Z) = HX|Y) + H(Y|Z). (27)

¢ and thus has a limit. We use the Cesaro mean [1, Thm. 4.2.3] Proof: By using Theoreni]1 (X
)

; Z) can be written as
and obtain 12)

AXY) < tm HOGIXE) e T ggii% + H(Y) - H(2) gg;
< H(Xu| X3, Y ) (23) HX|Y) + H(Y|Z). 0)

= H(Xu[Yn,00). (24)
]

We now replaceY,, = f(X,,0,) = fo,(X,), where we
treat the collection of all previous RVs influencing, as a IV. PARTIALLY INVERTIBLE SYSTEMS
(random) paramete®,, of the function. This approach lets \ye now impose an additional restriction on the system

us interpret the dynamical system as a parameterized st@fiGetion in Definition[1. This additional restriction defsma

systemjg(_)n: )1\(4 — J, where we leto,, take values) from family of systems for which the information loss rate can be
T =X x Y™, We thus continue shown to vanish

H(X[Y) < H(X,|fo,(Xn),On) (25)  Definition 3 (Partially invertible system)A system satisfying

= Z H(X,|fo(x),0)Pr(X, =6, =0) Definition[d is partially invertible if there exists a function
(2,0)€XXT finy: XN x YMHL 5 X such that

() n— n -

< Z log |f9_1[f9(x)]|Pr(Xn =z,0, =0) Xn = fiHV(anzlva Yol ar) = finv (Yn, On) = f@j(Yn)
(z,0)eXxXT | h d . iallv i ible if i (31)

< —1 n other words, a system is partially invertible if its parer-

- <m,§§1§§w1"g o [fo ()]l (26) ized static functiorye,, is invertible for all possible parameter

valuesf € T.

where (¢) is due to conditioning and the maximum entropy

property of the uniform distribution over an alphabet sigaa We will now argue that for this class of systems the
to the cardinality of the preimage undéy. Maximizing over information loss rate vanishes. We start by showing that the
all possibler and parameter valugscompletes the proofm total information loss for a finite-length input sequent¢



after observing an output sequeneg of the same length the observation ofY (cf. Theoren#), the remaining infor-
remains bounded independently of the sequence length: mation of the input process can be recovered by observing

Theorem 4. Let XX and Y, K > max{M, N}, be two the outpl_Jt process. Note that this not necessarily means
- 1 . that the input process can be reconstructed perfectly, even
finite-length sequences of jointly stationary procesXeand

. . if reconstruction errors are allowed in the firstax{M, N}
Y on countable setst and ), respectively, wher€Y is . . . . o
. : : . samples. An illustrative example for this fact will be givien
generated by passing through a partially invertible system.

Then, the information loss becomes Seclion VLB
H(XE )W) = qg(x Ny Ky (32) V. THE CASE OFLINEAR FILTERS
Proof: We start by noticing thatH (X{¥|Y/) = It is interesting to note that an important subclass of
H(X{E,v{) - H(Y) and discrete-time stable causal linear filters falls in the gatg
of partially invertible systems, as long as the input angott
K K K-1 K
H(XT, YY) = H(Xk, Xi7 70,0 (33) alphabets are countable. An example where the latter dondit
= H( inV(ngj}V,Y?,A,I),Xf’l,YlK) is satisfied is given if the input process and the coefficients
(a) _ take values from the field of rational numbers. This subglass
= H(X{ LY (34)

powerful enough to cover most applications [8], comprises
Where(a) is due to Lemm{]l Repeating this Step a numbéuers with a finite-dimensional state vector described by

of times yields constant-coefficient difference equations:
H(XE vE) = g(xmadMN} iy (35) N M
K1, 0) = 2% o) Vo= Xpp+ Y ar¥o (40)
SubtractingH (Y/) completes the proof. [ | k=0 1=1

Note that even thougtfe, is invertible for all parameter As noted in [9], stability of the filter guarantees that for a

valuesd, this does only mean thadf (X, |fe, (X,),0n) =0, . : . :
while H(X|fo. (X)) > 0. This corresponds to the state Stationary input process the output process is stationady a

ment of Theorenil4, where for < max{M,N} ©,, has that Def|n|t|_o-n[1 appl|e§. By rearranging the terms(4Q) It

. . . can be verified that this subclass of linear systems satisfies
to be considered unknown. It is also important to note thfhe definition of partiallv invertible svstems and. thuss fe
H(XE|YE) # H(XE)—H(Y{). While the information loss P y Y ’ »

rate is equal to the difference of entropy rates (cf. ThedfEm vanishing information loss rate.

it does not hold generally that the difference of joint eptes _It_ Is noter\:vorthy that thisfp;igerty i;Sigdepfelr_ldent ﬁf the
is equal to the joint conditional entropy. minimum-phase property (cfl_[10, pp. ) of linear filters

We will now make use of this result in proving that partiall;}INZ'Chder;surﬁf that ;hehﬁlter hats a. ;table a?]d caut'la:]al |nv$rsle.
invertible systems have a vanishing information loss rate: ihdeed, Tor Hiters which are not minimum-phase, the partia
inverse functionf;,, used in Definitiori B describes a causal,

Corollary 2. LetX andY be jointly stationary processes onbut unstable linear filter. As a consequence, to an arbitrary
countable sets related as in Theore 4. Then, the informatistationary stochastic input process, the inverse filtecritgsd
loss rate induced by passing the proc&sshrough the system by f;,, may respond with a non-stationary output process;
vanishes, i.e., however, the response % will be X.

H(X|Y) =0. (36) A signal space model may effectively illustrate these con-
siderations: LetY> and)>° be the spaces of stationary input
and output processe® andY, respectively, and leF'{-} be
the (linear) operator mapping each elementA¢f to )=°.
éy restricting our attention to regular stochastic proeess
i.e., processes which cannot have periodic components, the
erator F'{-} is injective. As a consequence, for each ele-
ent of Y there exists at most one element At such
that Y = F{X}. Note, however, that there are stationary

Proof: We provide two proofs for this Corollary. For the
first, note that irrespective éfthe inverse functiorf,” L always
exists by Definitiod B. With Theorefd 2 this immediately lead
to H(X[Y) =0.

For the second proof we note that Theolem 4 holds for
K, thus also in the limit. With Definitiof]2 we can therefore
write the information loss rate as:

AX|Y) = lim lH(XﬂYl”) (37) §tochastic pr(_)cesses.jrfPO which are not images of elements
—oon in X°°. Only if F{-} is such that it describes a stable, causal
— lim lH(X{naX{M’N}m") (38) minimum—phase system, i.e., hast@bleand causal inverse,
n—oo 1 Y contains only images of elements froke.
< lim lH(Xf‘a"{MvN}) =0 (39) This complements a result already introduced by Shan-
neen non [4], which states that the changdlifferentialentropy rate
by similar arguments as in the proof of Lemida 2. B caused by stable, causal linear filtering of continuousteel
An immediate consequence of this{i}\ryg)v(?rtant Corollary istationary processes is independent of the process isttist

that, except for the initial samplek, after starting particular, for a linear filter with frequency resporGé’?) the



differential entropy rate of the output is given by [5, pp366 V [ Linear
] X 90) Filt Y
- _ 1 [7 ilter
h(Y)=h(X)+ —/ In|G(e’?)|db. (41)
27 ) x Fig. 2. Discrete-Time Hammerstein System. E¢) = (-)2 and if the linear
It can be shown (see e.g |'11]) that the integral abO\f}léer is a moving-average filter, this corresponds to a esoed model of the
ToT I energy detector.

evaluates tdn |bo| +3_,. .. ~1 In |zi|, wherez; are the zeros of
the transfer functio7(z). For causal minimum-phase systems

(|z:| <1 Vi) with by = 1, the differential entropy rates for theg)| 4, coefficients. However, this gain normalization poses
input and output process are equal. This result was recer§l\estriction in the finite-precision case sinkg/by is not

verified by [12], which analyzed the invariance of entropyecessarily an element af. With b, = 1 @2) and [@B) change
rates for all-pole filters. Scaling the transfer functionsoch .

a filter such thaby # 1 leads toh (X) # h(Y), despite the N o
fact that by scaling no information is lost. Conversely,st i _
easily possible thal (X) = & (Y) for systems which destroy Yo =Xn® (@Q (b1 Xoni) & IG:?Q (alYnZ)> (44)
information. Therefore, we believe that differential epies
and differential entropy rates are not adequate measures qu
information loss. Future investigations will show if altative N M
descriptions for continuous-valued processes will yieloren V=X.80Q (@ b Xn—re — @C”Y"l> (45)
appropriate characterizations. k=1 =1
by the property of the quantizer. From this it can be seen
V1. OTHER EXAMPLES that either implementation is partially invertible (therrtes
While the case of linear filters is a particularly interegtinin parentheses if_(44) and_{45) are bothAth and modulo-
one, the restriction to countable input and output alptfabeiddition has an inverse element). Consequently, evensfilter
suggests further examples illustrating the applicatiorowf with nonlinear elements can be shown to preserve informatio
theoretical results. under certain circumstances despite the fact that the geant

- - . ' function is non-injective.
A. Example 1: Finite-Precision Linear Filters :

The first example considers an extension to the subclassSof EXample 2: Multiplying Consecutive Inputs
discrete-time linear filters discussed in Sectioh V. In many Another nonlinear system satisfying Definitibh 3 is given
practical applications in digital signal processing linéliers by the following input-output relationship:
are implemented with finite-precision number represeortati V - XX (46)
only. We thus assume that both input process and filter n T Andn-l
coefficients take values from a finite set. For exam@leanay The partial inverse in this case would bg, = X}:il if
be a finite subset of the rational numbeps closed under X, _; # 0, while for X,,_; = 0 no such inverse exists.
modulo-addition. Multiplying two values from that set, gloy Therefore, this example represents a class of systems whose
multiplying an input sample with a filter coefficient, typlya partial invertibility depends on the alphabetof the stochastic
yields a result not representable . As a consequence, process. If the procesX is such that¥ does not contain the
after every multiplication a quantizer is necessary, €s88n element0, the partial inverse exists and we obtain fir,,
truncating the additional bits resulting from multiplizat. Let » > 1:

the quantizer be described by a functigh R — X with nly
Qa+X,) = Qa) ® X, if X,, € X, where® denotes X, = {Xl Hl;:_ll v, foroddn (47)
modulo-addition (e.g.[[10, pp. 373]). With this {40) chasg = 11 %ﬁl, for evenn
to N M Indeed, since allX,,, n > 1, can be computed from¥;
Y, = @Q(kan,k)ea@Q(alYn,l) (42) andYy", we obtain H(X|Yy") = H(X;1]|Y;") which is in
k=0 =1 perfect accordance with Theordmh 4. ReconstructioXofs
or N " thus possible up to an unknowXy; . Note, however, that this
unknown sample influences the whole reconstructed sequence
Yon=0 <§ bk Xt © ZG?‘”Y"—1> (43)  as shown in[(47). Thus, even though the information loss rate

vanishes, perfect reconstruction of any subsequenck of

depending whether quantization is performed after mit#pl jmpossible by observing the output procéssonly.
tion or after accumulation (in the latter case, the interiated

results are represented in a larger a#). Note that due to C. Example 3: Hammerstein Systems

modulo-addition the result;, remains inX. A final example considers a simple special case of a
We will now focus on filters withhy = 1. For filters with nonlinear dynamical system, namely, a cascade of a static

infinite precision this can be done without loss of gengralihonlinearity and a linear filtei_[13]. Such a cascade, uguall

by considering a constant gain facty and by normalizing referred to as Hammerstein system, is depicted in [Big. 2. A



practical example of such a Hammerstein system is the enenggquality stating that the entropy rate at the output of the
detector, a popular low-complexity receiver architectime system cannot be larger than the entropy rate at the input and
wireless communications. In the discrete-time case thatinphave derived an upper bound on the information loss rate. The

output relationship is given by additivity of information loss rates for cascaded systemda
N M be shown, too.
Y, = Zbkg(ank) + ZazYnfz- (48) We have further identified a family of systems for which
=0 =1 this upper bound is zero, i.e., for which the informationslos

rate vanishes. Not only linear filters belong to that fantiyt
also their nonlinear counterparts common in finite-preacisi
signal processing.

Future research will extend these results to the case of
Y, = fo,(Xn) = bog(Xyn) + Co, (49) continuous-valued stochastic processes and the applicti

. . common nonlinear systems, e.g., Volterra models.
whereCg, is a constant depending on the random parameter

©,. With this and £, [fs(z)] = g~ '[g(z)] for all z € X, ACKNOWLEDGMENTS
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As it is easily seen, this system is partially invertible ifda
only if the functiong has an inverse. I is not invertible, we
obtain in the light of Theoreri] 2:
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