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We discuss on an example a general mechanism of apparition of anomalous scaling in scale invari-
ant systems via zero modes of a scale invariant operator. We discuss the relevance of such mechanism
in turbulence, and point out a peculiarity of turbulent flows, due to the existence of both forcing and
dissipation. Following these considerations, we show that if this mechanism of anomalous scaling is
operating in turbulence, the structure functions can be constructed by simple symmetry consider-
ations. We find that the generical scale behavior of structure functions in the inertial range is not
self-similar Sn(`) ∝ `ζn but includes an ”exponential self-similar” behavior Sn(`) ∝ exp[ζnα

−1`α]
where α is a parameter proportional to the inverse of the logarithm of the Reynolds number. The
solution also follows exact General Scaling and approximate Extended Self-Similarity.

PACS numbers: 11.30.-j — Symmetry and conservation laws - 47.27.-i Turbulent flows, convection, and
heat transfer - 47.27.Gs Isotropic turbulence; homogeneous turbulence - 47.27.Jv High-Reynolds-number
turbulence

Résumé

A partir d’un exemple, nous discutons un mécanisme
général de production de lois d’échelle anormales, dans
un système invariant d’échelle. Ce mécanisme repose sur
l’existence de valeurs propres nulles pour un opérateur
invariant d’échelle. Nous discutons ensuite la pertinence
de ce mécanisme en turbulence, en soulignant une par-
ticularité des écoulements turbulents, liée à la coexis-
tence d’un forçage et de la dissipation. En utilisant
ces considérations, nous montrons que si ce mécanisme
s’applique à la turbulence, alors on peut construire
les fonctions de structure par de simples arguments de
symétrie. On trouve que le comportement générique des
fonctions de structure n’est pas auto-similaire Sn(`) ∝
`ζn mais inclut un terme ”exponentiel auto-similaire”
du type Sn(`) ∝ exp[ζnα

−1`α], où α est un paramètre
inversement proportionnel au logarithme du nombre de
Reynolds. La solution satisfait également rigoureusement
la propriété de Similarité Générale et approximativement
la propriété d’Autosimilarité Etendue.

I. INTRODUCTION

Anomalous scaling usually refers to situations where
the observed scaling exponents deviate from their nat-
ural dimensional scaling. As a consequence, it is often
associated with non-simple scaling behavior of the corre-
lation functions: the scaling exponent of the 2nth order
correlation function is not n times the scaling exponent
of the 2nd order correlation function. A good example of
this situation is the scaling of the so-called velocity struc-
ture functions in 3D homogeneous isotropic turbulence.
Dimensional considerations based on energy conservation
[1] predict that the scaling exponent of the nth structure

function should be ζn = n/3. Observed scaling expo-
nents substantially deviate from this prediction (see e.g.
[2] for a review of recent experimental results). Several
general mechanisms of apparition of anomalous scaling
have been identified. Among them, two mechanisms de-
serve special interest: existence of additional essential pa-
rameters which cannot be eliminated from the problem
(this is the phenomenon of incomplete self-similarity, re-
viewed by [3]) and existence of non-trivial zero modes of
the closed equations satisfied by the correlation functions
[4].

Our aim is to study some consequences of these two
form of anomalous scaling in situations where the sys-
tem is scale invariant. Specifically, we show on a simple
example how zero-modes give rise to a self-similar be-
havior of second kind. We then come back to the case of
turbulence to show how this feature can be used to de-
termine general properties of the scaling exponents and
the scale behavior of the structure functions. The main
conclusion of the present study is that the generic scale
behavior of structure functions in the inertial range is
not self-similar Sn(`) ∝ `ζn but ”exponential self-similar”
Sn(`) ∝ exp[ζnα

−1`α] where α is a parameter propor-
tional to the inverse of the logarithm of the Reynolds
number. The self-similar shape is recovered only in the
limit of infinite size inertial range (infinite Reynolds num-
ber).

II. ANOMALOUS SCALING IN SCALE
INVARIANT SYSTEMS

The goal of the present Section is not to prove rigorous
results, but to illustrate a possible mechanism of genera-
tion of anomalous scaling in turbulence, and explore its
consequences. In particular, the discussion about appli-
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cation to turbulence should be taken as rather specula-
tive, since we do not derive any exact equations. The
main goal of the present Section is to give justifications
for the symmetry approach presented in the next Section,
which will provide some new and quantitative results on
structure functions in turbulence.

A. An example

Consider the differential equation:

∂tφ+ ∂`φ−
ζ

`
φ = F (`), (1)

where t is the time, ` is the scale, φ is a scale-dependent
physical quantity (e.g. a structure function, or a corre-
lation function), F an external forcing and ζ a constant.
We further assume that the scale range is bounded by
some larger scale L, at which φ obeys the boundary con-
dition φ(` = L) = 0, and that, for scales much smaller
than the larger scale, F follows a power-law F (`) ∝ `h0 .
This property can be obtained for example if F is a Gaus-
sian random function with a power-law spectrum.

1. Scale invariance

We note that, in absence of forcing, (F = 0), the equa-
tion (1) is invariant under the family of transformations
Sh(λ):

Sh(λ) : `→ λ`, φ→ λhφ, t→ λt, (2)

for arbitrary λ and h. The physical system described by
eq. (1) without forcing is then said to be scale invariant.
Several important properties of scale invariant systems
are listed in Section 3.1.

2. Zero-mode

In absence of forcing, stationary solutions of eq. (1)
satisfy the homogeneous equation:

∂`φ−
ζ

`
φ = 0. (3)

The solution is φ = A`ζ , where A is to be chosen accord-
ing to the boundary condition, namely: φ(L) = ALζ = 0,
i.e. A = 0. In absence of forcing, there are therefore no
non trivial stationary solutions of eq. (1). The situation
is modified when the forcing is taken into account.

3. Dimensional analysis

Before solving the forced equation, let us perform a
simple dimensional analysis of eq. (1). We note that for

scale smaller than L, stationary solutions can be found
by using the scaling properties of F (Section 2.1) and
balancing the l.h.s. and the r.h.s. of (1):

φ

`
∼ F ∼ `h0 , `� L, (4)

which predicts another power-law solution φ ∝ `1+h0 , for
`� L.

4. Incomplete similarity

The previous dimensional analysis ignores the influ-
ence of the largest scale L. In fact, the solution must be
influenced by the scale L, would it be only to satisfy the
boundary condition φ(L) = 0 (which is not satisfied if
the solution is only a power law!). A correct dimensional
analysis thus imposes:

φ(`) = `F (`)G(`/L), (5)

where G is a function which cannot be determined by di-
mensional arguments. A modification of the dimensional
power law solution φ ∝ `1+h0 can then be observed if the
variable L is essential and if G obeys incomplete similar-
ity in L, i.e.:

G(`/L) ∼ (`/L)−∆, L� 1, ∆ > 0. (6)

Since ∆ is positive, the function G tends to infinity when
L tends to infinity. In other words, the size of the sys-
tem is always relevant and cannot be eliminated from the
problem. In such a case, φ follows an anomalous scaling:
φ ∝ L∆`1+h0−∆. The value of ∆ can be found by solving
exactly the equation (1).

5. Exact solution of the complete problem

The stationary solution of eq. (1) is:

φ = A`ζ + `ζ
∫ `

0

ρ−ζF (ρ)dρ. (7)

The constant A is found by imposing the boundary con-
dition at ` = L:

A = −
∫ L

0

ρ−ζF (ρ)dρ ∼ L1+h0−ζ . (8)

The leading contribution to φ for `/L� 1 then depends
on the sign of ∆ = 1 + h0 − ζ. When it is negative, φ
just obeys the dimensional scaling, and the contribution
due to L tends to zero as L → ∞. This is the case of
complete similarity, with no anomalous scaling. When
∆ is positive, the dominant contribution is L∆`ζ , which
tends to infinity with L. This is the case of incomplete
similarity described previously.
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6. Summary

This simple example illustrates the general mechanism
of anomalous scaling discussed in [4] in the case of a fi-
nite size, scale-invariant system: a zero mode, with a
generic non-dimensional similarity exponent, and which
does not satisfy the boundary condition, becomes rele-
vant in the presence of an external forcing, which also
imposes a dimensional, normal scaling exponent. The
dominant contribution to the solution then depends on
the relative value of the two scaling exponents, and in
particular, on the behavior of the limit L→∞.

7. Implications on scaling exponents

In the case discussed previously, non-anomalous expo-
nents are given by the exponents of the zero mode of a
scale invariant differential operator. It then makes a lot
of sense to investigate the possible constraints on scaling
exponents dictated by the scale symmetry. This fully jus-
tifies computation of scaling exponents based on multi-
fractal theory [5], conformal theory [6], or more recently
on a principle of exponent relativity developed in [7, 8].
Such approaches restrict more or less severely the pos-
sible shape of non-anomalous scaling in scale invariant
systems. Restrictions are very weak in the case of the
multi-fractal or conformal theory, while they are rather
strong in the exponent relativity approach: in that case,
the possible generic exponents fall into three classes de-
pending on the properties of the rarest events. Within
each class, the shape of the scaling exponents as a func-
tion of the order of the correlation function is entirely
determined by the scale symmetry, and only depends on
three parameters.

Transition from anomalous to non-anomalous scaling
can also be constrained within the present model. Ob-
viously, the value of the scaling exponents cannot be
affected by modifications of external parameters, such
as the strength of the force. The transition to non-
anomalous scaling can only be obtained by a modification
of the shape of the differential operator, i.e. by variation
of internal parameters such as dimensionality, or isotropy
properties. In the case of the white advected passive
scalar, for example, it has been proved [9] that the non-
anomalous behavior disappears in the limit where the
(topological) dimension of the system is infinite. This
kind of asymptotic behavior could well be found in a
large variety of systems, such as turbulence.

B. The case of turbulence

The Navier-Stokes equations are:

∂t~u+ (~u · ~∇)~u+ ~∇P = ν∇2~u+ ~F , ~∇ · ~u = 0, (9)

where t is the time, ~u the velocity field, P the pressure,

ν the viscosity and ~F the external force, acting at large

scales. Turbulence is defined as a statistically stationary
regime of the Navier-Stokes equations where an external
forcing balances the viscous energy losses and induces a
constant energy rate: du2/dt = cte. This means that the

product ~F ·~u is scale independent, so that the force scales
like 1/u. We note that eq. (9) exhibits common features
with eq. (1). The l.h.s. of (9) is invariant under the
family of scale dilations Sh(λ) with arbitrary similarity
exponent h and scale factor λ [10]:

Sh(λ) : `→ λ`, u→ λhu, t→ λ1−ht, (10)

where ` is the space scale. This scale symmetry property
is broken by both the forcing and the dissipation, which
considered separately impose a dimensional scaling expo-
nent: for the forcing, it is obtained by balancing F and
du/dt, which given the transformation properties of F ,
yields u3 ∼ `, i.e. hF = 1/3. For the dissipation, balanc-
ing of du/dt with ν∇2u gives u ∼ `−1, i.e. hD = −1.

Experimentally, none of these dimensional scalings is
observed. Let us define the longitudinal velocity incre-

ments at scale ` by δu` = ~̀·[~u(~x+~̀)−~u(~x)]/` and the ve-
locity structure function of order n, Sn(`) =< (δu`)

n >,
where <> is a statistical average. In a range of scales
small compared with the forcing scale, and large com-
pared with the scales at which dissipation becomes non-
negligible (the so called inertial range), the structure
functions are observed to follow approximate power law
behavior: Sn(`) ∝ `ζn . The dimensional value im-
posed by the forcing would be ζn = nhF = n/3 while
the dimensional value imposed by dissipation would be
ζn = nhD = −n. Experimentally, none of these dimen-
sional scaling is observed. The origin of this anoma-
lous scaling can be understood within the mechanism ex-
plored previously: following the Navier-Stokes equation,
the structure functions obey an equation of the type:

InSn = Fn +Dn, (11)

where In is a scale invariant differential operator acting
in the scale space, and Fn and Dn contributions due to
forcing and dissipation, imposing dimensional exponents
n/3 and −n. The scaling exponents in the inertial range
then come from the scaling properties of the zero-mode of
the operator In. Note that until now, the explicit shape
of the operator In has never been computed, even per-
turbatively. It is quite possible that it is a non-diagonal
operator of the structure functions, like in the Burgers
equation, in which case the explicit computation of the
zero-modes would be very difficult. Note also that for the
Burgers equation, the scaling comes from the balance of
non-diagonal contributions with terms corresponding to
Dn, which shows that the anomalous scaling described in
the previous Section does not necessarily apply for any
type of equation. In this respect, our model equation (1)
is a little bit ambiguous, and its application to turbulence
not so straightforward as it may seem. We however adopt
it as a working hypothesis, to explore its consequences.



4

Because of the presence of two scale-breaking symme-
try mechanisms, turbulence offers a new possibility ab-
sent in the model equation (1): transition to new anoma-
lous exponents at small scales, obtained by balancing of
F and D. Because of constant energy transfers, F scales
like 1/u, while D scales like u/`2, so hT = 1. Indeed, ex-
perimentally, one observes a transition towards Sn ∝ `n

at small scales, the so-called “regular behavior”. The ex-
istence of this transition imposes a scale dependence for
the scaling exponents, and thus, non trivial scale depen-
dence for the shape of the structure functions. Of course,
this shape depends both on the shape of the operator In,
and on Fn and Dn. Given the symmetry properties of
In, it is however interesting to investigate whether the
scale symmetry does impose possible generic shape for
the structure functions, even within the inertial range, in
the same way as it does constrain the n dependence of
the scaling exponents. This is the purpose of the next
Section.

III. SCALE COVARIANT STRUCTURE
FUNCTIONS IN TURBULENCE

In the present Section, we assume that the velocity
structure functions in turbulence obey a differential equa-
tion which can be put under the form (11), where In
is a scale invariant operator. Furthermore, we assume
that the solution in the inertial range is given by the ho-
mogeneous part of the equation (Fn = Dn = 0), and
that there is a transition towards the ”regular” solution
Sn(`) = Kn`

n at a scale ` = ηn, where both Kn and ηn
are entirely determined by Fn and Dn. Our inertial range
solution therefore extends up to ηn. Our aim is to derive
a generic shape for the structure functions, satisfying all
these requirements. From now on, we focus on stationary
situations, thereby neglecting any time dependence.

A. On scale symmetry

A scale invariant system is according to our definition,
invariant by a transformation Sh(λ) given in (2). Note
that in log-variables A = lnφ, T = ln `, this transfor-
mation amounts to a translation invariance in A and T .
This symmetry is rather intuitive, and connected with
the possibility to multiply any characteristic quantity by
an arbitrary constant, i.e. to perform arbitrary changes
of units in the system [7]. This corresponds to a global
scale invariance. In fact, as discussed by Pocheau [12],
scale symmetry encompasses another notion, correspond-
ing to symmetry with respect to local scale dilations.
This symmetry is connected with the invariance of the
system with respect to changes of resolution, or equiva-
lently to the possibility of performing arbitrary changes
of rationalized (power law) unit systems [7]. To under-
stand this local symmetry, it is convenient to consider a

discrete slicing of the space scale ` ≤ L, under the form:

`i = Γi`0, φi = Λiφ0,

L = ΓN`0. (12)

Here, Γ (or equivalently N) and Λ characterize the reso-
lution of the observations. By local scale symmetry, we
require that the system be invariant by changes of reso-
lution, i.e. by changes of N . Changes in N are achieved
by dilations of Γ: Γ → Γα, which transform i into iα.
It is also a transformation which transform `i/`j into
(`i/`j)

α, and φi/φj into (φi/φj)
α. A local scale dilation

can therefore be seen as a transformation:

`/`0 → (`/`0)α, φ/φ0 → (φ/φ0)α, (13)

for arbitrary α, `0 and φ0. It can be seen as a change of
rationalized unit system because it amounts to change `0
and φ0 by `0(`/`0)1−α and φ0(φ/φ0)1−α.

Summarizing, we say that a system is scale invariant,
if it is invariant under both (2) and (13), i.e. if the equa-
tions governing its evolution are covariant (keep the same
shape) under these two transformations.

B. Generic equation for structure function

Assuming that a turbulent flow is scale invariant, we
must then write the equations followed by a structure
function Sn(`) in a covariant way. For convenience, we
introduce the log variables Xn = lnSn and T = ln `
[13]. The shape of the structure function is determined
by the function Xn(T ), given some boundary (initial)
conditions. We must write the differential equation fol-
lowed by Xn. Because of the global symmetry (2), which
amounts to a translation invariance in Xn and T , this
differential equation can only include derivatives of Xn

with respect to T . In the spirit of the amplitude equation
theory, we write the generic equation as an expansion in
power of the amplitude:

χn = an
dXn

dT
+ bn

d2Xn

dT 2
+ cn

d3Xn

dT 3
+O(

d4Xn

dT 4
)

+ gn

(
dXn

dT

)2

+ hn
dXn

dT

d2Xn

dT 2
+O((

dXn

dT
)3),(14)

where χn,an, bn, ...hn are some T independent constants
characterizing the system and are to be chosen in order to
respect the local scale symmetry. Applying the transfor-
mation (13) to (14), we see that this equation is covariant
only if the constants satisfy the following transformation
rule:

χn → χn; an → an; bn → αbn; cn → α2cn;

gn → gn; hn → αhn; ... (15)
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This suggests to introduce two characteristic constant
scales in the system, `0 and `1 and to write:

χn = χ̃n,

an = ãn,

bn = b̃n ln(`1/`0),

cn = c̃n(ln(`1/`0))2,

gn = g̃n,

hn = h̃n ln(`1/`0), (16)

where the constants χ̃n, ... are invariant under the local
scale transformation, and only depend on the structure
function (i.e. on n) and on the choice of `0 and `1. From
now on, we fix the scale origin at the integral scale ` = L
(representing the largest correlated motions). With this
choice, scale invariance symmetry holds for

− ln(R∗) ≤ T ≤ 0, (17)

where R∗ = L/η is a dimensionless number apparented
to a Reynolds number and η is. the Kolmogorov scale
(representing dissipative scales of turbulence).

C. The case of turbulence

Equation (14), with constants following (16) is a
generic equation in a scale invariant system, satisfying
both global and local symmetry. Its solution depends on
the values of the constants, which must be computed fol-
lowing some systematic procedure. However, interesting
features of the solution may already be found in the lin-
ear approximation, where all terms of degree A2 or higher
are neglected [14]. This approximation may be justified
by considering a range of scales where the amplitude A
is small enough. We study here only the simplest case
relevant to turbulence.

1. The linear case

The highest relevant derivative is determined by the
number of boundary conditions. The existence of a
largest scale in the system (e.g. the injection scale) im-
poses already at least one boundary condition. Further-
more, the existence of the transition between the scale
invariant solution and the regular solution at ` = ηn im-
poses at least a second boundary condition. Note that
this is a peculiarity of turbulence. In many scale invariant
systems, only one boundary condition is needed, corre-
sponding to an infrared or ultraviolet cut-off in the scale
space.

We adopt L, the integral scale scale, and ηn to nor-
malize the constants, and introduce the pseudo-Reynolds
number

ln(Rn) = ln(L/ηn).

Dropping tildes for convenience, we therefore write the
simplest differential equation relevant to structure func-
tions in turbulence as:

χn = an
d ln(Sn)

dT
+ bn ln(Rn)

d2 ln(Sn)

dT 2
, (18)

where χn, an and bn 6= 0 are T independent constant
depending on the order of the structure function. Note
that they also are independent on the Reynolds number,
since solutions with different Reynolds number R1 and
R2 can be related by a local scale transformation (13)
with α = ln(R1)/ ln(R2). The solution is:

ln(Sn) =
χn

2bn ln(Rn)
T 2 + αnT + βn, an = 0,

ln(Sn) =
χn
an
T + αne

−(anT )/(ln(Rn)bn) + βn, an 6= 0.(19)

The constant αn and βn are fixed by the boundary con-
ditions. Without loss of generality, we can fix the scale
origin at ` = L, and choose the normalization for Sn such
that:

ln(Sn)(T = 0) = 0,

d ln(Sn)

dT
|T=− ln(Rn) = n. (20)

The second boundary condition guarantees the transition
towards the regular solution. These boundary conditions
fix the constants as:

αn = n+
χn
bn

; βn = 0, an = 0,

αn = −βn =

(
χn
an
− n

)
bn ln(Rn)

an
e−an/bn , an 6= 0.(21)

The solutions (19) with constant given by (21) both fol-
low the behavior schematized in Fig. 1: a power law
behavior around ` = L, followed by a transition regime
towards ` = ηn, where matching with the regular solution
is obtained.

The second solution, with an 6= 0 (generic case) is the
most interesting, because it exhibits a feature reminiscent
of what is observed in turbulence. This is the subject of
the remaining Sections.

2. Large Reynolds number limit

In the limit where the pseudo-Reynolds number is very
large, T/ ln(Rn) � 1 and the argument of the expo-
nential can be expanded. The generic solution then ap-
proaches the self-similar behavior:

ln(Sn) =

(
χn
an

(1− e−an/bn) +ne−an/bn)

)
ln(`/L). (22)

This behavior is also valid in the neighborhood ` = L.
This kind of asymptotic behavior has been observed in a
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FIG. 1: The behavior of a structure function versus the scale
when an = 0 (dotted line) and an 6= 0 (continuous line).

tunnel wind experiment by Castaing et al [15]: when the
Reynolds number is increased, the shape of the structure
function goes from exponential power law, like in the first
part of our generic solution (19b), to self-similar power
law behavior. Even in the moderate Reynolds number
regime, Castaing and his collaborators observe that the
exponential power law regime is superseeded at larger
scales by a pure power law regime. Such kind of behav-
ior is indeed obtained at ` > L in the generic solution,
provided an/bn is negative. This exponential power law
as well as the variation of the exponent with (1/ lnR)
has also been predicted by Castaing [16] using a scale in-
variant Lagrangian formalism and requirement of finite
dissipation. Within the present framework the result ap-
pears to stem both from scale invariance and finite size
effects (see discussion).

3. Interpretation of the constants

Up to this stage, we have not tried to characterize the
various constants χn, an and bn appearing in the solu-
tion. They should in principle be directly computed from
the Navier-Stokes equations. Given the properties of the
generic solution, we can however propose an interpreta-
tion of the constants which provides some constraints on
their shape. Consider the asymptotic behavior of the
solution (22). It defines some ”inertial range” scaling
exponents:

ζn = ne−an/bn +
χn
an

(1− e−an/bn). (23)

They are made from two contributions: one stemming
from the solution of the equation dA/dT = χn/an;
another one coming from the exponential power term,
present only when bn is different from zero, i.e. when the
system is of second order. As discussed in Section 3, the
presence of this term is directly linked with the existence
of a small scale cut-off, where the solution must bifurcate

towards the regular solution. It can therefore be inter-
preted as a finite-size effect. On the other hand, the con-
tribution at bn = 0 characterizes a perfect scale invariant
solution, extending from 0 to infinity in the scale space.
This separation is reminiscent of the model of Dubrulle
and Graner [7], in which generic scaling exponents can
be written:

ζn = n∆∞ + δζn. (24)

Here, δζn is a contribution stemming only from scale
symmetry considerations. It is characterized by its large
n limit C = limn→∞ δζn which can be interpreted as the
codimension of the most intermittent structures. The
term proportional to ∆∞ is the contribution due to the
scaling properties of the maximum value of ln(Sn), which
is defined only for finite-size systems. The factorization
(24) with a linear dependence of the contribution due to
finite-size effect can also be justified from dynamical con-
siderations [17]. This suggests to interpret the constants
appearing in (23) as:

e−an/bn ≡ ∆∞,

χn
an
≡ δζn

1−∆∞
. (25)

With this interpretation, finite size effects modifies the
scale invariant solution in two ways: by the introduction
of the linear term n∆∞ and by the modification of the
codimension of the most intermittent structure:

Cscale =
Cfinite
1−∆∞

, (26)

where Cscale is the codimension in the scale invariant
case, and Cfinite is the codimension in the finite size case.
We stress that this finite size effect is Reynolds number
independent (it only depends on the value of the constant
bn). It may however depend on other external parameter,
such as the dimension (see discussion of Section 2.1).

Using eq. (21), interpretation (26) completely deter-
mines the ratio χn/an and an/bn as a function of ∆∞
and the function δζn, which can be severly constrained
using only scale symmetry requirements [7].

4. Example: log-Poisson case

As an example, let us considered the case where δζn
corresponds to a log-Poisson statistics [18–21] (one of the
three possible cases derived in [7]):

δζn = C(1− βn), (27)

where C and β are two constants. If we adopt the val-
ues Cfinite = 2, β3 = 2/3 and ∆∞ = 1/9 as advocated
by She and Leveque [18], for high Reynolds number tur-
bulence, we can numerically determine the values of all
parameters and thus, the scale dependence of the struc-
ture functions, providing the pseudo-Reynolds number
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n χn/an an/bn

2 0.53 2.2

3 0.75 2.2

4 0.95 2.2

5 1.1 2.2

6 1.25 2.2

TABLE I: Values of the parameters appearing in the structure
functions for the log-Poisson model.

Rn are given. Table I summarizes the values obtained
for n = 2 to 6. The corresponding structure functions,
for Rn = 10 are given in Fig. 2.

FIG. 2: The generic structure functions S2 to S6 in the log-
Poisson case.

5. Comparison with Batchelor’s parametrization

Using only symmetry arguments, we derived the shape
of the structure functions in the linear approxima-
tion. This shape can be compared with the Batche-
lor’s parametrization, which can be derived from the Kol-
mogorov four-fifth law using matched asymptotics. This
parametrization gives:

S2(`) =
A(`/η)2[

1 +B(`/η)2

](2−ζ2)/2
, (28)

where A and B are constants depending on the skewness
of the velocity derivatives (B ≈ 7.2×10−3 [22]). The best
fit between Batchelor’s parametrization and the generic
solution is obtained for η2 = 6.35η and is shown in Fig.
3.

FIG. 3: Comparison between the Batchelor parametrization
(dotted line) and the generic structure function ln(S2) in the
log-Poisson case (continuous line).

6. General scaling

The structure functions computed in the previous Sec-
tion display an interesting property, referred to in tur-
bulence as General Scaling (GS) [24]. We introduce the
maximal event function S∞ defined as:

S∞ = lim
n→∞

Sn+1

Sn
. (29)

In a bounded system, this function is always defined and
represents the event of maximal intensity. In turbulence,
it represents the largest velocity differences. The reduced
structure functions Sn/S

n
∞ then obey a remarkable fac-

torization property,

ln

(
Sn
Sn∞

)
∝ ln

(
S3

S3
∞

)
. (30)

This is shown in Fig. 4a. This factorization property, ex-
tending throughout the whole scale interval, can be seen
as a generalization of the factorization occurring in the
inertial range, where all structure functions are propor-
tional to T .

This result can be explained by our choice of n in-
dependent pseudo-Reynolds numbers Rn ≡ R. In such
case, from (19) and (25), we obtain:

ln(S∞) = ∆∞
ln(R)

ln(∆∞)

(
∆T/ ln(R)
∞ − 1

)
. (31)

The reduced structure functions Sn/S
n
∞ are then simply

given by:

ln

(
Sn
Sn∞

)
=

δζn
1−∆∞

[
T −∆∞

ln(R)

ln(∆∞)

(
∆T/ ln(R)
∞ − 1)

]
,

(32)
and are proportional to each other within the whole scale
interval. It is not clear whether the present analysis pro-
vides an explanation to the GS observed in turbulence. It
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FIG. 4: Top: (a) General Scaling: all the reduced structure
functions are proportional to each other (here the third one).
Middle: (b) Extended Self Similarity: when the 6th order
structure function is plotted against the 3rd one, one observes
a better defined scaling regime (compare with Fig. 2). De-
spite the visual impression, the Extended Self Similarity is
only approximate (see Section 3). Bottom: (c) Local scal-
ing exponent ζ6 and relative scaling exponent ζ6/ζ3 versus
the scale. The local scaling exponent decreases constantly
with the scale, proving the absence of exact self-similarity.
By contrast, the relative scaling exponent varies much less,
which enables a better determination of this exponent (ESS
property).

is not known in turbulence whether the pseudo-reynolds
numbers Rn are actually n independent, i.e. if the tran-
sition from inertial range solution towards the regular

solution occurs at the same scale ηn = η (see [24] for
a discussion about n dependent cut-offs). If the depen-
dence of ln(Rn) with n is weak, as seems to be the case
in turbulence, then the present analysis is still valid in
turbulence and explains the phenomenon of GS within
the context of scale symmetry.

7. Extended Self-Similarity

The factorization property (30) can be strengthened
if, in addition, ln(S∞) is also proportional to any
ln(Sn/S

n
∞). In that case [24], the logarithms of any struc-

ture functions are proportional to each other. In other
words, when one structure function is plotted against
another one (e.g. the third one), one observes a well
defined scaling regime, even in the range of scale where
the function is not self-similar. This property was called
Extended Self-Similarity [23]. The condition to observe
this is ∆∞ → 0. In practise, if this condition is satis-
fied approximately, one can expect to observe ESS in the
system. In our case, ∆∞ = 1/9 is small, so we should ob-
serve ESS. This is illustrated in Fig. 4b. Note that ESS
property means that the relative exponent ζ?n defined as

ζ?n =
d ln(Sn)

d ln(S3)
, (33)

is much better defined than the true exponent:

ζn =
d ln(Sn)

d ln(`)
. (34)

To illustrate this point, we have computed these scaling
exponents for n = 6 (Fig. 4c). It can be seen that ζ6
decreases steadily from ζ6 = 6 to ζ6 = 1.78, while ζ∗6
displays much weaker variations over the whole interval,
from ζ∗6 = 2 to ζ∗6 ≈ 1.8 (the “intermittent value”).

8. Finite size effects vs asymptotic K41 solution?

In the previous Sections, we have used an interpreta-
tion of the constants to compute explicitly structure func-
tions. This interpretation was dictated by our choice to
introduce explicitly the dissipative range in the boundary
condition (via the matching to the “regular solution”).
In such interpretation, asymptotic (high Reynolds num-
ber) scaling exponents take the shape (23), with a lin-
ear part coming explicitly from finite size effects. In ab-
sence of finite size effects, they take the simple shape
ζn = Cscale(1 − βn) predicted by Dubrulle and Graner
[7]. The Kolmogorov solution ζn = n/3 is never reached,
unless the coefficient β appearing in (19b) depends on
other external parameters such as the dimension. The
Kolmogorov solution could then appear as the infinite
dimension limit (even in presence of finite size effects),
and β would be a parameter characterizing the dimen-
sion of the system.
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Other interpretations are however possible, within the
same symmetry arguments. For exemple, one could re-
strict the solutions to an “inertial range” of scale defined
by imposing ζ3 = 1, i.e. α3 = 0 in (27). Asymptotic
Kolmogorov solution could then be obtained with the
following choice of constants (still compatible with the
theory of Dubrulle-Graner):

χn
an
≡ δζn

δζ3
,

−αn
an

bn ln(Rn)
≡ n

3
− δζn
δζ3

,

e−an/bn = 3∆∞. (35)

In such case, the derivative d ln(Sn)/dT reaches the value
(24) at T = ln(Rn), which appears as another bound-
ary condition. In absence of finite size effects, the scal-
ing exponents are ζn = (1 − βn)/(1 − β3). The Kol-
mogorov solution ζn/3 is obtained as the asymptotic so-
lution (Reynolds tends to infinity) in presence of finite
size effects.

We were not able to discriminate between these two
types of interpretations. Obviously, one is rather valid
in the vicinity of the dissipative range. It could then be
seen as a refinement of the arguments by Frisch and Ver-
gassola [25] obtained within the multifractal model (see
[15] for a discussion within the log-similarity hypothe-
sis). The second is valid in the “inertial range”, defined
using ζ3 = 1 (inertial range log-similarity hypothesis, see
[15]). They however lead to distinct prediction about the
possibility to approach Kolmogorov solution. The most
recent experimental results seem to indicate that the ob-
served scaling exponents are almost independent of the
Reynolds number [2]. This would favor the first inter-
pretation, and explain our choice in the present paper.
Obviously, it would be interesting to consider further the
variation of scaling exponents with the Reynolds number,
and, possibly, to reconsider the second interpretation.

It should be stressed however that in any case, the
“exponential power-law” appears as a prediction of sym-
metry arguments, independent of any boundary consid-
eration, i.e. of these kind of interpretations.

IV. DISCUSSION

Using only symmetry considerations, we were able to
build generic structure functions reproducing many fea-
tures observed in actual structure functions in turbu-
lence: transition from exponential power shape to a
power shape with increasing Reynolds number, extended-
self-similarity, regular matching with the regular solution
at small scale. We do not claim that the generic struc-
ture functions considered in the present paper actually
fit exactly the structure functions determined experimen-
tally, because we intentionally considered only the sim-
plest case relevant to turbulence, where the equation is
linear. It is clear for example that the observed large

scale saturation of the structure functions, which is ab-
sent in the linear model, could be obtained by taking into
account non-linear terms in the differential equation, i.e.
by a slightly more complicated model.

Our results illustrate the essential influence of scale
symmetry on structure functions in turbulence, and pro-
vides further support to the scenario of ”scale invariant”
anomalous scaling discussed in Section 2. We note that
finite size effects (ultraviolet cut-off) generically lead to
non-power law behavior of the structure function, but
rather to exponential power-law behavior, exp(`α), where
α is real, proportional to the inverse Reynolds number.
Such dependence, connected with the requirement of co-
variance by resolution, was also inferred by Barenblatt
and Goldenfeld using the principle of ”Reynolds number
covariance” [26]. We see here that such principle (left
unjustified by Barenblatt and Goldenfeld) is directly con-
nected with scale symmetry. Finally, we note that there
is a possibility to get complex exponential power-law be-
haviors (α complex) if we allow a differential equation
of higher order, or if we allow the presence of terms di-
rectly proportional to A in (14). The first possibility
could be justified if more than two boundary conditions
are necessary to specify the solution. The second pos-
sibility still requires only two boundary conditions, but
implies a breaking of global scale invariance. This re-
quires the existence of a privileged scale into the sys-
tem, and occurs for example in a system subject only to
discrete scale invariance [27]. Complex exponents gives
rise to log-periodic oscillations at large Reynolds number
(when the solution goes from exponential power law to
power law), which may have been detected in a variety of
physical systems [27, 28]. It would be interesting to see
whether they can also arise in certain turbulent flows.
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