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Abstract—In this work we investigate the information loss in
(nonlinear) dynamical input-output systems and provide some
general results. In particular, we present an upper bound onthe
information loss rate, defined as the (non-negative) difference
between the entropy rates of the jointly stationary stochastic
processes at the input and output of the system.

We further introduce a family of systems with vanishing
information loss rate. It is shown that not only linear filters belong
to that family, but – under certain circumstances – also finite-
precision implementations of the latter, which typically consist of
nonlinear elements.

I. I NTRODUCTION

Transmission and processing of information is the primary
concern in many fields of communications, signal processing,
and machine learning. The typical impairments considered in
these contexts are noise and interference, incomplete datasets,
and coarse observations, eliciting both information-theoretic
and energy-centered analyses. In contrary, the effect of de-
terministic input-output systems on the information content,
i.e., the entropy rate, of a signal has not yet been thoroughly
analyzed. Still, nonlinear dynamical systems – capable of
changing information content – are omnipresent in commu-
nication systems in the roles of high-power amplifiers or fre-
quency mixers. Another example is the energy detector, a low-
complexity receiver architecture for wireless communications.
To obtain a better understanding of the effects of these system
components, an information-theoretic treatment is essential.

In this paper, we establish a framework for analyzing
the effects of discrete-time dynamical systems with a finite-
dimensional state vector on the entropy rate of a signal. While
the analysis of continuous-valued stochastic processes will be
left for future work, here we focus on (jointly) stationary input
and output processes taking values from countable alphabets.

The data processing inequality (DPI, [1, pp. 35]) states
that the entropy of a discrete random variable (RV) cannot
increase by passing the RV through a static nonlinearity. Itwas
shown that the same result holds for entropy rates of jointly
stationary stochastic processes on finite alphabets, both for
static nonlinearities [2] and general dynamical systems [3].
Continuous-valued processes passing through linear filters
were already analyzed by Shannon in terms of differential
entropy rates [4], [5], which in our opinion are not adequate
measures of information loss, cf. Section V. The conditional
entropy, used to characterize the information lost by passing
a continuous RV through a static nonlinearity [6] or by
multiplying two integers [7], appears to be more appropriate.

We start by defining the information loss rate in Section II
and show that this quantity is equal to the difference between
the entropy rates of the input and output processes. This choice
establishes the DPI for dynamical systems in Section III,
stating that the information loss rate is non-negative. This
result is then complemented by an upper bound that can
be evaluated easily. In Section IV we introduce a family of
dynamical systems for which we show that the information
loss rate vanishes. This family not only comprises a large
class of stable linear filters (see Section V), but also their
finite-precision counterparts, commonly used in digital signal
processing. Aside from the latter, Section VI discusses some
other examples illustrating our theoretical results.

This document is an extended version of a paper submitted
to an IEEE conference.

II. PROBLEM STATEMENT & PRELIMINARIES

We consider a discrete-time regular two-sided stationary
stochastic processX taking values from a countable set
X . Let Xn denote the RV of then-th sample and let
Xn

k = (Xk, Xk+1, . . . , Xn), thus X = X∞
−∞. For the

actual value ofXn we write xn. We further consider an-
other countable setY which needs not be identical toX .
Let H(Xn) denote the zeroth-order entropy ofXn and let
H̄(X) = limn→∞

1
n
H(Xn

1 ) denote the entropy rate ofX.
The restriction to countable sets ensures that entropies and
entropy rates are well-defined.

The following class of dynamical systems is treated in this
work:

Definition 1 (Finite-Dimensional Dynamical System). Let
Yn = f(Xn

n−N , Y n−1
n−M ), 0 ≤ M,N < ∞, be the RV of

the n-th output sample of a dynamical system with a finite-
dimensional state vector subject to the input processX. Here,
f : XN+1 ×YM → Y is a function such that the sequence of
output samples,Yn, constitutes a two-sided stochastic process
Y jointly stationary withX.

Definition 2 (Information Loss Rate). Let X and Y be
jointly stationary processes on countable sets related as in
Definition 1. The average information lost per sample is given
by the conditional entropy rate

H̄(X|Y) = lim
n→∞

1

n
H(Xn

1 |Y
n
1 ). (1)

Characterizing the information loss as a conditional entropy
rate is quite intuitive: The conditional entropy rate denotes the
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average number of bits per sample unknown about the input
sequence after observing the output sequence; i.e., the average
information lost per sample by passing the sequence through
the system in question.

Before proceeding with the analysis, we will introduce two
Lemmas:

Lemma 1. For any set of discrete RVsZn
1 and any function

f(Zk, Zl, . . . ), 1 ≤ k, l, · · · ≤ n, the following holds:

H(Zn
1 , f(Zk, Zl, . . . )) = H(Zn

1 ) (2)

Proof: See [1, Prob. 2.4].

Lemma 2. Let X and Y be jointly stationary stochastic
processes on countable sets. Then, forM < ∞,

H̄(X) = lim
n→∞

1

n
H(Xn

1 |Y
M
1 ) = lim

n→∞

1

n
H(Xn

1 , Y
M
1 ).

Proof: Clearly,

H(Xn
1 |Y

M
1 ) ≤ H(Xn

1 ) ≤ H(Xn
1 , Y

M
1 ) (3)

for all n, thus also in the limit. Now, sinceH(Xn
1 , Y

M
1 ) =

H(Xn
1 |Y

M
1 )+H(Y M

1 ) and since all involved entities are non-
negative,

H̄(X) ≤ lim
n→∞

1

n
H(Xn

1 |Y
M
1 ) + lim

n→∞

1

n
H(Y M

1 )
︸ ︷︷ ︸

→0

. (4)

Thus in the limit the upper and lower bound are equal and the
proof is completed.

Since the input and output alphabets of the dynamical
systems can be countable, it may occur that the entropy of a
single sample becomes infinite. Yet, by the maximum entropy
property of the uniform distribution,

H(Y M
1 ) ≤ MH(Y ) ≤ lim

|Y|→∞
M log |Y| (5)

which approaches infinity at a slower rate thanlimn→∞ n.
Thus the term on the right in (4) approaches zero even for
processesY with infinite zeroth-order entropy or infinite
entropy rate.

III. I NFORMATION LOSSRATE IN DYNAMICAL SYSTEMS

In this Section, which comprises the main contribution of
this work, we present some general results on the information
loss rate induced by a system satisfying Definition 1. We will
start by proving a Theorem which essentially states that the
information loss rate is identical to the difference of entropy
rates:

Theorem 1. Let X andY be jointly stationary processes on
countable sets related as in Definition 1. Then, the information
loss rate is given by the difference of entropy rates:

H̄(X|Y) = H̄(X)− H̄(Y) (6)

Proof: While the proof for static functions (i.e.,M =
N = 0) is relatively simple [2], for dynamical systems we
have to show that

H̄(X|Y) = lim
n→∞

1

n
(H(Xn

1 , Y
n
1 )−H(Y n

1 )) (7)

= lim
n→∞

1

n
H(Xn

1 )− lim
n→∞

1

n
H(Y n

1 ) (8)

i.e., that

lim
n→∞

1

n
H(Xn

1 , Y
n
1 ) = lim

n→∞

1

n
H(Xn

1 ). (9)

Consider that, forn > max{M,N}

H(Xn
1 , Y

n
1 ) = H(Yn, X

n
1 , Y

n−1
1 ) (10)

= H(f(Xn
n−N , Y n−1

n−M ), Xn
1 , Y

n−1
1 ) (11)

(a)
= H(Xn

1 , Y
n−1
1 ) (12)

where(a) is due to Lemma 1. By repeated application,

H(Xn
1 , Y

n
1 ) = H(Xn

1 , Y
max{M,N}
1 ). (13)

Since this holds for alln > max{M,N}, it also holds in the
limit and with Lemma 2 we obtain

lim
n→∞

1

n
H(Xn

1 , Y
max{M,N}
1 ) = lim

n→∞

1

n
H(Xn

1 ) (14)

and thus
H̄(X|Y) = H̄(X)− H̄(Y). (15)

This completes the proof.
The significance of this Theorem lies in the fact that the

information loss can be inferred by comparing the entropy
rates of the input and output processes. Note that the same
does not hold for differential entropy rates, as we will argue
in Section V.

By the non-negativity of the conditional entropy rate the
following Corollary to Theorem 1 shows that the entropy
rate of the system output cannot be larger than the entropy
rate of the system input. This result, originally stated in [3]
for finite alphabets, further justifies our intuitive definition of
information loss:

Corollary 1 (DPI for Dynamical Systems). Let X andY be
jointly stationary processes on countable sets related as in
Definition 1. Then, the entropy rate of the output processY

cannot be larger than the entropy rate of the input processX,
i.e.,

H̄(Y) ≤ H̄(X). (16)

Generally, the computation of entropy rates is a non-trivial
problem, where closed-form solutions exist only for simple
processes (e.g., Markov chains). Since functions of stochastic
processes rarely allow such a simplified treatment, the avail-
ability of bounds is of vital importance. We will thus present
an upper bound on the information loss rate, which is simple
to evaluate:



Theorem 2(Upper Bound). LetX andY be jointly stationary
processes on countable sets related as in Definition 1. Then,
the information loss rate is bounded by

H̄(X|Y) ≤ max
(x,θ)∈X×T

log |f−1
θ [fθ(x)]| (17)

whereT = XN × YM , θ ∈ T are the possible values of the
RV Θn = {Xn−1

n−N , Y n−1
n−M}, and f−1

θ [·] denotes the preimage
underfθ, an instantiation of the functionfΘn

(·) = f(·,Θn).

Proof:

H̄(X|Y) = lim
n→∞

1

n
(H(Xn

1 , Y
n
1 )−H(Y n

1 )) (18)

(a)
= lim

n→∞

1

n

(
n∑

i=1

H(Xi, Yi|X
i−1
1 , Y i−1

1 )

−

n∑

i=1

H(Yi|Y
i−1
1 )

)

(19)

(b)

≤ lim
n→∞

1

n

(
n∑

i=1

H(Xi, Yi|X
i−1
1 , Y i−1

1 )

−

n∑

i=1

H(Yi|X
i−1
1 , Y i−1

1 )

)

(20)

= lim
n→∞

1

n

n∑

i=1

H(Xi|X
i−1
1 , Y i

1 ) (21)

where(a) is due to the chain rule of entropy and(b) is due
to the fact that conditioning reduces entropy. The expression
under the sum in (21) is a non-negative decreasing sequence in
i and thus has a limit. We use the Cesáro mean [1, Thm. 4.2.3]
and obtain

H̄(X|Y) ≤ lim
n→∞

H(Xn|X
n−1
1 , Y n

1 ) (22)

≤ H(Xn|X
n−1
n−N , Y n

n−M ) (23)

= H(Xn|Yn,Θn). (24)

We now replaceYn = f(Xn,Θn) = fΘn
(Xn), where we

treat the collection of all previous RVs influencingYn as a
(random) parameterΘn of the function. This approach lets
us interpret the dynamical system as a parameterized static
systemfΘn

: X → Y, where we letΘn take valuesθ from
T = XN × YM . We thus continue

H̄(X|Y) ≤ H(Xn|fΘn
(Xn),Θn) (25)

=
∑

(x,θ)∈X×T

H(Xn|fθ(x), θ)Pr(Xn = x,Θn = θ)

(c)

≤
∑

(x,θ)∈X×T

log |f−1
θ [fθ(x)]|Pr(Xn = x,Θn = θ)

≤ max
(x,θ)∈X×T

log |f−1
θ [fθ(x)]| (26)

where (c) is due to conditioning and the maximum entropy
property of the uniform distribution over an alphabet size equal
to the cardinality of the preimage underfθ. Maximizing over
all possiblex and parameter valuesθ completes the proof.

X
System

1
System

2
Z

Y

H̄(X|Y) H̄(Y|Z)

H̄(X|Z)

Fig. 1. Cascade of systems

This result can be interpreted as relating the information
loss rate of a dynamical system to the information loss rate
induced by a static function. In particular, we let the static
function be parameterized by previous input and output values
taking effect onYn and upper bound the information loss
rate by the maximum cardinality of the preimage underfθ.
While this upper bound may be rather conservative, it is
particularly simple to evaluate if the system function from
Definition 1 is available. We will illustrate the use of this
result in Section VI-C.

Finally, we present a result about the cascade of systems
(see Fig. 1):

Theorem 3 (Cascading Systems). LetX, Y, andZ be jointly
stationary stochastic processes on countable setsX , Y, and
Z, respectively, whereY is generated by passingX through a
system satisfying Definition 1, andZ is generated by passing
Y through another such system. Then, the information loss
rate induced by the cascade is

H̄(X|Z) = H̄(X|Y) + H̄(Y|Z). (27)

Proof: By using Theorem 1H̄(X|Z) can be written as

H̄(X|Z) = H̄(X)− H̄(Z) (28)

= H̄(X)− H̄(Y) + H̄(Y)− H̄(Z) (29)

= H̄(X|Y) + H̄(Y|Z). (30)

IV. PARTIALLY INVERTIBLE SYSTEMS

We now impose an additional restriction on the system
function in Definition 1. This additional restriction defines a
family of systems for which the information loss rate can be
shown to vanish.

Definition 3 (Partially invertible system). A system satisfying
Definition 1 is partially invertible if there exists a function
finv: X

N × YM+1 → X such that

Xn = finv(X
n−1
n−N , Y n

n−M ) = finv(Yn,Θn) = f−1
Θn

(Yn).
(31)

In other words, a system is partially invertible if its parameter-
ized static functionfΘn

is invertible for all possible parameter
valuesθ ∈ T .

We will now argue that for this class of systems the
information loss rate vanishes. We start by showing that the
total information loss for a finite-length input sequenceXK

1



after observing an output sequenceY K
1 of the same length

remains bounded independently of the sequence length:

Theorem 4. Let XK
1 and Y K

1 , K > max{M,N}, be two
finite-length sequences of jointly stationary processesX and
Y on countable setsX and Y, respectively, whereY is
generated by passingX through a partially invertible system.
Then, the information loss becomes

H(XK
1 |Y K

1 ) = H(X
max{M,N}
1 |Y K

1 ). (32)

Proof: We start by noticing thatH(XK
1 |Y K

1 ) =
H(XK

1 , Y K
1 )−H(Y K

1 ) and

H(XK
1 , Y K

1 ) = H(XK , XK−1
1 , Y K

1 ) (33)

= H(finv(X
K−1
K−N , Y K

K−M ), XK−1
1 , Y K

1 )

(a)
= H(XK−1

1 , Y K
1 ) (34)

where(a) is due to Lemma 1. Repeating this step a number
of times yields

H(XK
1 , Y K

1 ) = H(X
max{M,N}
1 , Y K

1 ). (35)

SubtractingH(Y K
1 ) completes the proof.

Note that even thoughfΘn
is invertible for all parameter

valuesθ, this does only mean thatH(Xn|fΘn
(Xn),Θn) = 0,

while H(Xn|fΘn
(Xn)) ≥ 0. This corresponds to the state-

ment of Theorem 4, where forn < max{M,N} Θn has
to be considered unknown. It is also important to note that
H(XK

1 |Y K
1 ) 6= H(XK

1 )−H(Y K
1 ). While the information loss

rate is equal to the difference of entropy rates (cf. Theorem1),
it does not hold generally that the difference of joint entropies
is equal to the joint conditional entropy.

We will now make use of this result in proving that partially
invertible systems have a vanishing information loss rate:

Corollary 2. Let X andY be jointly stationary processes on
countable sets related as in Theorem 4. Then, the information
loss rate induced by passing the processX through the system
vanishes, i.e.,

H̄(X|Y) = 0. (36)

Proof: We provide two proofs for this Corollary. For the
first, note that irrespective ofθ the inverse functionf−1

θ always
exists by Definition 3. With Theorem 2 this immediately leads
to H̄(X|Y) = 0.

For the second proof we note that Theorem 4 holds for all
K, thus also in the limit. With Definition 2 we can therefore
write the information loss rate as:

H̄(X|Y) = lim
n→∞

1

n
H(Xn

1 |Y
n
1 ) (37)

= lim
n→∞

1

n
H(X

max{M,N}
1 |Y n

1 ) (38)

≤ lim
n→∞

1

n
H(X

max{M,N}
1 ) = 0 (39)

by similar arguments as in the proof of Lemma 2.
An immediate consequence of this important Corollary is

that, except for the initial samplesXmax{M,N}
1 after starting

the observation ofY (cf. Theorem 4), the remaining infor-
mation of the input process can be recovered by observing
the output process. Note that this not necessarily means
that the input process can be reconstructed perfectly, even
if reconstruction errors are allowed in the firstmax{M,N}
samples. An illustrative example for this fact will be givenin
Section VI-B.

V. THE CASE OFL INEAR FILTERS

It is interesting to note that an important subclass of
discrete-time stable causal linear filters falls in the category
of partially invertible systems, as long as the input and output
alphabets are countable. An example where the latter condition
is satisfied is given if the input process and the coefficients
take values from the field of rational numbers. This subclass,
powerful enough to cover most applications [8], comprises
filters with a finite-dimensional state vector described by
constant-coefficient difference equations:

Yn =

N∑

k=0

bkXn−k +

M∑

l=1

alYn−l (40)

As noted in [9], stability of the filter guarantees that for a
stationary input process the output process is stationary and
that Definition 1 applies. By rearranging the terms in (40) it
can be verified that this subclass of linear systems satisfies
the definition of partially invertible systems and, thus, has a
vanishing information loss rate.

It is noteworthy that this property is independent of the
minimum-phase property (cf. [10, pp. 280]) of linear filters,
which ensures that the filter has a stable and causal inverse.
Indeed, for filters which are not minimum-phase, the partial
inverse functionfinv used in Definition 3 describes a causal,
but unstable linear filter. As a consequence, to an arbitrary
stationary stochastic input process, the inverse filter described
by finv may respond with a non-stationary output process;
however, the response toY will be X.

A signal space model may effectively illustrate these con-
siderations: LetX∞ andY∞ be the spaces of stationary input
and output processesX andY, respectively, and letF{·} be
the (linear) operator mapping each element ofX∞ to Y∞.
By restricting our attention to regular stochastic processes,
i.e., processes which cannot have periodic components, the
operatorF{·} is injective. As a consequence, for each ele-
ment of Y∞ there exists at most one element inX∞ such
that Y = F{X}. Note, however, that there are stationary
stochastic processes inY∞ which are not images of elements
in X∞. Only if F{·} is such that it describes a stable, causal
minimum-phase system, i.e., has astableand causal inverse,
Y∞ contains only images of elements fromX∞.

This complements a result already introduced by Shan-
non [4], which states that the change indifferentialentropy rate
caused by stable, causal linear filtering of continuous-valued
stationary processes is independent of the process statistics. In
particular, for a linear filter with frequency responseG(eθ) the



differential entropy rate of the output is given by [5, pp. 663]

h̄ (Y) = h̄ (X) +
1

2π

∫ π

−π

ln |G(eθ)|dθ. (41)

It can be shown (see, e.g., [11]) that the integral above
evaluates toln |b0|+

∑

i:|zi|>1 ln |zi|, wherezi are the zeros of
the transfer functionG(z). For causal minimum-phase systems
(|zi| < 1 ∀i) with b0 = 1, the differential entropy rates for the
input and output process are equal. This result was recently
verified by [12], which analyzed the invariance of entropy
rates for all-pole filters. Scaling the transfer function ofsuch
a filter such thatb0 6= 1 leads toh̄ (X) 6= h̄ (Y), despite the
fact that by scaling no information is lost. Conversely, it is
easily possible that̄h (X) = h̄ (Y) for systems which destroy
information. Therefore, we believe that differential entropies
and differential entropy rates are not adequate measures for
information loss. Future investigations will show if alternative
descriptions for continuous-valued processes will yield more
appropriate characterizations.

VI. OTHER EXAMPLES

While the case of linear filters is a particularly interesting
one, the restriction to countable input and output alphabets
suggests further examples illustrating the application ofour
theoretical results.

A. Example 1: Finite-Precision Linear Filters

The first example considers an extension to the subclass of
discrete-time linear filters discussed in Section V. In many
practical applications in digital signal processing linear filters
are implemented with finite-precision number representations
only. We thus assume that both input process and filter
coefficients take values from a finite set. For example,X may
be a finite subset of the rational numbersQ, closed under
modulo-addition. Multiplying two values from that set, e.g., by
multiplying an input sample with a filter coefficient, typically
yields a result not representable inX . As a consequence,
after every multiplication a quantizer is necessary, essentially
truncating the additional bits resulting from multiplication. Let
the quantizer be described by a functionQ: R → X with
Q (a+Xn) = Q (a) ⊕ Xn if Xn ∈ X , where⊕ denotes
modulo-addition (e.g., [10, pp. 373]). With this (40) changes
to

Yn =

N⊕

k=0

Q (bkXn−k)⊕

M⊕

l=1

Q (alYn−l) (42)

or

Yn = Q

(
N⊕

k=0

bkXn−k ⊕

M⊕

l=1

alYn−l

)

(43)

depending whether quantization is performed after multiplica-
tion or after accumulation (in the latter case, the intermediate
results are represented in a larger setX ′). Note that due to
modulo-addition the resultYn remains inX .

We will now focus on filters withb0 = 1. For filters with
infinite precision this can be done without loss of generality
by considering a constant gain factorb0 and by normalizing

X g(·)
Linear
Filter

Y

V

Fig. 2. Discrete-Time Hammerstein System. Forg(·) = (·)2 and if the linear
filter is a moving-average filter, this corresponds to a discretized model of the
energy detector.

all bk coefficients. However, this gain normalization poses
a restriction in the finite-precision case sincebk/b0 is not
necessarily an element ofX . With b0 = 1 (42) and (43) change
to

Yn = Xn ⊕

(
N⊕

k=1

Q (bkXn−k)⊕

M⊕

l=1

Q (alYn−l)

)

(44)

and

Yn = Xn ⊕Q

(
N⊕

k=1

bkXn−k −

M⊕

l=1

alYn−l

)

(45)

by the property of the quantizer. From this it can be seen
that either implementation is partially invertible (the terms
in parentheses in (44) and (45) are both inX , and modulo-
addition has an inverse element). Consequently, even filters
with nonlinear elements can be shown to preserve information
under certain circumstances despite the fact that the quantizer
function is non-injective.

B. Example 2: Multiplying Consecutive Inputs

Another nonlinear system satisfying Definition 3 is given
by the following input-output relationship:

Yn = XnXn−1 (46)

The partial inverse in this case would beXn = Yn

Xn−1
if

Xn−1 6= 0, while for Xn−1 = 0 no such inverse exists.
Therefore, this example represents a class of systems whose
partial invertibility depends on the alphabetX of the stochastic
process. If the processX is such thatX does not contain the
element0, the partial inverse exists and we obtain forXn,
n > 1:

Xn =

{

X1

∏n−1

2

k=1
Y2k+1

Y2k
, for oddn

Yn

X1

∏n

2
−1

k=1
Y2k

Y2k+1
, for evenn

(47)

Indeed, since allXn, n > 1, can be computed fromX1

and Y n
1 , we obtainH(Xn

1 |Y
n
1 ) = H(X1|Y

n
1 ) which is in

perfect accordance with Theorem 4. Reconstruction ofX is
thus possible up to an unknownX1. Note, however, that this
unknown sample influences the whole reconstructed sequence
as shown in (47). Thus, even though the information loss rate
vanishes, perfect reconstruction of any subsequence ofX is
impossible by observing the output processY only.

C. Example 3: Hammerstein Systems

A final example considers a simple special case of a
nonlinear dynamical system, namely, a cascade of a static
nonlinearity and a linear filter [13]. Such a cascade, usually
referred to as Hammerstein system, is depicted in Fig. 2. A



practical example of such a Hammerstein system is the energy
detector, a popular low-complexity receiver architecturein
wireless communications. In the discrete-time case the input-
output relationship is given by

Yn =
N∑

k=0

bkg(Xn−k) +
M∑

l=1

alYn−l. (48)

As it is easily seen, this system is partially invertible if and
only if the functiong has an inverse. Ifg is not invertible, we
obtain in the light of Theorem 2:

Yn = fΘn
(Xn) = b0g(Xn) + CΘn

(49)

whereCΘn
is a constant depending on the random parameter

Θn. With this andf−1
θ [fθ(x)] = g−1[g(x)] for all x ∈ X ,

θ ∈ T we obtain an upper bound on the information loss rate:

H̄(X|Y) ≤ max
x∈X

log |g−1[g(x)]| (50)

Interestingly, the structure of this system allows a simplified
analysis: Since the information loss rate of a cascade of
systems is equal to the sum of individual information loss
rates (cf. Theorem 3) we can analyze both constituent systems
separately. The linear filter was already shown to preserve
full information, so any information loss will be caused by
the static nonlinearity, i.e.,̄H(X|Y) = H̄(X|V). This is in
accordance with the observation that the Hammerstein system
is partially invertible if the static nonlinearity is invertible.

For static nonlinearities the analytic treatment of infor-
mation loss is simple compared to dynamical systems. In
particular, for an independent, identically distributed (iid) input
processX the information loss rate can be shown to be equal
to the zeroth-order conditional entropy,H(X |V ), while for
a general stationary process this quantity acts as an upper
bound [2]. The upper bound from Theorem 2 turns out to be
even more general, since it also provides an upper bound on
H(X |V ) in the case of an iid input process (cf. Theorem 4
in [6]). An in-depth analysis of the interplay between these
bounds is the object of future work.

VII. C ONCLUSION

In this work we have presented general results on the
information loss of dynamical systems for stationary stochastic
input and output processes on countable alphabets. Further-
more, we have extended the proof of the data processing

inequality stating that the entropy rate at the output of the
system cannot be larger than the entropy rate at the input and
have derived an upper bound on the information loss rate. The
additivity of information loss rates for cascaded systems could
be shown, too.

We have further identified a family of systems for which
this upper bound is zero, i.e., for which the information loss
rate vanishes. Not only linear filters belong to that family,but
also their nonlinear counterparts common in finite-precision
signal processing.

Future research will extend these results to the case of
continuous-valued stochastic processes and the application to
common nonlinear systems, e.g., Volterra models.
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