
ar
X

iv
:1

10
6.

34
15

v1
  [

m
at

h.
S

T
]  

17
 J

un
 2

01
1

Multiple Hypotheses Testing For Variable Selection

F. Rohart∗
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Abstract

Many methods have been developed to estimate the set of relevant variables in a sparse linear
modelY = Xβ + ǫ where the dimensionp of β can be much higher than the lengthn of Y. Here
we propose two new methods based on multiple hypotheses testing, either for ordered or non-
ordered variables. Our procedures are inspired by the testing procedure proposed by Baraud et al.
[2]. The new procedures are proved to be powerful under some conditions on the data and their
properties are non asymptotic. They gave better results in estimating the set of relevant variables
than both the False Discovery Rate (FDR) and the Lasso, both in the common case (p < n) and
in the high-dimensional case (p ≥ n).
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1. Introduction

Recent technologies have provided scientists with a new kind of data; very high-dimensional
data, especially with high-throughput DNA/RNA chips in biology. Unravelling the relevant vari-
ables -genes for example- underlying an observation is a well known problem in statistics and is
still one of the current major challenges. Indeed, with a large number of variables there is often
a desire to select a smaller subset that not only fits as well asthe full set of variables, but also
contains the more important ones. Discovering the relevantvariables leads to higher prediction
accuracy, an important criterion in variable selection.

Many methods have been developed to estimate the set of relevant variables in the linear
modelY = Xβ+ ǫ where the dimensionp of β can be much higher than the lengthn of Y. In par-
ticular, a lot of model selection methods have been developed based on a penalized criterion. The
mostly known is probably the Lasso that had been presented byTibshirani [14]; l1 penalization
of the least squares estimate which shrinks to zero some irrelevant coefficients, hence an estima-
tion of the set of relevant variables. A lot of studies have been conducted on the Lasso and many
results are available; e.g. consistency of the Lasso in high-dimensional linear regression [16],
sparsity oracle inequalities [5] and variable selection inhigh-dimensional graphs with the Lasso
[12]. The Lasso has several variants such as an adaptative Lasso [9], a bootstrap Lasso [1] or a
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Group Lasso [8]. Al1 penalization has also been used in the Sparse-PLS, which induces a lim-
ited number of variables in each PLS direction; see Tenenhaus [13] for an introduction on PLS,
and Lê Cao et al. [11] for further details on Sparse-PLS. Other kinds of penalization have also
been used, such as the Akaike Information Criterion (AIC) orthe Bayesian Information Criterion
(BIC), two methods based on a likelihood penalization on thenumber of variables included in
the model. Despite that the major portion of model selectionmethods was developed to perform
in low dimension, some of them apply in the high-dimensionalcase. There is still some others
that were actually developed to be powerful whenp is higher thann, such as the Dantzig selector
[7]. Nonetheless a recent paper shows that under a sparsity condition on the linear model, the
Dantzig selector and the Lasso exhibit similar behavior [4]. Nevertheless, penalization criterion
is not the only way to perform model selection. For instance,the False Discovery Rate (FDR)
procedure, developed in the context of multiple hypothesestesting by Benjamini and Hochberg
[3], was used in variable selection by Bunea et al. [6]. This procedure has been extended to
high-dimensional analysis and is presently used in biologyfor QTL research and transcriptome
analysis; a p-value is calculated for each variableXi from the regression of Y onto that variable
and selection is performed through an adjusted threshold.

Most of the selection methods cited above give quite good results whenp is lower thann,
but the results get worst asp grows larger thann. In the context of this paper, variable selection
when p is much higher thann, those methods are disappointing and unsatisfactory. Moreover,
most of theoretical results are only asymptotic and only prove consistency of the estimators. Non
asymptotic results are more sought since small samples are usual in practice. Concerning meth-
ods using a penalized criterion such as AIC, BIC or any other penalization on the likelihood,
another major drawback is of computational nature. Indeed,a search through all the 2p possible
spaces may be needed and this search is as complex asp grows.

This paper deals with the problem of recovering the set of relevant variables in a sparse linear
model whenp can be lower or far higher thann. We consider the regression model:

Y = Xβ + ǫ (1)

whereY is the observation of lengthn, X = (X1, ...,Xp) is the matrix ofp variables,β is an
unknown vector ofRp, ǫ a Gaussian vector with i.i.d. components,ǫ ∼ Nn(0, σ2In) whereIn is
the identity matrix ofRn, andσ some unknown positive quantity. We setJ = { j, β j , 0} and
|J| = k0. We denoteβJ = (β j) j∈J. Let µ = E(Y) = Xβ andPµ the distribution ofY obeying to
model (1).

The aim of this paper is to estimateJ, the set of relevant variables in (1). We distinguish
two frameworks. On one hand, the variablesX1, ...,Xp are assumed to be ordered, regardless of
Y. We define a powerful procedure for estimatingJ under some conditions on the data, either
whenp ≤ n or whenp > n. These properties are non asymptotic. This procedure is a multiple
hypotheses testing method based on Baraud et al. [2] which consists of doing several tests to
decide whetherE(Y) is in V, some linear subspace ofRn, or in a suitable collection of subspaces
containingV. On the other hand, the variables are not assumed to be ordered. We provide a
procedure to estimateJ whenσ is known and another similar procedure whenσ is unknown.
The two procedures are proved to be powerful under some conditions on the data. The properties
of the procedures are also non asymptotic.

This paper is organized as follow, in Section 2 we present thefirst procedure to estimateJ,
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in the ordered variable case; the non-ordered variable selection is considered in Section 3. A
simulation study is provided in Section 4 to compare severalvariable selection methods.

2. Ordered variable selection

2.1. The case p< n
First of all, the common casep < n is considered. The family (Xi)1≤i≤p is assumed to be

a linearly independent family to which an order is given, regardless ofY. In this section we
focus on ordered variables, which means that the relevant variables are supposed to be in the first
places, i.e.J = {1, .., k0}. Hence an estimation ofk0 gives us an estimation ofJ. This section
focuses on the estimation ofk0.
Let k be a positive integer and letVk denote a linear subspace ofR

n, the following results are
based on a test of the null hypothesis ”µ = E(Y) belongs toVk” against the alternative that it does
not. As proposed in Baraud et al. [2], we consider a finite collection of linear subspaces ofV⊥k ,
{Sk,t, t ∈ T }, to test the null hypothesis. The index setT is allowed to depend on the number of
observationsn, or on the number of parametersp.
Let {αt, t ∈ T } be a suitable collection of numbers in ]0,1[. The testing procedure presented in
Baraud et al. [2] consists in doing several Fisher tests of levelαt of the null hypothesis:

Hk : {µ ∈ Vk} against the alternative{µ ∈ Vk + Sk,t}.

The null hypothesis is rejected if at least one of the Fisher tests does. Our procedure consists in
doing successively the tests (Hk)k≥0 for a suitable collection of linear subspaces (Vk)k≥0 until the
null hypothesis is accepted.

Let us introduce some notations that will be used throughoutthis section. Note||s||2n =∑n
i=1 s2

i /n. For eachk ∈ N, t ∈ T , we setVk,t = Vk ⊕ Sk,t, and denote byDk,t and Nk,t the
dimension ofSk,t andV⊥k,t respectively. Moreover setΠV the orthogonal projector ontoV for all
subspaceV. F̄D,N(u) denotes the probability for a Fisher withD andN degrees of freedom to be
larger thanu. We denote∀ (x, y) ∈ Rn2

< x, y >n=
∑n

i=1 xiyi/n, and∀a ∈ R, ⌊a⌋ the integer part
of a.

For all i ∈ {1, ..., p}, Xi is supposed to be normed to 1:∀ i, < Xi ,Xi >n= 1.
As the family (Xi)1≤i≤p is ordered, a natural choice of the collectionVk is the following: set
∀1 ≤ k ≤ p,Vk = span(X1, ..,Xk) andV0 = {0}. With this choice ofVk and as (Xi)1≤i≤p is a
linearly independent family, we have for allk ≥ 0, dim(Vk) = k.

Fork ∈ {0, ..., p− 1}, let tkmax= ⌊log2(p− k)⌋ andQk,tkmax
= {Sk,t, t ∈ {0, .., tkmax}} be a collection

of linear subspace ofV⊥k , where:
∀ t ∈ {0, .., tkmax} = Tk,

Sk,t = span(Xk+1, ..,Xk+2t) ∩ V⊥k . (2)

With this collection,Dk,t = 2t andNk,t = n− (k+ 2t).
As mentioned before, our procedure consists in doing successively the tests (Hk)k≥0 until the
null hypothesis is accepted; with this choice of the collection of linear subspaces (Vk)0≤k≤p and
(Qk,tmax)0≤k<p, an estimation ofk0 with our procedure iŝk = inf{k ≥ 0,Hk is accepted}. The
estimated set of relevant variables is thenĴ = {1, .., k̂}.
A procedure to test the null hypothesisHk is introduced in the following. Set:∀α ∈]0, 1[,∀k < p,

Tk,α = sup
t∈Tk






Nk,t ||ΠSk,tY||2n
Dk,t||Y− ΠVk,t Y||2n

− F̄−1
Dk,t ,Nk,t

(αt)





, (3)
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where{αt, t ∈ Tk} is a collection of number in ]0,1[ such that:

∀µ ∈ Vk, Pµ(Tk,α > 0) ≤ α (4)

The null hypothesisHk is rejected whenTk,α is positive.
We choose the collection{αt, t ∈ Tk} in accordance with one of the two following procedures:

P1. For allt ∈ Tk, αt = αn whereαn is theα-quantile of the random variable

inf
t∈Tk

F̄Dk,t ,Nk,t






Nk,t||ΠSk,tǫ||2n
Dk,t||ǫ − ΠVk,tǫ||2n





,

P2. Theαt’s satisfy the inequality
∑

t∈T
αt ≤ α.

Procedure P1 gives a testHk of sizeα whereas procedure P2 gives a testHk of level α. The
final multiple testing procedure, which consists in calculating successivelyTk,α from k = 0 until
Tk,α is negative, is proved to be powerful; an upper bound of the probability to wrongly estimate
k0 is given in the following theorem. Fork = 0, ..., p − 1, for γ ∈]0, 1[ and for all t ∈ Tk, let
Lt = log(1/αt), L = log(2/γ),mt = 2exp(4Lt/Nk,t), and foru > 0 let

Kt(u) = 1+ 2
√

u
Nk,t
+ 2mt

u
Nk,t
,

C1(k, t) = 2.5(1+ Kt(Lt) ∨mt)
Dk,t + Lt

Nk,t
,

C2(k, t) = 2.5
√

1+ K2
t (L)




1+

√

Dk,t

Nk,t




,

C3(k, t) = 2.5

[(

mtKt(L)
2

)

∨ 5

] (

1+ 2
Dk,t

Nk,t

)

,

Theorem 2.1. Let Y obey to model(1). We assume that p< n and that(Xi)1≤i≤p is a linearly
independent family. We denote by J the set{ j, β j , 0} = {1, ..., k0}. Letγ andα be fixed in]0, 1[ .
The testing procedure estimates k0 by k̂ = inf{k ≥ 0,Tk,α ≤ 0}, where Tk,α is defined by(3). Let
{αt, t ∈ Tk} be calculated according to the procedure P1 or P2.
If ∀k ≤ k0 − 1 the condition(Rk) holds

(Rk) : ∃ t ∈ Tk/
∣
∣
∣

∣
∣
∣ΠSk,t (µ)

∣
∣
∣

∣
∣
∣
2

n
≥ C1(k, t)

∣
∣
∣
∣

∣
∣
∣
∣ΠV⊥k,t

(µ)
∣
∣
∣
∣

∣
∣
∣
∣

2

n
+
σ2

n




C2(k, t)

√

2t log

(

2k0

αtγ

)

+C3(k, t)log

(

2k0

αtγ

)




then
Pµ(k̂ , k0) ≤ γ + α (5)
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Remark 2.2. For k fixed,C1(k, t),C2(k, t),C3(k, t) behave like constants if the following condi-
tions are verified:

for all t ∈ Tk, αt ≥ exp(−Nk,t/10), γ ≥ 2exp(−Nk,t/21) and the ratio
Dk,t + Lk,t

Nk,t
remains

bounded.

Under these conditions, the following inequalities hold:

C1(k, t) ≤ 10
Dk,t + log(1/αt)

Nk,t
, C2(k, t) ≤ 5




1+

√

Dk,t

Nk,t




, C3(k, t) ≤ 12.5

(

1+ 2
Dk,t

Nk,t

)

.

It is important to note that Theorem 2.1 is non asymptotic, hence the strength of our proce-
dure. Baraud et al. [2] proposed an adaptive procedure to test in model (1) thatµ = Xβ belongs to
some linear subspaceV of Rn. Our variable selection procedure as well as the results of Theorem
2.1 are inspired by this paper. An asymptotic property can bededuced to proved the consistency
of our estimator̂k of k0:

Corollary 2.3. Assume that p≤ An with A< 1. Then, using the same notation as in Theorem
2.1, we obtain

Pµ(k̂ , k0) −→
n→∞

0. (6)

Remark 2.4. We say thatµ satisfies condition (R) if ∀k ≤ k0 − 1, (Rk) holds. According to
Theorem 2.1, our procedure is powerful under the condition (R). A condition on the coefficients
βJ underlies in (R) since the projection ofY onto a space spanned by a subset of the family
(Xi)1≤i≤p depends both onβ and on the matrixX. These conditions onβJ appear explicitly when
(Xi)1≤i≤p is an orthonormal family. Assume in the following that (Xi)1≤i≤p is an orthonormal
family. Thus (1) becomes:

Y = X1β1 + .. + Xkβk
︸              ︷︷              ︸

Vk

+Xk+1βk+1 + ... + Xpβp
︸                     ︷︷                     ︸

⊂V⊥k

+ǫ. (7)

With the new decomposition (7), the projection ofY on any subspaceSk,t only depends on
(β j) j≥k+1. Thus the condition (Rk) can be written in a different form, making explicit use of the
β’s:

∃ t ∈ Tk/ β
2
k+1+ ..+ β

2
k+2t ≥ C1(k, t)

p∑

j=k+2t+1

β2
j +
σ2

n




C2(k, t)

√

2tlog

(

2k0

αtγ

)

+C3(k, t)log

(

2k0

αtγ

)



.

2.2. The case p≥ n

After pointing out the properties of the procedure in the common casep < n, let us discuss a
really important framework: the high-dimensional case, i.e. p ≥ n. The family (Xi)1≤i≤p can no
longer be a linearly independent family. We have to make the assumption that the decomposition
of µ is unique, i.e∃!J ⊂ {1, ..., p}/µ =

∑

j∈J X jβ j .
Let recall that in this section (Xi)1≤i≤p is supposed to be ordered regardless ofY and that the
relevant variables are supposed to be in the first places, i.e. we still haveJ = {1, ..., k0} and
|J| = k0.
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Let definea = dim(span(X1, ...,Xp)), note thata ≤ n. In this part,∀ k < a − 1, tkmax =

⌊log2(a − k − 1)⌋, this is in order to always haveNk,t , 0 and so to be able to calculate
Tk,α defined by (3) for allk < a − 1. DenoteVk = span(X1, ...,Xsk) wheresk is defined by
sk = inf{s/dim(span(X1, ...,Xs)) = k} andSk,t = span(Xsk+1, ...,Xsk+qk,t )∩V⊥k whereqk,t is defined
by qk,t = inf{q/dim(span(Xsk+1, ...,Xsk+q)) = 2t}.

The condition (Rk) in Theorem 2.1 gives no restriction on the growth ofp. Thus Theorem 2.1
applies with the new notations for anyp ≥ n, but for k0 < n. This is no strong restriction since
k0 > n means that we do not have sufficient observations to estimatek0, whatever the method.

Results from a simulation study in Section 4 will show the power of our procedure; either
whenp < n or whenp ≥ n.

3. Non-ordered variable selection

In Section 2 we defined a procedure based on multiple hypotheses testing in order to estimate
J, the set of relevant variables of a sparse linear model (1). As the family (Xi)1≤i≤p was given
an order independent ofY, the estimation ofJ = {1, .., k0} was reduced to the estimation ofk0.
This present section is dedicated to a more common case: (Xi)1≤i≤p is not assumed to be given
an order anymore, soJ is not necessarily equal to{1, .., k0}. We define here a general two-step
procedure to estimateJ; the first step orders the variables and the second estimates|J|. After the
first step of the general procedure, the ordered variables will be denoted asX(1), ...,X(p).

The first step of our procedure consists in ordering the variables. In this paper two ways to
order (Xi)1≤i≤p taking into account the observationsY are proposed:
– Variables ordered by increasing p-values: whenp < n, a p-value is calculated for each variable
using the least squares estimate and then the variables are sorted by increasing p-value. When
p ≥ n, a p-value is calculated for each variable using the decomposition ofY onto that variable.
– Variables ordered with the Bolasso technique, introducedby Bach [1]. It is a bootstrapped
version of the Lasso which improves its stability: several independent bootstrap samples are
generated and the Lasso is performed on each of them. This approach is proved to make the
irrelevant variables asymptotically disappear. A modification is applied to the Bolasso to adapt
it to non asymptotic analysis. An appearance frequency is calculated for each variableXi by
counting the number of times the variableXi is selected over the bootstrap samples. A high
frequency denotes a good prediction ability of the variableXi , at a given penalty. To avoid the
use of a penalty, we set the first ordered variable to be the first one to reach a frequency of 1 from
a decreasing penalty; and so on for the other variables. We proceed by dichotomy to order the
variables.

The first method -ordered p-values- is the one demanding lesscomputational time, but as
shown in Section 4, the Bolasso technique gives a better order and thus better results. Indeed, as
we will see throughout this section, the crucial step is the first one; the correct ordering of the
variables. Indeed, the ability to estimateJ with this procedure depends on the ability to get the
relevant variables in the first places.

From now on, we assume that the decomposition ofµ is unique, i.e∃!J ⊂ {1, ..., p}/µ =
∑

j∈J X jβ j . We have|J| = k0. We introduce here an event that will be useful in the following of
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this section:

Ak = {thek first ordered variables are relevant} = {{(1), .., (k)} ⊂ J} . (8)

On the eventAk0, thek0 first ordered variables are relevant, so{(1), .., (k0)} = J; an estimation of
J is then obtained from an estimation of|J| = k0.
The second step of the general procedure consists in testingsuccessively the null hypothesis:

Ĥk : {|J| = k} against the alternative that{|J| > k}. (9)

The procedure stops when the null hypothesis is accepted;k̊ = inf{k ≥ 0; Ĥk is accepted} is an
estimation ofk0 with our procedure and thereforêJ = {(1), .., (k̊)} is an estimation of the set of
relevant variables.

Two cases are distinguished to test the null hypothesisĤk, eitherσ is known or not. The
first step remains the same for both procedures. A procedure ’A’ is proved powerful under some
conditions on the data ifσ is known; ifσ is unknown, we provide another two-step procedure
’B’ that is also proved to be powerful under some conditions on the data.

3.1. The case p< n andσ is known

In this section, we define a procedure called Procedure ’A’ under the assumption that the
varianceσ2 is known. Assume that the family (Xi)1≤i≤p is a linearly independent family and that
the first step of Procedure ’A’ has already been done; variables have been ordered. The second
step is a testing procedure that will be described in the following.

Let us adapt the notation of Section 2.1 to this section: we first recall that∀ k ≤ p− 1, tkmax=

⌊log2(p− k)⌋, Tk = {0, ..., tkmax}, we defineV(k) = span(X(1), ...,X(k)), let Q(k),tkmax
= {S(k),(t), t ∈ Tk}

be a collection of linear subspaces ofV⊥(k), where∀ t ∈ Tk, S(k),(t) = span(X(k+1), ..,X(k+2t)) ∩ V⊥(k).
With the definition ofS(k),(t), we have dim(S(k),(t)) = Dk,t = 2t. Let us denoteV(k),(t) = V(k)⊕S(k),(t).
Some notations of the previous section will also be used.

3.1.1. The general case
We introduce new statistics; for all 0≤ k < p and for allt ∈ Tk, let

Uk,t =
||ΠS(k),(t)Y||2n
σ2

.

The second step of the procedure ’A’ presented here consistsin doing successively several
tests of the null hypothesiŝHk defined by (9) at levelαt, where{αt, t ∈ Tk} is a suitable collection
of number in ]0, 1[, using the test statisticsUk,t. The final multiple testing procedure consists in
rejectingĤk if one of those tests rejects this hypothesis. We want the final test to be of levelα.

As the distribution of the statisticUk,t is unknown, an upper bound has to be found in order
to build the same kind of testing procedure as in Section 2, indeed the spaceS(k),(t) is random and
depends onY.

Let k ∈ {0, ..., p− 1}, ǫ′ ∼ Nn(0, σ2In). The family (Xi)1≤i≤p is ordered by a permutationσ1

defined by:
∀ j ∈ {1, ..., k}, σ1( j) = ( j) and∀ j ∈ {k+ 1, ..., p},Xσ1( j) is the variable that maximizes:
{||ΠXi∩<Xσ1(1),...,Xσ1( j−1)>

⊥ǫ′||2n,∀ i ∈ {1, ..., p}\{σ1(1), ..., σ1( j − 1)}}.
7



We can then calculate the statistics :

U1
k,t =

||ΠS(k),σ1(t)ǫ
′||2n

σ2
, whereS(k),σ1(t) = span(Xσ1(k+1), ..,Xσ1(k+2t)) ∩ V⊥(k).

Lemma 3.1. We have a stochastic upper bound of Uk,t for all 0 ≤ k < p and for all t∈ Tk:
underĤk given by(9) and on the event Ak defined by(8) :

Uk,t ≤ U1
k,t. (10)

Let U1
k,t(u) denote the probability for the statisticU1

k,t to be larger thanu.
Set∀α ∈]0, 1[, ∀0 ≤ k < p,

M1
k,α = sup

t∈Tk

{

Uk,t − U1
k,t

−1
(αt)

}

(11)

where{αt, t ∈ Tk} is a collection of number in ]0,1[ chosen in accordance to thefollowing pro-
cedure:

P3. For allt ∈ Tk, αt = αn whereαn is theα-quantile of the random variable

inf
t∈Tk

U1
k,t

{

U1
k,t

}

.

The null hypothesiŝHk is rejected whenM1
k,α is positive. In fact, the second step of the procedure

’A’ is to calculate M1
k,α from k = 0 until M1

k,α is negative. The calculation of the collection

{αt, t ∈ Tk} with the procedure P3 gives a testĤk of levelα.
In summary, the two-step procedure ’A’ whenσ is known consists in ordering thep variables

and then estimatingJ by Ĵ = {(1), .., (k̊A)}wherek̊A = inf{k ≥ 0; M1
k,α ≤ 0}. The testing procedure

’A’ is proved to be powerful and we give an upper bound of the probability to wrongly estimate
J in the next theorem.

Theorem 3.2. Let Y obey to model(1). We assume that p< n and that(Xi)1≤i≤p is a linearly
independent family. We denote by J the set{ j, β j , 0}. Letα andγ be fixed in]0, 1[.
The procedure estimates J byĴ = {(1), .., (k̊A)} wherek̊A = inf{k ≥ 0,M1

k,α ≤ 0}, where M1
k,α is

defined by(11)and{αt, t ∈ Tk} is calculated according to the procedure P3.

We consider the condition(R2,k) stated as(R2,k) : ∃t ≤ log2(k0 − k) such that

1
2σ2

inf
{

||ΠSµ||2n,S ∈ B2t

}

≥ 2t

n

[

10+ 4log

(

(p− k)k0

22t

)]

+
2
n





√

2t+1log

(

k0|Tk|
γα

)

+ log

(

k0|Tk|
γα

)




where∀d ≤ k0, Bd = {span(XI ), I ⊂ J, |I | = d} and |Tk| = log2(p− k) + 1.

If ∀k ≤ k0 − 1 the condition(R2,k) holds, then

Pµ(Ĵ , J) ≤ γ + α + δ (12)

whereδ = Pµ(Ac
k0

) = Pµ(∃ ( j) ≤ k0/β( j) = 0).

This theorem is non asymptotic and shows that a crucial step is to correctly order the vari-
ables. Indeed,δ stands for the weight of the chosen order, if thek0 relevant variables are not the
first ones in the first step of the procedure, then we will not have J = Ĵ.

8



3.1.2. The particular case where(Xi)i is an orthonormal family
When the family (Xi)1≤i≤p is orthonormal, the upper bound of the statisticsUk,t in Lemma 3.1

can be expressed differently.
Let D > 0 andW1, ...,WD beD i.i.d. standard Gaussian variables ordered as|W(1)| ≥ ... ≥ |W(D)|.
We define:∀d = 1, ...,D,

Zd,D =

d∑

j=1

W2
( j) (13)

Let Z̄d,D(u) denote the probability for the statisticZd,D to be larger thanu.

Lemma 3.3. We have a stochastic upper bound of Uk,t for all 0 ≤ k < p and for all t∈ Tk:
underĤk and on the event Ak:

Uk,t ≤ ZDk,t ,p−k/n.

Set∀α ∈]0, 1[, ∀0 ≤ k < p,

Mk,α = sup
t∈Tk

{

Uk,t − Z̄−1
Dk,t ,p−k(αt)/n

}

(14)

where{αt, t ∈ Tk} is a collection of number in ]0,1[ chosen in accordance to thefollowing pro-
cedure:

P4. For allt ∈ Tk, αt = αn whereαn is theα-quantile of the random variable

inf
t∈Tk

Z̄Dk,t ,p−k

{

ZDk,t ,p−k

}

.

The null hypothesisĤk is rejected whenMk,α is positive. The procedure P4 gives a testĤk of
level α. The major benefit of Procedure ’A’ when the family (Xi)1≤i≤p is orthonormal is that
the upper bound of the statisticsUk,t in Lemma 3.3 does not depend on the family (Xi)1≤i≤p nor
on the order on that family. Thus the calculation of P4 only depends onk andt, with p andn fixed.

We have the next corollary in the particular case where (Xi)1≤i≤p is an orthonormal family,
making explicit use of theβ’s.

Corollary 3.4. Let Y obey to model(1). We assume that p< n and that(Xi)1≤i≤p is an orthonor-
mal family. We denote by J the set{ j, β j , 0}. Letα andγ be fixed in]0, 1[.
The procedure estimates J byĴ = {(1), .., (k̊Abis)} wherek̊Abis = inf{k ≥ 0,Mk,α ≤ 0}, where Mk,α

is defined by(14)and{αt, t ∈ Tk} is calculated according to the procedure P4.

We consider the condition(R2bis,k) stated as(R2bis,k) : ∃ t ≤ log2(k0 − k) such that

1
2σ2

2t
∑

j=1

β2
σ2( j) ≥

2t

n

[

10+ 4log

(

(p− k)k0

22t

)]

+
2
n





√

2t+1log

(

k0|Tk|
γα

)

+ log

(

k0|Tk|
γα

)




whereσ2 is defined by|βσ2(1)| ≤ ... ≤ |βσ2(k0)| and |Tk| = log2(p− k) + 1.

If ∀k ≤ k0 − 1 the condition(R2bis,k) holds, then

Pµ(Ĵ , J) ≤ γ + α + δ (15)

whereδ = Pµ(Ac
k0

) = Pµ(∃ ( j) ≤ k0/β( j) = 0).

9



3.2. The case p< n andσ is unknown

In this section, we define a procedure ’B’ under the assumption that the varianceσ2 is un-
known. Assume that the family (Xi)1≤i≤p is a linearly independent family and that the first step
of this procedure ’B’ has already been done; variables have been ordered. In this section, some
notations of Section 3.1 are used:∀ k < p, tkmax = ⌊log2(p − k)⌋, Tk = {0, ..., tkmax}, we define
V(k) = span(X(1), ...,X(k)), let Q(k),tkmax

= {S(k),(t), t ∈ Tk} be a collection of linear subspaces ofV⊥(k),
where∀ t ∈ Tk, S(k),(t) = span(X(k+1), ..,X(k+2t)) ∩ V⊥(k).
We denoteV(k),(t) = V(k) ⊕ S(k),(t). With the definition ofS(k),(t), we have dim(S(k),(t)) = Dk,t = 2t

and dim(V⊥(k),(t)) = Nk,t = n− (k+ 2t).

3.2.1. The general case
Set the following statistics: for all 0≤ k < p and for allt ∈ Tk,

ŨDk,t ,Nk,t =
Nk,t||ΠS(k),(t)Y||2n

Dk,t||Y− ΠV(k),(t)Y||2n
.

The second step of the procedure ’B’ presented here consistsin doing successively several tests
of the null hypothesiŝHk defined by (9) at levelαt, suitable collection of number in ]0, 1[, using
the test statistics̃UDk,t ,Nk,t . As in the previous Section 3.1.1, an upper bound ofŨDk,t ,Nk,t needs to
be found.

Let k ∈ {0, ..., p− 1}, ǫ′ ∼ Nn(0, σ2In). The family (Xi)1≤i≤p is ordered by a permutationσ1

defined by∀ j ∈ {1, ..., k}, σ1( j) = ( j) and∀ j ∈ {k+1, ..., p},Xσ1( j) is the variable that maximizes:
{||ΠXi∩<Xσ1(1),...,Xσ1( j−1)>⊥ǫ

′||2n,∀ i ∈ {1, ..., p}\{σ1(1), ..., σ1( j − 1)}}.

We can then calculate the statisticsΥk,t =
Nk,t||ΠS(k),σ1(t)ǫ

′||2n
Dk,t||ǫ′ − ΠV(k),σ1(t)ǫ

′||2n
whereS(k),σ1(t) = span(Xσ1(k+1), ..,Xσ1(k+2t)) ∩ V⊥(k) andV(k),σ1(t) = S(k),σ1(t) ⊕ V(k).

Lemma 3.5. We have a stochastic upper bound ofŨDk,t ,Nk,t for all 0 ≤ k < p and for all t∈ Tk:
underĤk given by(9) and on the event Ak defined by(8) :

ŨDk,t ,Nk,t ≤ Υk,t. (16)

Let Ῡk,t(u) denote the probability for the statisticΥk,t to be larger thanu.
Set∀α ∈]0, 1[, ∀0 ≤ k < p,

M̂k,α = sup
t∈Tk

{

ŨDk,t ,Nk,t − Ῡ−1
k,t (αt)

}

(17)

where{αt, t ∈ Tk} is a collection of number in ]0,1[ chosen in accordance to thefollowing pro-
cedure:

P5. For allt ∈ Tk, αt = αn whereαn is theα-quantile of the random variable

inf
t∈Tk

Ῡk,t{Υk,t},

The null hypothesiŝHk is rejected whenM̂k,α is positive. In fact, the second step of the procedure
’B’ is to calculateM̂k,α from k = 0 until M̂k,α is negative. The calculation of the collection
{αt, t ∈ Tk} with procedure P5 gives a final testĤk of levelα.

10



In summary, this two-step procedure ’B’ whenσ is unknown consists in ordering thep
variables and then estimating|J| by Ĵ = {(1), .., (k̊B)} wherek̊B = inf{k ≥ 0; M̂k,α ≤ 0}. The
procedure is proved to be powerful in the next theorem; we give an upper bound of the probability
to wrongly estimateJ under some conditions on the data. Let us introduce some notations that
will be used in the following theorem:

Lt = log(|Tk|/α), mt = exp(4Lt/Nk,t), mp = exp

(

4Dk,t

Nk,t
log

(

e(p− k)
Dk,t

))

, M = 2mtmp. Denote

Λ1(k, t) =

√

1+
Dk,t

Nk,t
, Λ2(k, t) =

(

1+ 2
Dk,t

Nk,t

)

M andΛ3(k, t) = 2Λ1(k, t) + Λ2(k, t).

Theorem 3.6. Let Y obey to model(1). We assume that p< n and that(Xi)1≤i≤p is a linearly
independent family. We define by J the set{ j, β j , 0}. Letα andγ be fixed in]0, 1[.
The procedure estimates J byĴ = {(1), .., (k̊B)} wherek̊B = inf{k ≥ 0, M̂k,α ≤ 0}, whereM̂k,α is
defined by(17)and{αt, t ∈ Tk} is calculated according to the procedure P5.

We consider the condition(R3,k) stated as(R3,k) : ∃t ≤ log2(k0 − k) such that

1
2

inf
{

||ΠSµ||2n,S ∈ B2t

}

≥

A(k, t)
Nk,t

[

||µ||2n + σ2

(

2+
3
n

log

(

2k0

γ

))]

+
σ2

n

[

2t

(

6+ 4log

(

k0

2t

))

+ 3log

(

2k0

γ

)]

, (18)

where A(k, t) = 2t

[

2+
2t

Nk,t
+ Λ3(k, t)log

(

e(p− k)
2t

)]

+ (1+ Λ2(k, t)) log

(

log2(p− k) + 1
α

)

and∀d ≤ k0, Bd = {span(XI ), I ⊂ J, |I | = d}.

If ∀k ≤ k0 − 1 the condition(R3,k) holds, then

Pµ(Ĵ , J) ≤ γ + α + δ (19)

whereδ = Pµ(Ac
k0

) = Pµ(∃ ( j) ≤ k0/β( j) = 0).

This theorem is non asymptotic and shows that under some conditions on the data, the testing
procedure ’B’ presented in this section is powerful. As for Theorem 3.2 of Section 3.1.1, the first
step of the procedure -the ordering of the variables- has an important part in Theorem 3.6.

Remark 3.7. The condition (R3,k) can be simplified under the assumption that 2t ≤ (n−k)/2 and
log(p− k) > 1. Indeed, in this case, the right hand (18) is upper bounded by

C(||µ||n, γ, α, σ)2t

[

log(p− k)
Nk,t

+
log(k0)

n

]

, (20)

whereC(||µ||n, γ, α, σ) is a constant depending on||µ||n, γ, α andσ.

A simulation study in Section 4 will show that this testing procedure combined with a good
way to order variables -in order to minimizeδ- performs well.
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3.2.2. The particular case where(Xi)1≤i≤p is an orthonormal family
When (Xi)1≤i≤p is an orthonormal family, the condition (R3,k) of Theorem 3.6 can be ex-

pressed differently, making explicit use of theβ’s. The new condition obtained in the case of an
orthonormal family is also easier to satisfy.

Corollary 3.8. Let Y obey to model(1). We assume that p< n and that(Xi)1≤i≤p is an orthonor-
mal family. We define J by the set{ j, β j , 0}. Letα andγ be fixed in]0, 1[.
The procedure estimates J byĴ = {(1), .., (k̊B)} wherek̊B = inf{k ≥ 0, M̂k,α ≤ 0}, whereM̂k,α is
defined by(17)and{αt, t ∈ Tk} is calculated according to the procedure P5.

We consider the condition(R3bis,k) stated as(R3bis,k) : ∃t ≤ log2(k0 − k) such that

1
2σ2

∑2t

j=1 β
2
σ2( j) ≥

A(k, t)
Nk,t





j=k0∑

j=k+2t

β2
σ2( j) + σ

2

(

2+
3
n

log

(

2k0

γ

))



+
σ2

n

[

2t

(

6+ 4log

(

k0

2t

))

+ 3log

(

2k0

γ

)]

,

where A(k, t) = 2t

[

2+
2t

Nk,t
+ Λ3(k, t)log

(

e(p− k)
2t

)]

+ (1+ Λ2(k, t)) log

(

log2(p− k) + 1
α

)

andσ2 is defined such that|βσ2(1)| ≤ ... ≤ |βσ2(k0)|.

If ∀k ≤ k0 − 1 the condition(R3bis,k) holds, then

Pµ(Ĵ , J) ≤ γ + α + δ (21)

whereδ = Pµ(Ac
k0

) = Pµ(∃ ( j) ≤ k0/β( j) = 0).

Remark 3.7 is also verified in the particular case where (Xi)1≤i≤p is an orthonormal family.

3.3. The case p≥ n

We will now discuss the high-dimensional case with non-ordered variables,p ≥ n. This
section fits the two-step procedures previously introducedto high-dimensional analysis. Verzelen
[15] shows that whenk0log(ep/k0)/[nlog(n)] ≥ 4, called the ultra-high dimensional case, it is
almost impossible to estimate the support ofβ. We will then consider that we are not in the
ultra-high dimensional case.

The family (Xi)1≤i≤p is now a dependent family. As said at the beginning of Section3, we
assume that the decomposition ofµ is unique, i.e.∃!J ⊂ {1, ..., p}/µ =

∑

j∈J X jβ j . We still have
|J| = k0. The general procedure defined at the beginning of Section 3 remains the same; the first
step orders the variables and the second step estimatesk0.

Procedure ’A’ defined in Section 3.1 when the variance is known and procedure ’B’ defined in
Section 3.2 when the variance is unknown are still applicable, but with some minor modifications.
The first modification we have to make concerns the definition of the subspacesV(k) andS(k),(t).
Indeed, we have to take into account that the family (Xi)1≤i≤p is a dependent family. Let define
a = dim(span(X1, ...,Xp)), note thata ≤ n , hence we set:
∀k < a − 1, tmax = ⌊log2(a − k − 1)⌋ and noteV(k) = span(X(1), ...,X(sk)) wheresk is defined by
sk = inf{s/dim(span(X(1), ...,X(s))) = k} andS(k),(t) = span(X(sk+1), ...,X(sk+qk,t)) ∩ V⊥(k) whereqk,t

is defined byqk,t = inf{q/dim(span(X(sk+1), ...,X(sk+q))) = 2t}. With these definitions, we have
12



dim(Vk) = k and dim(Sk,t) = 2t.
The second modification we have to make concerns the construction of the respective upper
boundU1

k,t andΥk,t in Lemma 3.1 and Lemma 3.5. Indeed, asp ≥ n, these upper bounds are
constructed as following:

Let k ∈ {0, ..., a − 2}, ǫ′ ∼ Nn(0, σ2In). The family (Xi)1≤i≤p is ordered byσ1 defined by:
∀ j ∈ {1, ..., sk}, σ1( j) = ( j) and∀ j ∈ {sk + 1, ..., p},Xσ1( j) is the variable that maximizes:
{||ΠXi∩<Xσ1(1),...,Xσ1( j−1)>

⊥ǫ′||2n,∀ i ∈ {1, ..., p}\{σ1(1), ..., σ1( j − 1)}}.
Once we havej such that dim(< Xσ1(1), ...,Xσ1( j) >) = a, the next ordered variablesXσ1( j+1)

can be any remaining unordered variables in{1, ..., p}\{σ1(1), ..., σ1( j)} . We could complete
σ1 by an arbitrary order on the remaining variables, but since we achieve to construct a family
(Xσ1(1), ...,Xσ1( j)) that describesRa, we do not care about the remaining unordered variables.

We can then calculate the statistics:

U1
k,t =

||ΠS(k),σ1(t)ǫ
′||2n

σ2
, andΥk,t =

Nk,t||ΠS(k),σ1(t)ǫ
′||2n

Dk,t||ǫ′ − ΠV(k),σ1(t)ǫ
′||2n

whereS(k),σ1(t) = span(Xσ1(sk+1), ...,Xσ1(sk+rk,t)) ∩ V⊥(k) whererk,t is defined by
rk,t = inf{q/dim(span(Xσ1(sk+1), ...,Xσ1(sk+q))) = 2t} andV(k),σ1(t) = S(k),σ1(t) ⊕ V(k).

With those two modifications, Theorem 3.2 of Section 3.1.1 and Theorem 3.6 of Section
3.2.1 apply assumingk0 < a. A simulation study is given in the next section showing thatour
procedure ’B’ performs well.

4. Simulation study

In this section, we comment the results of the simulation study which are presented in the
Appendix A. Our aim was to test the performances of our selection methods. Six methods were
compared; the procedure described in Section 2 with orderedvariables, denoted ”pre-ordered” in
the tables of Appendix A, the two-step procedure ’B’ described in Section 3 with non-ordered
variables, either with ordered p-values denoted ”procpval” or with the Bolasso order denoted
”procbol”, the FDR procedure described in Bunea et al. [6], the Lasso method and the Bolasso
technique. For the purpose of comparison, we considered thedesign of the simulations of Bunea
et al. [6]. The comparison of the first method and the others isunfair and was not performed
because of prior information being available on the relative importance of the variables. The two
kinds of method have to be compared separately.

The simulation was performed in several frameworks: in the common case when (Xi)1≤i≤p

is a linearly independent family, in a more precise case (theorthonormal case), and in a more
general case (the high-dimensional case). For the latter, the FDR procedure of Bunea et al. [6]
cannot be computed as p-values can not be obtained with the least squares estimate with allp
variables. In this case we compared an adjusted FDR (denotedFDR2); a p-value was calculated
for each variableXi from the regression of Y onto the variable concerned. As mentioned in the
introduction, this is a natural extension of the FDR procedure in high-dimensional analysis and
extended FDR is currently widely used in biology for QTL research and transcriptome analysis.

Concerning the design of our simulations, we simulatedp independent vectorsX∗j ∼ Nn(0, In),
and set the predictorsX j = X∗j /||X

∗
j ||, for j = 1, ..., p. The response variableY was computed via

Y = βi1Xi1 + ... + βik0
Xik0
+ ǫ, whereǫ is a vector of independent standard Gaussian variables,
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{i1, .., ik0} = J ⊂ {1, .., p} andβJ ∈ {
√

n, 6}. We considered two instances ofk0 (5 or 10). In
each instance, samples ofn = 100 and 500 in the low-dimensional case, andn = 100 in the
high-dimensional case have been simulated. We letp to vary with the sample sizen. In the
orthonormal case, we set the predictorsX j , j = 1, ..., p as an orthonormal basis of span(X∗1, ..,X

∗
p)

(principal component for example). Whenp > n, the number of non-zero coefficients, |J|,
was checked. Indeed, we assume that the decomposition ofµ was unique, so we had to check
the possibility that, even thoughk0 non-zero coefficients were simulated, several other vari-
ables might be included in span(Xi1, ...,Xik0

) because of collinearity. All variables included in
span(Xi1, ...,Xik0

) were looked for. In all simulations described above and reported in the tables
A.1-A.3 in Appendix A, there were no other variables inJ than the one used to simulateY. Thus
the aim of all simulations remained the same, i.e the estimation of J = {i1, .., ik0}.

When (Xi)1≤i≤p is not an orthonormal family, the calculation ofTk,α with (3) demands a lot
of computational time, as a calculation ofV⊥k andQk,tmax is needed for eachk. Since a variable
selection method is not only judged on its results but also onits fastness, useless calculations in
our procedure had to be avoided. The Gram-Schmidt process was used to get an orthonormal
family out of (Xi)1≤i≤p. Thus the calculation of (V⊥k )k≥0 was done once and for all.
Decompose∀ l > 0:

Xk+l = ΠVk(Xk+l) + ΠV⊥k
(Xk+l)

Note (ej) j=1..k an orthonormal basis ofVk, then:

ΠVk(Xk+l) =
k∑

j=1

< Xk+l , ej > ej and ΠV⊥k
(Xk+l) = Xk+l −

k∑

j=1

< Xk+l , ej > ej

The family (X1, ..,Xp) was modified into



X1,
ΠV⊥1

(X2)

||ΠV⊥1
(X2)||

,
ΠV⊥2

(X3)

||ΠV⊥2
(X3)||

, ...,
ΠV⊥p−1

(Xp)

||ΠV⊥p−1
(Xp)||





We called that orthonormal family (X̃1, .., X̃p). Y had been decomposed as:

Y = X̃1β̃1 + .. + X̃kβ̃k
︸              ︷︷              ︸

Vk

+ X̃k+1β̃k+1 + ... + X̃pβ̃p
︸                     ︷︷                     ︸

⊂V⊥k

+ǫ (22)

ThenSk,t = span(̃Xk+1, .., X̃k+2t) and so||ΠSk,tY||2n = β̃2
k+1+ ...+ β̃

2
k+2t . This technique avoided a lot

of useless and redundant calculations.
The decomposition of Gram-Schmidt has also been used in the non-ordered variables case with
the two-step procedure ’A’ and ’B’ once the variables have been ordered.

When (Xi)1≤i≤p is an orthonormal family, we used another upper bound of the statistics
ŨDk,t ,Nk,t in our simulations than the one in Lemma 3.5. Indeed, we can obtain an upper bound
which does not depend on the family (Xi)1≤i≤p nor on the order on that family.
Let I1, ..., Ip be p i.i.d. standard Gaussian variables, and let|I(1)| ≥ ... ≥ |I(p)|.
We define:∀k = 0, ..., p− 1, ∀D = 0, ..., p− k− 1, Lk,D =

∑p
j=k+D+1 I2

( j)

We have a stochastic upper bound ofŨDk,t ,Nk,t for all 0 ≤ k < p and for allt ∈ Tk: underĤk and
on the eventAk:

ŨDk,t ,Nk,t ≤
Nk,t

Dk,t

ZDk,t ,p−k

Lk,Dk,t + Kn−p
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whereKn−p is a chi-square variable withn− p degrees of freedom andZd,D is defined by (13).
The simulations were performed with this new upper bound.

The results of the simulation study are presented in Table A.1-A.3. The method displayed
as FDR in the simulation tables corresponds to the proceduredescribed in Bunea et al. [6], by
choosingq (user level) as 0.1 and 0.05.

The l1 penalty of the Lasso was tuned via 10-cross validation. Concerning the Bolasso tech-
nique, we chooseit = 100 bootstrap iterations; the frequency threshold and the penalty were also
tuned via 10-cross validation.

Concerning the Bolasso for ordering, we chose to stop the dichotomy algorithm (see Section
3) as soon as min(p, 60) variables were ordered. The objective was to spare calculation because
it is uneasy to distinguish the remaining variables after the min(p, 60)th position. The dichotomy
algorithm assumes that when a variable reaches a frequency of 1, the frequency stays at 1 when
the penalty decreases. In practice this assumption might bewrong, the algorithm is then restarted.

Concerning the three procedures presented in this paper, the results are displayed for a level
α ∈ {0.1, 0.05}. For the ordered case, (Xi)1≤i≤p became (XJ,X−J) and the collection{αt, t ∈ Tk}
was chosen in accordance to the procedure P1, which demandedmore computational time than
P2, but which was far much powerful. For the non-ordered case, the collection{αt, t ∈ Tk} was
chosen with the procedure P5, when (Xi)1≤i≤p was not an orthonormal family, as the variance was
considered unknown in the simulation.

In all tables, the first row gives an estimation ofδ = Pµ(Ac
k0

). This estimation is not mentioned
for the first procedure as the variables have already been ordered, soδ = 0. In low dimension, the
parameterm reflect the well-conditioned of the matrixX; m= max1≤ j≤p mj j where (mi j )1≤i, j≤p =

(XTX)−1/n, a lowmmeans that the matrixX is well-conditioned. The second row ”Truth” records
the percentage of times the true model is selected; i.e. the pourcentage of time we actually found
Ĵ = J. The third row, labelled ”Inclusions”, records the number of variables selected, average
over 500 replications. ”Correct inclusions” records the number of relevant variables that are
included in the selected model, average too. The MSE (Mean Squared Error) is calculated by
average over all simulations:MS E=

∑n
i=1(Ŷi − (XβJ)i)/n, whereŶ = Xβ̂, with β̂ an estimation

of β with non zero values only on̂J.
First, concerning the ordered case procedure, Tables A.1-A.3 all show that this procedure

gave excellent results, even in the high-dimensional case with a higher number of variables than
the number of observations (Table A.3). These results are not surprising because our choices
of β verified condition (R) of Theorem 2.1 with a very smallγ, so the probability of wrongly
estimatingk0 was almost reduced toα.

Concerning all the other methods tested, Table A.1 shows that the FDR procedure performed
slightly better in the orthonormal case whenβJ was small. Table A.2 shows results in the com-
mon case when (Xi)1≤i≤p was not an orthonormal family. Our procedure with the Bolasso order
gave the best results, especially compared to the FDR procedure which gave weak results.

Table A.3 focuses on the main aim of this paper, the high-dimensional case. We chose two
alternatives for the number of variables,p = 300 andp = 600. The table shows that the FDR2
was far from satisfactory. Indeed, nearly no true model wererecovered in the 500 simulations.
In fact, Table A.3 shows that our ”procbol” procedure outperformed the others whenp >>
n. However, a combination of a smallβJ and a high number of variables induced a highδ̂
and consequently decreased the power of our ”procbol” method. Moreover, the results of the
”procbol” method become less satisfactory with an increaseon the value ofk0 because of the
overestimation of the statistics in Lemma 3.5.
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5. Conclusion

This paper tackled the problem of recovering the set of relevant variablesJ in a sparse lin-
ear model, especially when the number of variablesp was higher than the sample sizen. We
proposed three new methods based on hypotheses testing to estimateJ: one when the variables
were ordered and two when they were not; one if the variance isknown and the other when the
variance is unknown. The three procedures are proved to be powerful under some conditions on
the data. The simulations showed that these new procedures outperformed all the other methods
tested in a common case but also in the high-dimensional case, which was the aim of this study.
For instance, a method commonly used in applied sciences gave inaccurate results in simulation.
Finally, a crucial point in these new methods remains the wayto order variables. To improve
the two-step procedure presented in this paper, a better wayto order variables than the Bolasso
technique needs to be found.
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Appendix A. Simulation results

Results pre-ordered procpval procbol FDR Lasso Bolasso
α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 q=0.1 q=0.05

k0 = 10, n = 100, p = 80, β =
√

n,m= 0.01
δ̂ = 0.00 δ̂ = 0.00 δ̂ = 0.00

Truth 0.89 0.95 0.98 0.99 0.98 0.99 0.88 0.95 0.80 0.75
Inclusions 10.58 10.22 10.06 10.01 10.05 10.02 10.16 10.07 10.93 10.80
Correct incl. 10.00 10.00 10.00 9.99 10.00 10.00 10.00 10.00 10.00 10.00
MSE 0.11 0.11 0.11 0.10 0.10 0.10 0.11 0.11 0.15 0.15

k0 = 5, n = 100, p = 80, β = 6,m= 0.01
δ̂ = 0.00 δ̂ = 0.01 δ̂ = 0.01

Truth 0.89 0.96 0.75 0.70 0.80 0.76 0.81 0.78 0.73 0.72
Inclusions 5.6 5.19 4.82 4.68 4.89 4.78 4.97 4.80 5.91 5.82
Correct incl. 5.00 5.00 4.77 4.67 4.82 4.74 4.85 4.74 4.96 4.99
MSE 0.06 0.06 0.13 0.16 0.11 0.14 0.11 0.15 0.12 0.10

Table A.1: The orthonormal case

Results pre-ordered procpval procbol FDR Lasso Bolasso
α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 q=0.1 q=0.05

k0 = 10, n = 100, p = 80, β =
√

n,m= 0.102
δ̂ = 0.46 δ̂ = 0.00 δ̂ = 0.45

Truth 0.92 0.96 0.54 0.54 0.94 0.96 0.13 0.10 0.29 0.67
Inclusions 10.33 10.15 12.06 11.62 10.08 10.05 7.55 6.60 12.18 10.70
Correct incl. 10.00 10.00 9.92 9.90 10.00 10.00 7.34 6.53 10.00 9.99
MSE 0.12 0.11 0.20 0.22 0.11 0.11 2.97 3.72 0.18 0.14

k0 = 5,n = 100, p = 80, β = 6,m= 0.103
δ̂ = 0.88 δ̂ = 0.07 δ̂ = 0.82

Truth 0.91 0.95 0.11 0.11 0.86 0.84 0.00 0.00 0.27 0.47
Inclusions 5.37 5.13 6.30 5.54 5.00 4.94 0.98 0.66 7.22 6.14
Correct incl. 5.00 5.00 4.05 3.90 4.91 4.87 0.86 0.62 4.94 4.94
MSE 0.06 0.06 0.40 0.44 0.08 0.09 1.42 1.45 0.16 0.13

k0 = 10, n = 500, p = 450, β =
√

n,m= 0.040
δ̂ = 0.02 δ̂ = 0.00 δ̂ = 0.01

Truth 0.91 0.95 0.98 0.98 0.94 0.96 0.84 0.85 0.88 0.99
Inclusions 11.09 10.32 10.05 10.05 10.07 10.04 10.12 9.99 10.26 10.01
Correct incl. 10.00 10.00 10.00 10.00 10.00 10.00 9.94 9.90 10.00 10.00
MSE 0.02 0.02 0.02 0.02 0.02 0.02 0.30 0.31 0.02 0.02

k0 = 5, n = 500, p = 450, β = 6,m= 0.044
δ̂ = 1.00 δ̂ = 0.07 δ̂ = 1.00

Truth 0.89 0.95 0.00 0.00 0.86 0.84 0.00 0.00 0.68 0.27
Inclusions 7.35 6.06 2.19 1.68 4.95 4.88 0.09 0.05 5.37 3.78
Correct incl. 5.00 5.00 1.22 1.16 4.90 4.85 0.07 0.05 4.91 3.78
MSE 0.02 0.01 0.27 0.28 0.02 0.02 0.36 0.36 0.03 0.09

Table A.2: The non orthonormal case,p < n
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Results pre-ordered procpval procbol FDR2 Lasso Bolasso
α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 q=0.1 q=0.05

k0 = 10, n = 100, p = 300, β =
√

n
δ̂ = 1.00 δ̂ = 0.00 δ̂ = 1.00

Truth 0.91 0.96 0.00 0.00 0.99 0.99 0.00 0.00 0.60 0.78
Inclusions 10.53 10.14 8.92 8.68 10.01 10.01 4.17 3.38 11.05 10.46
Correct incl. 10.00 10.00 8.35 8.36 10.00 10.00 4.17 3.38 10.00 10.00
MSE 0.11 0.10 1.56 1.63 0.10 0.10 5.21 6.04 0.15 0.13

k0 = 5, n = 100, p = 300, β = 6
δ̂ = 0.65 δ̂ = 0.09 δ̂ = 0.60

Truth 0.93 0.96 0.33 0.33 0.79 0.74 0.03 0.01 0.38 0.56
Inclusions 5.438 5.16 4.62 4.50 4.88 4.78 3.22 2.74 7.57 6.32
Correct incl. 5.00 5.00 4.32 4.24 4.82 4.74 3.15 2.71 4.92 4.90
MSE 0.06 0.05 0.27 0.29 0.11 0.14 0.66 0.79 0.18 0.15

k0 = 10, n = 100, p = 600, β =
√

n
δ̂ = 1.00 δ̂ = 0.17 δ̂ = 1.00

Truth 0.89 0.95 0.00 0.00 0.83 0.83 0.00 0.00 0.00 0.25
Inclusions 10.66 10.21 4.88 4.36 10.30 10.20 2.33 2.02 16.97 12.24
Correct incl. 10.00 10.00 4.68 4.23 9.99 9.99 2.33 2.02 9.99 9.99
MSE 0.12 0.11 4.11 4.56 0.11 0.11 6.34 6.69 0.31 0.20

k0 = 5, n = 100, p = 600, β = 6
δ̂ = 0.95 δ̂ = 0.30 δ̂ = 0.92

Truth 0.912 0.96 0.05 0.05 0.62 0.56 0.00 0.00 0.11 0.26
Inclusions 5.43 5.12 3.36 3.22 4.62 4.48 1.48 1.18 10.52 7.49
Correct incl. 5.00 5.00 3.14 3.04 4.50 4.39 1.46 1.17 4.59 4.65
MSE 0.06 0.06 0.59 0.62 0.22 0.25 1.10 1.22 0.37 0.30

Table A.3: The high-dimensional case,p ≥ n

Appendix B. Proofs

Proof of Theorem 2.1. Let k ≤ k0 − 1 and assume that (Rk) holds. According to Baraud et al.
[2], the power of the testHk, Pµ(Tk,α > 0), is greater than 1− γ/k0. This is equivalent to
Pµ(Hk is accepted)≤ γ/k0.
Moreover, for allk ≥ k0, Pµ(Tk,α > 0) ≤ α, sinceα is the level of the testHk.
Then we have:

Pµ(k̂ > k0) ≤ Pµ(Hk0 is rejected)= Pµ(Tk0,α > 0) ≤ α

and

Pµ(k̂ < k0) ≤
k0−1∑

j=0

Pµ(H j is accepted)

≤ k0γ/k0.

Hence we obtain

Pµ(k̂ , k0) ≤ Pµ(k̂ < k0) + Pµ(k̂ > k0) ≤ γ + α

which concludes the proof of (5).
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Proof of Corollary 2.3. Let p < n andk0 ≤ p such thatp = An, whereA < 1. We setαn =

γn = 1/n. We set∀k,∀t, αt =
αn

log2(n)
, thus

∑

t∈T αt ≤ αn. With these choices, we have that the

conditions of Remark 2.2 are verified. Indeedαt =
log2(n)

n
≥ exp(−Nk,t/10) becausek + 2t ≤

p = An. Moreoverγn = 1/n ≥ 2exp(−Nk,t/21) and the ratio
Dk,t + Lk,t

Nk,t
=

2t + log(1/αt)
n− k− 2t

≤

An+ log(1/αt)
(1− A)n

remains bounded.

With these conditionsC2(k, t) andC3(k, t) behave like constants, and thus
for t = min

(

⌊log2(p− k)⌋, inf{t, 2t ≥ k0}
)

the condition (Rk) is verified for allk ≤ k0 − 1 and n
large enough:
∣
∣
∣
∣

∣
∣
∣
∣ΠV⊥k,t

(µ)
∣
∣
∣
∣

∣
∣
∣
∣

2

n
= 0 and

σ2

n




C2(k, t)

√

2t log

(

2k0

αtγ

)

+C3(k, t)log

(

2k0

αtγ

)



−→
n→∞

0, thus Theorem 2.1 can

be applied andPµ(k̂ , k0) ≤ γn + αn. In particular,Pµ(k̂ , k0) −→
n→∞

0.

Proof of Theorem 3.2. Let k < k0.

We use the identity∀(a, b) ∈ R2, (a+ b)2 ≥
1
2

a2 − b2. On the eventAk0:

∀t ∈ I = {0, ..., log2(k0 − k)}:

||ΠS(k),(t)Y||2n = ||ΠS(k),(t)(µ + ǫ)||2n

≥ 1
2
||ΠS(k),(t)µ||2n − ||ΠS(k),(t)ǫ||2n

≥ 1
2

inf
{

||ΠSµ||2n,S ∈ B2t

}

− ||ΠS(k),(t)ǫ||2n

whereB2t =
{

span(XI ), I ⊂ J, |I | = 2t}. Hence:

P

(

∀t ∈ I ,
1
σ2
||ΠS(k),(t)Y||2n ≤ U1

k,t

−1
(αt) ∩ Ak0

)

= P

(

∀t ∈ I ,
1
σ2
||ΠS(k),(t)(µ + ǫ)||2n ≤ U1

k,t

−1
(αt) ∩ Ak0

)

≤ P

(

∀t ∈ I ,
1

2σ2
inf

{

||ΠSµ||2n,S ∈ B2t

}

− 1
σ2
||ΠS(k),(t)ǫ||2n ≤ U1

k,t

−1
(αt) ∩ Ak0

)

We have on the eventAk0 and fork+ 2t ≤ k0 that ||ΠS(k),(t)ǫ||2n ≤ sup
{

||ΠSǫ||2n,S ∈ B2t

}

. Moreover,

for S ∈ B2t , ||ΠSǫ||2n ∼
σ2

n
χ2

2t . Note that|B2t | =
(

k0

2t

)

. Let denoteZt =
||ΠS(k),(t)ǫ||2n
σ2

andZ̄t(u) the

probability for the statisticZt to be larger than u. We denote ¯χd(u) the probability for a chi-square
with d degrees of freedom to be larger thanu. We have an upper bound of the (1− u)-quantile of
the statisticZt: Z̄−1

t (u) ≤ χ̄−1
2t (u/|B2t |)/n. Indeed:
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P



Zt >
χ̄−1

2t (u/|B2t |)
n



 ≤ P



sup

{

||ΠSǫ||2n
σ2

,S ∈ B2t

}

>
χ̄−1

2t (u/|B2t |)
n





≤
∑

S∈B2t

P

(

||ΠSǫ||2n >
σ2

n
χ̄−1

2t (u/|B2t |)
)

≤ |B2t | u
|B2t |

≤ u.

Therefore, the following condition

(condk) : ∃t ∈ I ,
1

2σ2
inf

{

||ΠSµ||2n,S ∈ B2t

}

≥
1
n
χ̄−1

2t

(

γ/k0

|B2t |

)

+ U1
k,t

−1
(αt)

implies that:

P

(

∀t ∈ I ,
1

2σ2
inf

{

||ΠSµ||2n,S ∈ B2t

}

−
1
σ2
||ΠS(k),(t)ǫ||2n ≤ U1

k,t

−1
(αt) ∩ Ak0

)

≤ γ/k0. (B.1)

Let us denote∀0 < d,

Gk,d =
{

span(XI ), I ⊂ {1, .., p}\{(1), ..., (k)}, |I | = d
}

. (B.2)

Note that|Gk,d| =
(

p− k
d

)

. ThenU1
k,t ≤ sup

{

||ΠSǫ||2n,S ∈ Gk,2t

}

. This inequality leads us to an

upper bound of the (1-u)-quantile ofU1
k,t: U1

k,t

−1
(u) ≤ χ̄−1

2t (u/|Gk,2t |)/n.

Using U1
k,t

−1
(u) ≤ χ̄−1

2t (u/|Gk,2t |)/n in the condition (condk), we obtain the condition (cond2,k)
which still implies (B.1):

(cond2,k) ∃t ∈ I ,
1

2σ2
inf

{

||ΠSµ||2n,S ∈ B2t

}

≥ 1
n

[

χ̄−1
2t

(

γ/k0

|B2t |

)

+ χ̄−1
2t

(

αt

|Gk,2t |

)]

.

Moreover, Laurent and Massart [10] showed that forK ∼ χ2
d:

P

(

K ≥ d + 2
√

dx+ 2x
)

≤ e−x. (B.3)

Then ford = 2t andxu = log

(

|B2t |
γ/k0

)

we have ¯χ−1
2t

(

γ/k0

|B2t |

)

≤ 2t+2
√

2txu+2xu. Since

(

D
d

)

≤
(eD

d

)d

,
√

u+ v ≤
√

u+
√

v for all u > 0, v > 0 and since∀1 < u,
√

u ≤ u, we obtain:

xu = 2tlog

(

ek0

2t

)

+ log

(

k0

γ

)

, thus

χ̄−1
2t

(

γ/k0

|B2t |

)

≤ 2t




1+ 2

√

log

(

ek0

2t

)

+ 2log

(

ek0

2t

)



+ 2

[√

2tlog(k0/γ) + log(k0/γ)
]

≤ 2t

[

5+ 4log

(

k0

2t

)]

+ 2
[ √

2tlog(k0/γ) + log(k0/γ)
]

.
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Ford = 2t andxu = log(|Gk,2t |/αt), we obtain:

χ̄−1
2t

(

αt/|Gk,2t |
)

≤ 2t




1+ 2

√

log

(

e(p− k)
2t

)

+ 2log

(

e(p− k)
2t

)



+ 2

[ √

2tlog(1/αt) + log(1/αt)
]

≤ 2t

[

5+ 4log

(

p− k
2t

)]

+ 2
[ √

2tlog(1/αt) + log(1/αt)
]

.

We also have an upper bound of 1/αt,∀t ∈ Tk. Indeed , the construction of{αt, t ∈ Tk} with

the procedure P3 gives thatP
(

∃t ∈ Tk,U1
k,t > U1

k,t

−1
(αt)

)

= α. Thus∀t ∈ Tk, αt ≥ α/|Tk|, since

P

(

∃t ∈ Tk,U1
k,t > U1

k,t

−1
(α/|Tk|)

)

≤ α.
Hence we obtain:

χ̄−1
2t

(

αt/|Gk,2t |
)

≤ 2t

[

5+ 4log

(

p− k
2t

)]

+ 2





√

2tlog

(

|Tk|
α

)

+ log

(

|Tk|
α

)



.

Using the inequalitya
√

u + b
√

v ≤
√

a2 + b2
√

u+ v which holds for any positive numbers
a, b, u, v, we finally get the condition (R2,k) which implies (B.1):
(R2,k) : ∃t ∈ I such that

1
2σ2

inf
{

||ΠSµ||2n,S ∈ B2t

}

≥ 2t

n

[

10+ 4log

(

(p− k)k0

22t

)]

+
2
n





√

2t+1log

(

k0|Tk|
γα

)

+ log

(

k0|Tk|
γα

)



.

This leads to

P

(

∀t ∈ I ,
1
σ2
||ΠS(k),(t)Y||2n ≤ U1

k,t

−1
(αt) ∩ Ak0

)

≤ γ/k0.

Hence

P

(

∀t ∈ I ,Uk,t ≤ U1
k,t

−1
(αt) ∩ Ak0

)

≤ γ/k0.

Then,∀k < k0,P
(

k̊Abis = k ∩ Ak0

)

≤ γ/k0, wherek̊Abis = |Ĵ|.
We can calculatePµ(Ĵ , J):

Pµ(Ĵ , J) ≤ Pµ(Ĵ , J ∩ Ak0) + P(Ac
k0

)

≤




k0−1∑

j=0

Pµ(k̊Abis = j ∩ Ak0) + Pµ(k̊Abis > k0 ∩ Ak0)




+ P(Ac

k0
)

≤ k0γ/k0 + α + δ.

And then (12) is proved.

Proof of Lemma 3.3. UnderĤk and on the eventAk :
Uk,t = ||ΠS(k),(t)Y||2n/σ2 = ||ΠS(k),(t)(µ + ǫ)||2n/σ2 = ||ΠS(k),(t)ǫ||2n/σ2

The family (Xi)i is orthonormal, thus:Uk,t =
∑k+2t

j=k+1 < ǫ,X( j) >
2
n /σ

2.
As ǫ ∼ Nn(0, σ2In), we have∀1 ≤ j ≤ p, < ǫ,X j >∼ N(0, σ2) and the variables< ǫ,X j >, j =
1, ..., p are i.i.d.. Thus{< ǫ,X( j) >, j > k} = {< ǫ,Xm >,m< J} = {σW1, ..., σWp−k}.

So
∑k+2t

j=k+1 < ǫ,X( j) >
2
n /σ

2 ≤
∑2t

j=1 W2
( j)/n = Zk,Dk,t/n.
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Proof of Corollary 3.4. Let k < k0.
σ2 is defined such that|βσ2(1)| ≤ ... ≤ |βσ2(k0)|, noteǫ( j+1) = ||ΠS( j),0ǫ||, ∀ j ∈ {k+1, ..., k+2t} with k+
2t ≤ k0.
Similarly as in the proof of Theorem 3.2, using the equality inf

{

||ΠSµ||2n,S ∈ B2t

}

=
∑2t

j=1 β
2
σ2( j),

we get that:

P




∀t ∈ I ,

1
σ2
||ΠS(k),(t)Y||2n ≤

Z̄−1
Dk,t ,p−k(αt)

n
∩ Ak0





≤ P




∀t ∈ I ,

1
2σ2

2t
∑

j=1

β2
σ2( j) −

1
nσ2

k+2t−1∑

j=k

ǫ2( j+1) ≤
Z̄−1

Dk,t ,p−k(αt)

n
∩ Ak0





On the eventAk0, {< ǫ,X( j+1) >, k ≤ j ≤ k + 2t − 1} ⊂ {< ǫ,X j >, j ∈ J}, which implies that we
have an stochastic upper bound:

∑k+2t−1
j=k ǫ2( j+1) ≤ σ

2Z2t ,k0.
Hence the following condition

(cond3,k) : ∃ t ≤ log2(k0 − k)/
1

2σ2

2t
∑

j=1

β2
σ2( j) ≥

1
n

[

Z̄−1
Dk,t ,p−k(αt) + Z̄−1

Dk,t ,k0
(γ/k0)

]

implies that

P




∀t ∈ I ,

1
2σ2

2t
∑

j=1

β2
σ2( j) −

1
nσ2

k+2t−1∑

j=k

ǫ2( j+1) ≤
Z̄−1

Dk,t ,p−k(αt)

n
∩ Ak0




≤ γ/k0.

This leads to

P

(

∀t ∈ I ,
1
σ2
||ΠS(k),(t)Y||2n ≤ Z̄−1

Dk,t ,p−k(αt) ∩ Ak0

)

≤ γ/k0. (B.4)

Let 0< u < 1, 0< D andd < D. In the following, we study the behavior of the (1− u) quantile
of the statisticZd,D in order to obtain a more explicit condition than (cond3,k).

Let defineVd,D = {I ⊂ {1, ...,D}/|I | = d}. Note that|Vd,D| =
(

D
d

)

. Let recall thatZd,D is de-

fined by (13) asZd,D =
∑d

j=1 W2
( j) whereW1, ...,WD are D i.i.d. standard Gaussian variables

ordered as|W(1)| ≥ ... ≥ |W(D)|. We have that:Zd,D ≤ sup
{∑

i∈I W2
i , I ∈ Vd,D

}

. Note that for

I ∈ Vd,D,
∑

i∈I W2
i ,∼ χ2

d.
We obtain that the (1− u)-quantile ofZd,D is lower than ¯χd

−1 (

u/|Vd,D|
)

:

P

(

Zd,D > χ̄d
−1 (

u/|Vd,D|
))

≤ P



sup






∑

i∈I
W2

i ,∀I ∈ Vd,D





> χ̄d

−1 (

u/|Vd,D|
)





≤
∑

I∈Vd,D

P





∑

i∈I
W2

i > χ̄d
−1 (

u/|Vd,D|
)





≤ |Vd,D|
u
|Vd,D|

≤ u.

Using the expression of the upper bound of ¯χ−1
d (u) from the proof of Theorem 3.2, we get the

condition (R2bis,k) from an upper bound of the right part in the condition (cond3,k). The end of
the proof is the same as in the proof of Theorem 3.2.
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Proof of Theorem 3.6. Let k < k0 and 0< γ < 1. DenoteI = {0, ..., ⌊log2(k0 − k)⌋}.
From the proof of Theorem 3.2 (more precisely the condition (condk)), we have that if the fol-
lowing condition is verified:

∃t ∈ I/
1
2

inf
{

||ΠSµ||2n,S ∈ B2t

}

≥ Ῡ−1
k,t (αt)Q1−γ/2k0

Dk,t

Nk,t
+
σ2

n
χ̄−1

2t

(

γ/2k0

|B2t |

)

(B.5)

whereQ1−u denote the (1− u)-quantile of the statistics||Y− ΠV(k),(t)Y||2n under the eventAk0,
then we have:

P

(

∀t ∈ I , ||ΠS(k),(t)Y||2n ≤ Ῡ−1
k,t (αt)Q1−γ/2k0

Dk,t

Nk,t
∩ Ak0

)

≤ γ/2k0.

SinceP
(

∀t ∈ I , ŨDk,t ,Nk,t < Ῡ
−1
k,t (αt) ∩ Ak0

)

≤ inf
t∈I

{

P

(

ŨDk,t ,Nk,t < Ῡ
−1
k,t (αt) ∩ Ak0

)}

and since

P

(

ŨDk,t ,Nk,t < Ῡ
−1
k,t (αt) ∩ Ak0

)

≤ P

(

||Y− ΠV(k),(t)Y||2n > Q1−γ/2k0 ∩ Ak0

)

︸                                          ︷︷                                          ︸

≤γ/2k0

+P





||ΠS(k),(t)Y||2n
Dk,t

≤ Ῡ−1
k,t (αt)

Q1−γ/2k0

Nk,t
∩ Ak0





≤ γ/k0.

we have that the condition (B.5) implies that

P

(

∀t ∈ I , ŨDk,t ,Nk,t < Ῡ
−1
k,t (αt) ∩ Ak0

)

≤ γ/k0. (B.6)

In the following, we give an upper bound of the right part in (B.5). For this doing, we have to
give an upper bound of̄Υ−1

k,t (αt) andQ1−γ/2k0.

Assume we are on the eventAk and underĤk, then

Υk,t =
Nk,t ||ΠS(k),σ1(t)Y||2n

Dk,t||Y− ΠV(k),σ1(t)Y||2n
=

Nk,t||ΠS(k),σ1(t)ǫ||2n
Dk,t||Y− ΠV(k)Y− ΠS(k),σ1(t)ǫ||2n

.

As we are on the eventAk and underĤk, the spaceV(k) is not a random space. Thus for any
subspacesS of dimensionDk,t = 2t, we have that||ΠSY||2n = ||ΠSǫ||2n ∼ σ2χ2

2t/n and we have that

||Y−ΠV(k)Y−ΠSY||2n = ||Π(S⊕V(k))⊥ǫ||2n ∼ σ2χ2
n−(2t+k)/n. Hence

Nk,t||ΠSY||2n
Dk,t||Y− ΠV(k)Y− ΠSY||2n

∼ FDk,t ,Nk,t .

Thus on the eventAk and underĤk, Υk,t ≤ sup

{

Nk,t||ΠSǫ||2n
Dk,t||ǫ − ΠV(k)+Sǫ||2n

,S ∈ Gk,2t

}

, whereGk,2t is

defined by (B.2).
We deduce that the (1− u)-quantile ofΥk,t is lower thatF̄−1

Dk,t ,Nk,t

(

u/|Gk,2t |
)

. Indeed:

P

(

Υk,t > F̄−1
Dk,t ,Nk,t

(

u/|Gk,2t |
))

≤ P

(

sup

{

Nk,t||ΠSǫ||2n
Dk,t||ǫ − ΠV(k)+Sǫ||2n

,S ∈ Gk,2t

}

> F̄−1
Dk,t ,Nk,t

(

u/|Gk,2t |
)

)

≤
∑

S∈Gk,2t

P

(

Nk,t||ΠSǫ||2n
Dk,t||ǫ − ΠV(k)+Sǫ||2n

> F̄−1
Dk,t ,Nk,t

(

u/|Gk,2t |
)

)

≤ |Gk,2t |
u
|Gk,2t |

≤ u.
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Baraud et al. [2] gave an upper bound ofF̄−1
D,N (u), for 0 < D,0< N and 0< u:

DF̄−1
D,N(u) ≤ D + 2

√

D
(

1+
D
N

)

log

(

1
u

)

+

(

1+ 2
D
N

) N
2

[

exp

(

4
N

log

(

1
u

))

− 1

]

.

Since exp(u) − 1 ≤ u exp(u) for anyu > 0,
√

u+ v ≤
√

u +
√

v for all u > 0, v > 0 and since
αt ≥ α/|Tk|, we derive that:

2tῩ−1
k,t (αt) ≤ 2t

[

1+ Λ3(k, t)log

(

e(p− k)
2t

)]

+ 2





√

2t

(

1+
2t

Nk,t

)

log

(

|Tk|
α

)

+
Λ2(k, t)

2
log

(

|Tk|
α

)



,

whereΛ1(k, t) =

√

1+
Dk,t

Nk,t
, Λ2(k, t) =

(

1+ 2
Dk,t

Nk,t

)

M andΛ3(k, t) = 2Λ1(k, t) + Λ2(k, t) with

Lt = log(|Tk|/α), mt = exp(4Lt/Nk,t), mp = exp

(

4Dk,t

Nk,t
log

(

e(p− k)
2t

))

, M = 2mtmp.

Since
√

ab+mb≤ a/2+ (m+ 1/2)b holds for any positive numbersa, b,m, we obtain that:

2tῩ−1
k,t (αt) ≤ 2t

[

1+ Λ2
1(k, t) + Λ3(k, t)log

(

e(p− k)
2t

)]

+ (1+ Λ2(k, t)) log

(

|Tk|
α

)

(B.7)

We have now to find an upper bound ofQ1−γ/2k0.
Q1−γ/2k0 is defined byP

(

||Y− ΠV(k),(t)Y||2n > Q1−γ/2k0 ∩ Ak0

)

≤ γ/2k0.

We always have that:||Y − ΠV(k),(t)Y||2n ≤ ||µ||2n + ||ǫ||2n. Thus∀ 0 < u < 1, the (1− u)-quantile of
||Y− ΠV(k),(t)Y||2n is lower than the (1− u)-quantile of||µ||2n + ||ǫ||2n.
As ||ǫ||2n ∼ σ2χ2

n/n, we can use the equation (B.3) forxu = log(2k0/γ) and we obtain that
χ̄−1

n (γ/2k0) ≤ n+ 2
√

nxu + 2xu.
Therefore

Q1−γ/2k0 ≤ ||µ||2n + σ2 n+ 2
√

nxu + 2xu

n
(B.8)

and as 1+ 2
√

u+ 2u ≤ 2+ 3u, we get

Q1−γ/2k0 ≤ ||µ||2n + σ2

(

2+
3
n

log

(

2k0

γ

))

. (B.9)

Combining (B.7) (B.9) in (B.5) and using that

χ̄−1
2t

(

γ/2k0

|B2t |

)

≤ 2t

[

5+ 4log

(

k0

2t

)]

+ 2
[√

2tlog(2k0/γ) + log(2k0/γ)
]

≤ 2t

[

6+ 4log

(

k0

2t

)]

+ 3log(2k0/γ)

we obtain the following condition:
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(R3,k) : ∃t ∈ I such that

1
2

inf
{

||ΠSµ||2n,S ∈ B2t

}

≥
Dk,tF̄−1

Dk,t ,Nk,t
(αt/|G2t |)

Nk,t

[

||µ||2n + σ2

(

2+
3
n

log

(

2k0

γ

))]

+
σ2

n

[

2t

(

6+ 4log

(

k0

2t

))

+ 3log

(

2k0

γ

)]

≥ A(k, t)
Nk,t

[

||µ||2n + σ2

(

2+
3
n

log

(

2k0

γ

))]

+
σ2

n

[

2t

(

6+ 4log

(

k0

2t

))

+ 3log

(

2k0

γ

)]

,

whereA(k, t) = 2t

[

2+
2t

Nk,t
+ Λ3(k, t)log

(

e(p− k)
2t

)]

+ (1+ Λ2(k, t)) log

(

|Tk|
α

)

.

The condition (R3,k) leads to (B.6) and thus

Pµ(Ĵ , J) ≤ Pµ(Ĵ , J ∩ Ak0) + P(Ac
k0

)

≤




k0−1∑

j=0

Pµ(k̊B = j ∩ Ak0) + Pµ(k̊B > k0 ∩ Ak0)




+ P(Ac

k0
)

≤ k0γ/k0 + α + δ.

And then (19) is proved.

Proof of Remark 3.7. In the following,C(a, b) denote a constant depending on the parametersa

andb. Under the assumption that 2t ≤ (n− k)/2 and since∀ x ≥ 2,
log(x)

x
≤ 1 we have that:

Dk,t

Nk,t
log

(

p− k
Dk,t

)

≤ 2t

n− k− 2t
log

(

n− k
2t

)

≤ 2
2t

n− k
log

(

n− k
2t

)

≤ 2.

Moreover the ratioDk,t/Nk,t is bounded by 1, thuslog(mp) ≤ 4
Dk,t

Nk,t
+ 4

Dk,t

Nk,t
log

(

p− k
Dk,t

)

≤ 12.

As the ratio 4Lk,t/Nk,t is bounded byC′(α) and sinceM ≤ 2exp(C′(α))exp(12), we have thatM
is bounded byC′′(α). ThusΛ1(k, t) ≤

√
2,Λ2(k, t) ≤ 3C′′(α) andΛ3(k, t) ≤ 2

√
2+ 3C′′(α).

We obtain under the conditionlog(p− k) > 1 thatA(k, t) ≤ 2tC(α)log(p− k).

We also have that

[

||µ||2n + σ2

(

2+
3
n

log

(

2k0

γ

))]

≤ C(||µ||n, γ, σ) sincelog(k0)/n ≤ 1,

and that 2t
(

6+ 4log

(

k0

2t

))

+ 3log

(

2k0

γ

)

≤ 2t

[

6+ 4log

(

k0

2t

)

+ 3log

(

2k0

γ

)]

≤ 2tC(γ)log(k0).

We finally obtain equation (20).

Proof of Corollary 3.8. The differences between the two conditions (R3,k) and (R3bis,k) lie in the
fact that inf

{

||ΠSµ||2n,S ∈ B2t

}

=
∑2t

j=1 β
2
σ2( j) and that the upper bound ofQ1−γ/2k0 is modified,

whereQ1−γ/2k0 is defined byP
(

||Y− ΠV(k),(t)Y||2n > Q1−γ/2k0 ∩ Ak0

)

≤ γ/2k0.

Indeed, on the eventAk0 we have that||Y−ΠV(k),(t)Y||2n ≤
∑ j=k0

j=k+2t β
2
σ2( j) + ||ǫ||

2
n, whereσ2 is defined

such that|βσ2(1)| ≤ ... ≤ |βσ2(k0)|. We get from there the condition (R3bis,k).
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