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Abstract

Given a Reproducing Kernel Hilbert Space (H, 〈., .〉) of real-valued functions

and a suitable measure µ over the source space, we decompose H as sum of a

subspace of centered functions for µ and its orthogonal inH. This decomposition

leads to a special case of ANOVA kernels, for which the functional ANOVA

representation of the minimal norm interpolator can be elegantly derived. The

proposed kernels appear to be particularly convenient for analyzing the effect of

each (group of) variable(s) and computing sensitivity indices without recursivity.

Keywords: Kernel Methods, Global Sensitivity Analysis, Sobol-Hoeffding

Decomposition, Gaussian Process Regression, Computer Experiments

1. Introduction

Let f be a real-valued function defined over D ⊂ R
d. We assume that f is

costly to evaluate and that we want to study some global properties of f such as

the influence of each variable on f . As the number of evaluations of f is limited,

it may be unaffordable to run sensitivity analysis methods directly on f . Thus,

it can be helpful to replace f by a mathematical approximation for performing
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such studies [7]. We propose in this article a class of functional approximations

that is well suited for performing global sensitivity analysis. First of all, we

present some background in sensitivity analysis, interpolation in RKHS, and

a class of kernels from the state of the art called ANOVA kernels. We then

construct RKHS of zero mean functions and derive a new class of ANOVA

kernels that is well suited for sensitivity analysis. Finally, we illustrate the use

of those kernels on a classical example from the sensitivity analysis literature.

1.1. Sensitivity analysis

Let us consider f ∈ L2(D,µ), where D = D1 × · · · ×Dd is a product space

of bounded sets Di ⊂ R and µ = µ1 × · · ·×µd is a product probability measure

over D. The purpose of global sensitivity analysis is to analyze the influence of

all (groups of) variables on f . A common approach is to study the variance of

f(X) where X is a random vector with distribution µ.

If d = 1, any g ∈ L2(D,µ) can be canonically decomposed as a sum of a

constant plus a zero mean function,

g =

∫

D

g(s)dµ(s) +

(

g −

∫

D

g(s)dµ(s)

)

so that we have a geometric decomposition of L2(D,µ):

L2(D,µ) = L2
1(D,µ)

⊥
⊕ L2

0(D,µ) (1)

where L2
1(D,µ) denote the subspace of constant functions and L2

0(D,µ) the

subspace of zero mean functions for µ.

Similarly, if d > 1, the space L2(D,µ) has a tensor product structure [6]

L2(D,µ) =

d
⊗

i=1

L2(Di, µi). (2)

Using Eq. 1 and the notation L2
P (D,µ) =

⊗d
i=1 L

2
Pi
(Di, µi) for P ∈ {0, 1}d we
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obtain

L2(D,µ) =

d
⊗

i=1

(

L2
1(Di, µi)

⊥
⊕ L2

0(Di, µi)

)

=

⊥
⊕

P∈{0,1}d

L2
P (D,µ). (3)

A key property is that the subspaces L2
P and L2

Q are orthogonal whenever

P 6= Q. Given an arbitrary function f ∈ L2(D,µ), the orthogonal projections

of f onto those subspaces leads to the functional ANOVA representation [4, 10]

(or Sobol-Hoeffding decomposition) of f into main effects and interactions:

f(x) = f0 +

d
∑

i=1

fi(xi) +
∑

i<j

fi,j(xi, xj) + · · ·+ f1,...,d(x). (4)

Let us remark that f0 can be seen as a constant function overD (i.e. an element

of L2
{0}n), and each fi1,...,ik (1 ≤ k ≤ d, i1, . . . , ik ∈ [1, d]) can be represented as

an element of L2
P (I)(D,µ) (I denotes here {i1, . . . , ik}) by identifying it with

fP (I) : x ∈ D −→ fi1,...,ik(xi1 , . . . , xik) ∈ R (5)

where P (I) ∈ {0, 1}d with P (I)i = 1 if i ∈ I and P (I)i = 0 if i /∈ I. So

the integral of fP (I) with respect to any of the variables indexed by i ∈ I is

zero. This representation of f gives an insight on the influence of each variable

or couple of variables on f . For the constant term, the main effects, and the

two-factor interactions, one gets the classical expressions

f0 =

∫

D

f(x)dµ(x)

fi(xi) =

∫

D−{i}

f(x)dµ−i(x−i)− f0

fi,j(xi, xj) =

∫

D−{i,j}

f(x)dµ−{i,j}(x−{i,j})− fi(xi)− fj(xj)− f0

(6)

where D−I :=
∏

i/∈I Di and µ−I := ⊗i/∈Iµi. Similarly, the calculation of any

fI requires to have recursively calculated all the fJ ’s for J ∈ I, which makes it

cumbersome (if not practically impossible) to get higher order interactions.
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Coming back to the case of a random vector X with distribution µ, the

variance of the random variable f(X) can be decomposed as

var(f(X)) =

d
∑

i=1

var(fi(Xi)) +
∑

i<j

var(fi,j(Xi,j)) + · · ·+ var(f1,...,d(X)) (7)

and the global sensitivity index SI for a subset of indices I is usually defined as

SI = var(fI(XI))/var(f(X)). (8)

SI represents the proportion of variance of f(X) explained by the interaction

between the variables contained in I. The knowledge of the indices SI is very

helpful for understanding the influence of the inputs, but the computation of

the fI ’s is cumbersome when the evaluation of f is costly since they rely on the

computation of the integrals of Eq 6. Following [7], it can then be advantageous

to perform the sensitivity analysis on a surrogate model m approximating f .

1.2. Optimal interpolation in RKHS

The class of functional approximation techniques considered in this work, com-

monly referred to as Kriging or Gaussian Process Regression in contemporary

statistical learning settings, boils down to optimal interpolation in Reproducing

Kernel Hilbert Spaces (RKHS). f is here assumed to be known at a set of points

X = {X1, . . . ,Xn} ∈ D. Given H a RKHS of real-valued functions over D with

kernel K(., .), the interpolator m of f at X that minimizes ||m||H is [8]:

m(x) = k(x)tK−1F (9)

where F = f(X ) is the column vector of observations, k(.) is the column vector

of functions (K(Xi, .))1≤i≤n and K is the Gram matrix (K)i,j = K(Xi,Xj).

A striking fact about Eq 9 is that m can be an interpolator even if f /∈ H. K

can be any symmetric positive definite kernel and it has to be chosen in practice.

This choice has a great impact on the resulting model, and it is customary to
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selectK among family of parametric functions of positive type according to some

prior knowledge about f , and to estimate the corresponding parameters based

on observed data. We will focus here on a particular family of such kernels,

called ANOVA, which are furthermore designed to offer good interpretability

properties. The main contribution of this paper (in Section 3) deals with a

special case of ANOVA kernels tailored for an improved disentanglement of

multivariate effects.

1.3. ANOVA kernels and a candidate ANOVA-like decomposition of m

ANOVA kernels (See e.g. [2] section 5.4 for a historic approach) have been

proposed in the literature of multivariate regression for an enhanced inter-

pretability of splines and related models. They are constructed [5] by taking

tensor products of univariate kernels 1+ ki, where 1 stands for a bias term and

the ki’s are arbitrary symmetric definite positive kernels on Di×Di (1 ≤ i ≤ d):

KANOVA(x,y) =

d
∏

i=1

(1 + ki(xi, yi)) = 1 +
∑

I⊂{1,...,d}

∏

i∈I

ki(xi, yi). (10)

Denoting by 1
i and Hi the RKHS of functions defined over Di with respective

reproducing kernels 1 and ki, KANOVA is in fact the reproducing kernel of the

spaceHANOV A =
⊗d

i=1(1
i+Hi). Now, back to Eq. 10, the particular structure

of KANOVA allows us to develop the n× 1 vector k(x) of eq 9 as follows:

k(.) = 1+
∑

I⊂{1,...,d}

⊙

i∈I

ki(.) (11)

where ⊙ denotes a term-wise product. Injecting this relation in eq 9, we get:

m(x) = 1tK−1F+
∑

I⊂{1,...,d}

(

⊙

i∈I

ki(xi)

)t

K−1F

= 1tK−1F+
∑

I⊂{1,...,d}

∏

i∈I

(

ki(xi)
tK−1F

)

(12)

Noting m0 = 1tK−1F and mI(x) =
∏

i∈I k
i(xi)

tK−1F (I ⊂ {1, . . . , d} and
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I 6= ∅), we obtain a development of m which looks quite similar to its FANOVA

representation:

m(x) = m0 +
d
∑

i=1

mi(xi) +
∑

i<j

mi,j(xi,j) + · · ·+m1,...,d(x1,...,d), (13)

where the mI ’s have the nice feature of not requiring any recursive computation

of integrals. However, the properties of the ANOVA representation are not

respected since the mI ’s are not necessarily zero mean functions, i.e. any two

terms of the decomposition do not have to be orthogonal in L2. For example,

if ki is an Ornstein-Uhlenbeck kernel [1], it is known that 1i ⊂ Hi.

Let us remark that the submodels m0 and mI respectively belongs to the

spaces 1
1 ⊗ · · · ⊗ 1

d and
⊗

i∈I H
i
⊗

i/∈I 1
i, but that they are not necessarily

orthogonal projection onto those spaces. In order to ensure that the decom-

position of Eq. 12 has the properties required in Eq. 4, we have to consider

RKHS Hi that are L2-orthogonal to the constant functions 1i, ie RKHS of zero

mean functions for µi [11]. With such a construction, we would benefit from

the advantages of the two decompositions: the meaning of the decomposition

given by Eq. 4 for the analysis of variance and the easiness of computation of

the mI ’s from Eq. 12.

2. RKHS of zero mean functions

We will show in this section how to extract a RKHS of zero mean functions

from a RKHS with arbitrary symmetric definite positive kernel K (k if d = 1).

2.1. Decomposition of one-dimensional RKHS

Let H be a RKHS of functions defined over a compact set D ⊂ R and µ a

finite Borel measure overD. Furthermore, we consider the couple of hypotheses:
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H 1.

(i) k : D ×D → R is µ⊗ µ-measurable.

(ii)

∫

D

√

k(s, s)dµ(s) < ∞.

As D is compact, any bounded kernel satisfies the condition (ii) so this

hypothesis is not very restrictive. For example, usual stationary kernels such as

the Gaussian, power-exponential and Matérn kernels satisfy it.

Proposition 1. Under H1, H can be decomposed as a sum of two orthogonal

sub-RKHS, H = H0

⊥
⊕ H1 where H0 is a RKHS of zero-mean functions for µ,

and its orthogonal H1 is at most 1-dimensional.

Proof. Following H1 (i), the integral operator I : H → R, h 7→

∫

D

h(s)dµ(s) is

bounded since for h ∈ H

|I(h)| ≤

∫

D

|〈h, k(s, .)〉H|dµ(s) ≤ ||h||H

∫

D

√

k(s, s)dµ(s) (14)

According to the Riesz representation theorem, there exists a unique R ∈ H
such that ∀h ∈ H, I(h) = 〈h,R〉H. If R(.) = 0, then all f ∈ H are centered
functions for µ, so that H0 = H and H1 = {0}. If R(.) 6= 0, then H1 = span(R)
is a 1-dimensional sub-RKHS of H, and the subspace H0 of centered functions
for µ can be defined by H0 = H⊥

1 .

Remark 1. For all x ∈ D the value of R(x) can be calculated explicitly. In-
deed, recalling that k(x, .) and R are respectively the representers in H of the
evaluation functional at x and of the integral operator, we get:

R(x) = 〈k(x, .), R〉H = I(k(x, .)) =

∫

D

k(x, s)dµ(s). (15)

The reproducing kernels k0, k1 of H0 and H1 satisfy k = k0 + k1. Let π

denote the orthogonal projection onto H1. Following [2] we obtain

k0(x, y) = k(x, y)− π(k(x, .))(y)

= k(x, y)−

∫

D

k(x, s)dµ(s)

∫

D

k(y, s)dµ(s)
∫∫

D×D

k(s, t)dµ(s)dµ(t)

(16)

2.2. Example

Let us briefly illustrate the previous results for two usual kernels:

b(x, y) = min(x, y) and g(x, y) = exp
(

−(x− y)2
)

, (17)
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known as the Brownian and the Gaussian covariance kernels, respectively. Here

D = [0, 5] and µ is the Lebesgue measure over D. Figure 1 represents sections

of the reproducing kernels ki(x, y) and gi(x, y) (i ∈ {0, 1}) outcomes of the

decomposition of b and g, for various values of y.

0 2 4

0
1

2
3

(a) bi(., 0)

0 2 4

0
1

2
3

(b) bi(., 2)

0 2 4

0
1

2
3

(c) bi(., 4)

0 2 4

0.
0

0.
5

(d) ki(., 0)

0 2 4

0.
0

0.
5

(e) ki(., 2)

0 2 4

0.
0

0.
5

(f) ki(., 4)

Figure 1: Representation of the sub kernels bi(., y) and gi(., y) for y = 0, 2, 4 and i=0,1. The
dashed lines correspond to b1, g1 and the solid lines are for b0 and g0.

We observe on this figure that b0(., y) and g0(., y) take negative values and

that they are zero mean functions (as elements of H0). Moreover, b0(., y) and

b1(., y) (respectively k0(., y), k1(., y)) are orthogonal for the scalar product of

their RKHS but are not orthogonal for L2(D,µ).

2.3. Generalization for multi-dimensional RKHS

The former decomposition of one-dimensional kernels leads directly to the

decomposition of tensor product kernels

K(x,y) =

d
∏

i=1

ki(xi, yi) =

d
∏

i=1

(ki0(xi, yi) + ki1(xi, yi)). (18)
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if the ki’s satisfy H1. Since ki0(xi, yi) is a 1-dimensional kernel, it can be seen

as a bias term so this equation highlights the similarity between the usual ten-

sor product kernels (power-exponential, Brownian, Matérn, . . . ) and ANOVA

kernels.

3. A new class of kernels for sensitivity analysis

We now propose a special class of ANOVA kernels,

K⋆
ANOVA(x,y) =

d
∏

i=1

(1 + ki0(xi, yi)) = 1 +
∑

I⊂{1,...,d}

∏

i∈I

ki0(xi, yi), (19)

where the ki0 are obtained by decomposing kernels as in the previous section.

Proposition 2. If m is a best predictor based on K⋆
ANOVA,

mI =
∏

i∈I

ki
0(xi)

tK−1F (20)

is the term of the functional ANOVA representation of m indexed by I. Hence,
the decomposition of m given by Eq. 13 coincides with its functional ANOVA
representation (Eq. 4).

Proof. The kernels ki0 are associated to RKHS Hi
0 of zero-mean functions, so

we have 1
i ⊥L2

Hi
0. The underlying RKHS associated to K⋆

ANOVA is

H⋆
ANOV A =

d
∏

i=1

(

1
i
⊥
⊕ Hi

0

)

(21)

where ⊥ stands for the L2 scalar product. The result follows.

Corollary 1. Contrarily to usual ANOVA kernels, the class of K⋆
ANOVA en-

sures that the terms mI are mutually orthogonal in the L2 sense.

As the expression of the submodels is simple, the computation of the sensi-

tivity indices can be performed analytically and efficiently.

Corollary 2. The sensitivity indices SI of m are given by:

SI =
var(mI(XI))

var(m(X))
=

FtK−1
(
⊙

i∈I Γi

)

K−1F

FtK−1
(

⊙d
i=1(1n×n + Γi)− 1n×n

)

K−1F
(22)

where Γi is the n × n matrix Γi =
∫

Di
ki
0(xi)k

i
0(xi)

tdµi(xi) and 1n×n is the
n× n matrix of 1.

9



Proof. The numerator is obtained by direct calculation:

var(mI(XI)) = var

(

∏

i∈I

ki
0(xi)

tK−1F

)

= FtK−1
⊙

i∈I

(∫

Di

ki
0(xi)k

i
0(xi)

tdµi(xi)

)

K−1F.

(23)

For the denominator, we obtain similarly

var(m(X)) = FtK−1
⊙

i∈I

(∫

Di

(

1n×1 + ki
0(xi)

) (

1n×1 + ki
0(xi)

)t
dµi(xi)

)

K−1F

− FtK−11n×nK
−1F.

(24)

We then use the property that ki0(x, .) is a zero mean function so we have
∫

Di

(

1n×1 + ki
0(xi)

) (

1n×1 + ki
0(xi)

)t
dµi(xi) = 1n×n + Γi.

Conversely to the method developed in [3], the computation of SI does not

require here to compute all SJ for J ⊂ I.

3.1. example: the g-function of Sobol

In order to illustrate the use of the kernelsK⋆
ANOVA we consider the so-called

g-function of Sobol, defined over [0, 1]d by

g(x1, . . . , xd) =

d
∏

k=1

|4xk − 2|+ ak
1 + ak

with ak > 0. (25)

This function is well known in the literature [9] and one particular advantage is

that the Sobol sensitivity indices associated to the variables xi, i = 1, . . . , d can

be obtained analytically:

Si =

1
3(1+ai)2

∏d
k=1

(

1 + 1
3(1+ak)2

)

− 1
(26)

Here we limit ourself to the case d = 2 and we choose a1 = 1, a2 = 2. Starting

from a one-dimensional Matérn 3/2 kernel

k(x, y) = (1 + 2 |x− y|) exp(−2 |x− y|), (27)
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we can derive the expression of K⋆
ANOVA using Eq. 16 and 19:

K⋆
ANOVA(x,y) =

2
∏

i=1









1 + k(xi, yi)−

∫ 1

0

k(xi, s)dµ(s)

∫ 1

0

k(yi, s)dµ(s)

∫∫ 1

0

k(s, t)dµ(s)dµ(t)









.

(28)

We then build the optimal interpolator m ∈ H⋆
ANOV A based on the ob-

servation of g at 20 points of [0, 1]2 (those points steem from a LHS-maximin

procedure). According to what we have seen, the function m can be split as a

sum of 4 submodels m0, m1, m2 and m12 which are represented on Fig. 3.1.

x1 x2

(a) g

x1 x2

(b) m

x1 x2

(c) m0

x1 x2

(d) m1

x1 x2

(e) m2

x1 x2

(f) m12

Figure 2: Representation of the g-function, the model m and all the submodels on [0, 1]2. The
z scale is the same on all graphs.

We observe numerically that the mean value of m1, m2 and m12 is lower than

1e − 15 (in absolute value), corroborating that these functions are zero-mean.

More generally, after numerical computations of the scalar products between

any two functions of the set {m0,m1,m2,m12}, we observe that |〈mI ,mJ〉L2 | <
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1e− 15 for I 6= J .

Using Eq. 22, the sensitivity indices calculated form are S1 = 0.69, S2 = 0.30

and S12 = 0.02 (the sum is slighly different from 1 because of rounding up).

Those figures can be compared to the analytical values given by Eq. 26 which

are S1 = 0.675, S2 = 0.30 and S12 = 0.025. The accuracy of the computation

of Global sensitivity indices can be judged satisfactory in this example.

4. Concluding remark

We proposed a new class of kernels for which the functional ANOVA de-

composition of the mean predictor can be obtained analytically, without the

usual recursive integral calculations for higher order interaction terms. This

new class is a special case of usual ANOVA kernels, with particular univariate

kernels so that an orthogonality to constants is respected. Up to a calculation

or a tabulation of the integral of univariate kernels, the replacement of usual

ANOVA kernels by the ones proposed here may be done at neglectable cost in

applications, with substantial benefits for the model interpretability and global

sensitivity analysis studies.

The issue of the estimation of the parameters ofK⋆
ANOVA has not been raised

yet in this article. This is however an important point for the practical use of

those kernels. The use of the likelihood theory has been considered, but many

points such as the links between the optimal parameters for K and the optimal

parameters for the associated K⋆
ANOVA needs to be studied in detail. Finally,

since the pattern of the proof of Prop. 1 can be applied to any bounded operator

onH, the perspectives for future research include a focus on other operators than

the integral operator I, for example for building RKHS respecting orthogonality

to a family of trend basis functions.
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