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Abstract

Many methods have been developed to estimate the set ohntleariables in a sparse linear
modelY = XB + € where the dimensiop of 8 can be much higher than the lengtlof Y. Here
we propose two new methods based on multiple hypothesésgtesither for ordered or non-
ordered variables. Our procedures are inspired by thetgstocedure proposed by Baraud et al.
[2]. The new procedures are proved to be powerful under samndittons on the data and their
properties are non asymptotic. They gave better resultstimating the set of relevant variables
than both the False Discovery Rate (FDR) and the Lasso, hdtieicommon casep(< n) and

in the high-dimensional case ¢& n).
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1. Introduction

Recent technologies have provided scientists with a ned &dmlata; very high-dimensional
data, especially with high-throughput DNRNA chips in biology. Unravelling the relevant vari-
ables -genes for example- underlying an observation is Bkweln problem in statistics and is
still one of the current major challenges. Indeed, with géanumber of variables there is often
a desire to select a smaller subset that not only fits as wditleafull set of variables, but also
contains the more important ones. Discovering the relevariables leads to higher prediction
accuracy, an important criterion in variable selection.

Many methods have been developed to estimate the set ohntleariables in the linear
modelY = XB + e where the dimensiop of 8 can be much higher than the lengtbf Y. In par-
ticular, a lot of model selection methods have been develbpeed on a penalized criterion. The
mostly known is probably the Lasso that had been presentdibisiirani [14];1* penalization
of the least squares estimate which shrinks to zero sorievam codicients, hence an estima-
tion of the set of relevant variables. A lot of studies haverbeonducted on the Lasso and many
results are available; e.g. consistency of the Lasso in-tligtensional linear regression [16],
sparsity oracle inequalities [5] and variable selectiohigh-dimensional graphs with the Lasso
[12]. The Lasso has several variants such as an adaptatig® I[9], a bootstrap Lassa [1] or a
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Group Lassol[8]. A penalization has also been used in the Sparse-PLS, whiokésda lim-
ited number of variables in each PLS direction; see Tenen[ial] for an introduction on PLS,
and Lé Cao et all [11] for further details on Sparse-PLSe®kKinds of penalization have also
been used, such as the Akaike Information Criterion (AlGherBayesian Information Criterion
(BIC), two methods based on a likelihood penalization onrthmber of variables included in
the model. Despite that the major portion of model seleati@thods was developed to perform
in low dimension, some of them apply in the high-dimensiazasle. There is still some others
that were actually developed to be powerful whpge higher tham, such as the Dantzig selector
[@]. Nonetheless a recent paper shows that under a spagsitiiton on the linear model, the
Dantzig selector and the Lasso exhibit similar behavior NBvertheless, penalization criterion
is not the only way to perform model selection. For instarnice,False Discovery Rate (FDR)
procedure, developed in the context of multiple hypothésgting by Benjamini and Hochberg
[3], was used in variable selection by Bunea etal. [6]. Thiscpdure has been extended to
high-dimensional analysis and is presently used in biofog@QTL research and transcriptome
analysis; a p-value is calculated for each variaflérom the regression of Y onto that variable
and selection is performed through an adjusted threshold.

Most of the selection methods cited above give quite goodlteshenp is lower thann,
but the results get worst gsgrows larger tham. In the context of this paper, variable selection
when p is much higher tham, those methods are disappointing and unsatisfactory. dwere
most of theoretical results are only asymptotic and onlypmnsistency of the estimators. Non
asymptotic results are more sought since small samplessageg im practice. Concerning meth-
ods using a penalized criterion such as AIC, BIC or any otlegrapization on the likelihood,
another major drawback is of computational nature. Indeegarch through all the’®ossible
spaces may be needed and this search is as compjegrasys.

This paper deals with the problem of recovering the set ef/geit variables in a sparse linear
model whenp can be lower or far higher than We consider the regression model:

Y=XB+c¢€ (1)

whereY is the observation of length, X = (Xy, ..., Xp) is the matrix ofp variables,s is an
unknown vector ofRP, € a Gaussian vector with i.i.d. components;y Nn(0, o?l,)) wherel,, is
the identity matrix ofR", ando- some unknown positive quantity. We skt= {j,3; # 0} and
|J] = ko. We denotgd; = (8j)jes- Letu = E(Y) = X8 andP, the distribution ofY obeying to
model ).

The aim of this paper is to estimafe the set of relevant variables il (1). We distinguish
two frameworks. On one hand, the variab}s..., X, are assumed to be ordered, regardless of
Y. We define a powerful procedure for estimatihgnder some conditions on the data, either
whenp < nor whenp > n. These properties are non asymptotic. This procedure isltépfeu
hypotheses testing method based on Baraud etlal. [2] whickists of doing several tests to
decide whetheE(Y) is in V, some linear subspace&f, or in a suitable collection of subspaces
containingV. On the other hand, the variables are not assumed to be drdéfe provide a
procedure to estimaté wheno is known and another similar procedure wheis unknown.
The two procedures are proved to be powerful under some tomnslion the data. The properties
of the procedures are also non asymptotic.

This paper is organized as follow, in Sectldn 2 we presenfitseprocedure to estimatg
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in the ordered variable case; the non-ordered variabletisteis considered in Sectidd 3. A
simulation study is provided in Sectibh 4 to compare sewerahble selection methods.

2. Ordered variable selection

2.1. Thecase gn

First of all, the common casg < nis considered. The familyX)i<i<p is assumed to be
a linearly independent family to which an order is given,ameless ofY. In this section we
focus on ordered variables, which means that the relevaiatlas are supposed to be in the first
places, i.e.J = {1,..,kp}. Hence an estimation & gives us an estimation &. This section
focuses on the estimation k.
Let k be a positive integer and I&% denote a linear subspaceRY, the following results are
based on a test of the null hypothesisZ E(Y) belongs tdvi” against the alternative that it does
not. As proposed in Baraud et al. [2], we consider a finitesmbibn of linear subspaces W,
{Ski,t € 7}, to test the null hypothesis. The index $eis allowed to depend on the number of
observations, or on the number of parametgrs
Let {at, t € 7} be a suitable collection of numbers in ]0,1[. The testingcpdure presented in
Baraud et al..[2] consists in doing several Fisher testsvefl kg of the null hypothesis:

Hy : {u € Vi} against the alternativigr € Vi + Sk}

The null hypothesis is rejected if at least one of the Fisbstistdoes. Our procedure consists in
doing successively the testdy)x-o for a suitable collection of linear subspac¥g)(-o until the
null hypothesis is accepted.

Let us introduce some notations that will be used througtioist section. Note|s|?> =
Yh,s/n. Foreachk € N, t € 7, we setVi; = Vi ® Sk, and denote byDy; and Ny; the
dimension ofSy; andV; respectively. Moreover séty the orthogonal projector onté for all
subspac®/. Fp n(u) denotes the probability for a Fisher withandN degrees of freedom to be
larger tharu. We denote/ (x,y) € R" < XY >n= Y1, %Yi/n, andYa € R, |a| the integer part
of a.

For alli € {1, ..., p}, X is supposed to be normed to\i, < X;, Xj >n= 1.
As the family (X)1<i<p is ordered, a natural choice of the collectigpis the following: set
V1 < k < p,Vk = spaniy, .., Xk) andVy = {0}. With this choice ofVi and as Xi)i<i<p iS a
linearly independent family, we have for &l 0, dim(Vy) =

Fork € {0, ..., p— 1}, Iettﬁax [logz(p—-K)JandQy e = Skt,te{o,. max}} be a collection
of linear subspace of, where:
Vte{o,., K = Tk

Skt = Spanii.1, .., Xir2) N Vi ()

With this collection,Dy; = 2 andNy; = n— (k + 2Y).
As mentioned before, our procedure consists in doing set@dy the testsHy)w-o until the
null hypothesis is accepted; with this choice of the coitetof linear subspaceivp()o<k<p and
(Qxtmao<k<p, aN estimation oky with our procedure i& = inf{k > O, Hy is acceptefd The
estimated set of relevant variables is thea {1, .., k}.
A procedure to test the null hypotheslgis mtroduced in the following. Se¥«a €]0, 1, Vk < p,

Nl s, YII3 L (e )}
at

T a = Su el 3
K, tefrf) { Dk,1||Y - l_évkth”% Dm Nit ( )



where{ay, t € 7y} is a collection of number in ]0,1[ such that:
Yu e Vg, P”(Tk,a >0)<a 4)

The null hypothesisly is rejected whefy, is positive.
We choose the collectiofay, t € 7} in accordance with one of the two following procedures:

P1. For allt € 7, at = a, Whereay, is thea-quantile of the random variable

2

inf E NictIIs,  €llf
DNy =3

te7i | Dyille — Ty, €l )

P2. Thea's satisfy the inequality

Za/t <a.

teT

Procedure P1 gives a teldf of size @ whereas procedure P2 gives a telgtof level . The
final multiple testing procedure, which consists in caltnsuccessivelfx, fromk = 0 until
Tk IS Negative, is proved to be powerful; an upper bound of tiodalility to wrongly estimate
ko is given in the following theorem. Fde = 0,...,p— 1, fory €]0, 1] and for allt € 7, let
L; = log(1/at), L = log(2/y), m = 2exp(4-t/Nk:), and foru > 0O let

u u
KiuwW=1+2_ /— +2m—,
() V Nk Nict

Dk,t + Lt
Nk t

D
Ca(k,t) =251+ KtZ(L)[1+ N—E:]

: mKy(L) D
Cg(k, t) =25 [(T) \% 5:| (1 + 2N—k’t) ,

Cu(k.t) = 2.5(1+ K¢(L) v my)

Theorem 2.1. Let Y obey to moddfll. We assume that g n and that(X)i<i<p is a linearly
independent family. We denote by J the{§et; # 0} = {1, ..., ko}. Lety and« be fixed in0, 1[ .
The testing procedure estimatesldyR = inf{k > 0, Ty, < 0}, where T, is defined by(3). Let
{ar,t € Tk} be calculated according to the procedure P1 or P2.

If Vk < ko — 1 the condition(Ry) holds

2 2 o?
R At e Tid s, = ot i o+ =

Cao(k, t) 4 /2 Iog( ko) + Cs(k, t)Iog(ZI:O )}

2k 2k
ayy ary
then )

Pik#k) <y+a (5)



Remark 2.2. Fork fixed, Cy(k, t), Ca(k, t), C3(k, t) behave like constants if the following condi-
tions are verified: b L
+
forallt € Ty, ar > expNgt/10), v > 2expENgi/21) and the ratio% remains

Kkt
bounded.

Under these conditions, the following inequalities hold:

Dy + log(1 D D
Ct) < 202609 gy o 5{1+ \/N—'“] Cak, 1) < 125(1 + 2N—'“)
k.t

Nict .t

It is important to note that Theordm 2.1 is non asymptotiaideethe strength of our proce-
dure. Baraud et al. [2] proposed an adaptive procedurettmte®del [1) thaj: = XB belongs to
some linear subspatéof R". Our variable selection procedure as well as the resulthiebiiem
2.7 are inspired by this paper. An asymptotic property cadeskiced to proved the consistency
of our estimatok of ko:

Coroallary 2.3. Assume that g An with A< 1. Then, using the same notation as in Theorem
[2.1, we obtain A
P, (k # ko) = 0. (6)

Remark 2.4. We say thaj satisfies conditionR) if Yk < ko — 1, (R¢) holds. According to
Theoreni 211, our procedure is powerful under the condifR)nA condition on the cocients

B3 underlies in R) since the projection o onto a space spanned by a subset of the family
(Xi)1<i<p depends both o and on the matrix. These conditions of; appear explicitly when
(Xi)1<i<p is an orthonormal family. Assume in the following thagYi<i<p is an orthonormal
family. Thus [1) becomes:

Y = X181 + .. + XiBi + Xis1Bks1 + ... + XpBp +e. (7

Vi v

With the new decompositiori](7), the projection ¥fon any subspacgy; only depends on
(Bj)js=k+1- Thus the conditionR) can be written in a dierent form, making explicit use of the

p's:
Ca(k. 1) 4 /2”09 (%) + Ca(k, t)log (%)} .
ary ayy
2.2. Thecasepn

After pointing out the properties of the procedure in the owon case < n, let us discuss a
really important framework: the high-dimensional case, p > n. The family (Xi)1<i<p can no
longer be a linearly independent family. We have to make $semption that the decomposition
of uis unique, i.e3!J c {1, ..., p}/u = X jes XiBj-

Let recall that in this sectionX).<i<p is supposed to be ordered regardles¥ aind that the
relevant variables are supposed to be in the first placeswieestill haved = {1, ...,ky} and

NI = ko.

p

2
g
Ate T/ Bey+ - +Bon > Ci(k 1) E B+ o
j=k+21+1
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Let definea = dim(spanky, ..., Xp)), note thata < n. In this part,y k < a— 1, t8, =

llogz(a — k — 1), this is in order to always havll; # 0 and so to be able to calculate
Ty, defined by[(B) for alk < a— 1. DenoteVy = spani, ..., Xs) Wheres, is defined by
& = inf{s/dim(spanky, ..., Xs)) = k} andSy; = spanis1, ..., Xs«q,) N Vi Wheregy, is defined
by gk = inf{g/dim(span¥s.1, ..., Xs+q)) = 24

The condition Ry) in Theoreni 2.1l gives no restriction on the growttpofThus Theoremn 211
applies with the new notations for aqy> n, but forky < n. This is no strong restriction since
ko > n means that we do not havefBuient observations to estimdtg whatever the method.

Results from a simulation study in Sectigh 4 will show the powf our procedure; either
whenp < norwhenp > n.

3. Non-ordered variable selection

In Sectiori 2 we defined a procedure based on multiple hypestiesting in order to estimate
J, the set of relevant variables of a sparse linear madel (¥)th& family K)1<i<p Was given
an order independent of, the estimation ofl = {1, .., ko} was reduced to the estimation laf
This present section is dedicated to a more common ca$Rxif, is not assumed to be given
an order anymore, sd is not necessarily equal {4, .., ko}. We define here a general two-step
procedure to estimat# the first step orders the variables and the second estindatédter the
first step of the general procedure, the ordered variablébevilenoted a¥(y, ..., X(p).

The first step of our procedure consists in ordering the ks In this paper two ways to
order (Xi)1<i<p taking into account the observatiovisire proposed:

— Variables ordered by increasing p-values: wipenn, a p-value is calculated for each variable
using the least squares estimate and then the variablesréed ®y increasing p-value. When
p > n, a p-value is calculated for each variable using the decaitipo of Y onto that variable.

— Variables ordered with the Bolasso technique, introdune@&ach [1]. It is a bootstrapped
version of the Lasso which improves its stability: severaldpendent bootstrap samples are
generated and the Lasso is performed on each of them. Thisagpis proved to make the
irrelevant variables asymptotically disappear. A modifaais applied to the Bolasso to adapt
it to non asymptotic analysis. An appearance frequencyl®ulzded for each variabl; by
counting the number of times the variabdeis selected over the bootstrap samples. A high
frequency denotes a good prediction ability of the variahleat a given penalty. To avoid the
use of a penalty, we set the first ordered variable to be thefiesto reach a frequency of 1 from
a decreasing penalty; and so on for the other variables. W&epd by dichotomy to order the
variables.

The first method -ordered p-values- is the one demandingclsgputational time, but as
shown in Sectiofl4, the Bolasso technique gives a better ardkthus better results. Indeed, as
we will see throughout this section, the crucial step is that fne; the correct ordering of the
variables. Indeed, the ability to estimatevith this procedure depends on the ability to get the
relevant variables in the first places.

From now on, we assume that the decompositiop &f unique, i.e3!'J c {1,..., p}/u =
Yjes XiBj. We havelJ| = ko. We introduce here an event that will be useful in the follmgvof



this section:
A¢ = {thek first ordered variables are relevaat{{(1), .., (K)} c J}. (8)

On the eventy, theky first ordered variables are relevant,{¢b), .., (ko)} = J; an estimation of
J is then obtained from an estimation|df = ko.
The second step of the general procedure consists in testaogssively the null hypothesis:

Hy : {|J] = k} against the alternative thgf| > kj. (9

The procedure stops when the null hypothesis is accefateginf{k > 0; Hy is accepteflis an
estimation ofky with our procedure and therefode= {(1), .., ()} is an estimation of the set of
relevant variables.

Two cases are distinguished to test the null hypothidgiseithero- is known or not. The
first step remains the same for both procedures. A procedligproved powerful under some
conditions on the data i is known; if o~ is unknown, we provide another two-step procedure
'B’ that is also proved to be powerful under some conditionsgtee data.

3.1. The case g n ando is known

In this section, we define a procedure called Procedure 'Meurthe assumption that the
variances? is known. Assume that the famil()1<i<p is a linearly independent family and that
the first step of Procedure A’ has already been done; vatabave been ordered. The second
step is a testing procedure that will be described in thefohg.

Let us adapt the notation of Section]2.1 to this section: vgerficall that' k < p—1,t8 =
Lloga(p — K)J, 7« = {0, ""tlr(nax}i we define\/(k) = spané((l), ey X(k)), let Q(k),tr'%ax = {Su,m,t € Tk}
be a collection of linear subspaces\qﬁ), whereY t € Tk, Sgo,) = SPaANKk+1), --» Xgs29) N V(t).
With the definition OS(k)’(t), we have dimS(k),(t)) =Dyt = 2t Letus denote}’(k),(t) = V@S-
Some notations of the previous section will also be used.

3.1.1. The general case
We introduce new statistics; for all©®k < p and for allt € 7, let

2
_ “HS(k)\(t)Y“n

Uxt
s 0_2

The second step of the procedure ‘A’ presented here corisisiising successively several
tests of the null hypothestd, defined by[(D) at levet,, where{ay, t € 71} is a suitable collection
of number in JQ1[, using the test statistiddy;. The final multiple testing procedure consists in
rejectingHy if one of those tests rejects this hypothesis. We want thétéisato be of levelr.

As the distribution of the statistidy is unknown, an upper bound has to be found in order
to build the same kind of testing procedure as in Seéfiondged the spac8) ) is random and
depends ofY.

Letk € {0,...,p— 1}, € ~ Nn(0,02Ip). The family (X)1<i<p is ordered by a permutatiar
defined by:
Vijell . ..kLow(j) = (j)andV¥ j e {k+ 1,..., p}, Xsj is the variable that maximizes:

7



We can then calculate the statistics :

1 IMsg, o€l I n
Uk,t = T, WhereS(k),(,l(t) = spané(m(kﬂ), e Xo-l(kJrzt)) N V(k)'

Lemmg 3.1. We have a stochastic upper bound qf;ttbr all 0 < k < p and for all te 7:
underHy given by(@) and on the event,Adefined by(g) :

Uk,t < U|:(Lt (10)

Let Ul .(U) denote the probability for the statlslu;%t to be larger tha.
SetVa e]O 1 VO <k < p,

|v|§ﬂ=s,up{uk,t Ul (at)} (11)
teTk

where{a, t € 7} is a collection of number in ]0,1[ chosen in accordance tddfiewing pro-
cedure:

P3. For allt € 7k, &t = an Wherea,, is thea-quantile of the random variable

inf U (Ui}
The null hypothesisly is rejected whem/llfya is positive. In fact, the second step of the procedure
‘Al is to calculate M&ﬂ from k = 0 until M&ﬂ is negative. The calculation of the collection
{at, t € Tk} with the procedure P3 gives a tédt of level a.

In summary, the two-step procedure ‘A’ wheris known consists in ordering thevariables
and then estimating by J = {(1), .. ,(kA) WherekA =inf{k > 0; Ml < 0}. The testing procedure
'Alis proved to be powerful and we give an upper bound of thmtmblllty to wrongly estimate
J in the next theorem.

Theorem 3.2. Let Y obey to moddfl. We assume that g n and that(X)i<i<p is a linearly
independent family. We denote by J the{g’;ﬁ, # 0}. Leta andy be fixed in0, 1].

The procedure estimates J By= {(1), .. ,(kA) WherekA = inflk > O, Ml < 0}, where I\/&
defined by{IT) and{a:, t € 7%} is calculated according to the procedure P3.

We consider the conditiofiR, k) stated agR,) : 3t < logy(ko — K) such that
(p- )ko) { g g(korm) o g(kol‘Tk| )}
n ya ya

22
whereYd < ko, By = {spar(X)),| c J,|lI| = d} and|7y| = logz(p — k) + 1.

1. 2t
Trsz{nnsﬂu SeByf>=

10+ 4log (

If Vk < ko —1the condition(Ry) holds, then
P(J#J)<y+a+6 (12)
wheres = P,(AQ ) = P.(3 (J) < ko/Bj) = 0).
This theorem is non asymptotic and shows that a crucial stép ¢orrectly order the vari-

ables. Indeedj stands for the weight of the chosen order, if kbeelpvant variables are not the
first ones in the first step of the procedure, then we will nethl= J

8



3.1.2. The particular case whe(¥;); is an orthonormal family

When the family Xi)1<i<p is orthonormal, the upper bound of the statistigg in Lemme 3.1
can be expressedftérently.
LetD > 0 andWhi, ..., Wp beD i.i.d. standard Gaussian variables ordereffgs| > ... > [Wp)|.
We definevd =1, ..., D,

d
Zap = ) WG, (13)
=1

Let Z_d,D(u) denote the probability for the statis#g p to be larger thar.

Lemmg 3.3. We have a stochastic upper bound qf; ttbr all 0 < k < p and for all te 7:
underHy and on the eventA

Ukt < Zp,p-k/N.
SetVa €]0,1[,VO< k < p,

Mio = sup{Ukt Zoy pilan)/n) (14)

where{a, t € 7} is a collection of number in ]0,1[ chosen in accordance tddfiewing pro-
cedure:

P4. For allt € 7k, ot = an Wherea,, is thea-quantile of the random variable
tler’]ll:( Zpy,.pk {ZDk,t,Pfk} :

The null hypothesi$iy is rejected wherMy, is positive. The procedure P4 gives a telgtof
level @. The major benefit of Procedure 'A when the family;)i<i<p is orthonormal is that
the upper bound of the statistitk; in Lemma3.B does not depend on the fami§){<i<, nor
on the order on that family. Thus the calculation of P4 onlyeteds ork andt, with p andn fixed.

We have the next corollary in the particular case whe®i{i<p is an orthonormal family,
making explicit use of thg's.

Corollary 3.4. LetY obey to moddll).. We assume that g n and that(X;)1<i<p is an orthonor-
mal family. We denote by J the $¢i8; # 0} Leta andy be fixed in0, 1].

The procedure estimates J by: {(2), .. ,(kAb.S) WherekAb.S = infik > 0, My, < 0}, where M,
is defined by{I4) and{ay, t € 7} is calculated according to the procedure P4.

We consider the conditioffRaisk) Stated agRaonisk) : It < loga(ko — K) such that

(p- k)ko) n{ g (ko|'rk|)+|og(korrk|)
ya

— |10+ 4log (

252 Zﬂﬂ'z(l) =

whereo is defined byB,,1)| < ... < |Bo,ky) @Nd|Tkl = loga(p — K) + 1.

22 ya

If Yk < ko — 1the conditionRaisk) holds, then
P(J#J)<y+a+6 (15)
wheres = P,(A;) = P,(3 (i) < ko/B(j = O).



3.2. The case g n ando is unknown

In this section, we define a procedure 'B’ under the assumgtiat the variance-? is un-
known. Assume that the familyX()1<i<p is a linearly independent family and that the first step
of this procedure 'B’ has already been done; variables haea lordered. In this section, some
notations of Section 3.1 are usedk < p,t&., = [loga(p - K)I, Tk = {0,....t .4, we define
Vi = spaniqy, ..., Xw) 1t Qu i = {Sw.¢»t € Tk} be a collection of Ilnear subspaces\f,
whereY t € Ty, Sqy,a) = SPaNK1y, --» X2)) N V(k)

We denote\/(k),(t) =V & S(k),(t)- With the definition OfS(k),(t), we have dim$(k),(t)) =Dy = 2t
and dim¥y ) = Nt = n— (k+ 2h.

3.2.1. The general case
Set the following statistics: for all @ k < p and for allt € 7,

0 Nk,t”HS(k)T(‘)Y”%

Dyt,Nkt — .

KoTke Dk,t”Y - HV(k)T(‘) Y”%

The second step of the procedure 'B’ presented here comsidtsng successively several tests
of the null hypothesne-lk defined by[(®) at leval, suitable collection of number in JQ[, using

the test statisticElp,, n,,. AS in the previous Sectidn 3.1.1, an upper bountigf, n,, needs to
be found.

Letk e {O,...,p—- 1}, € ~ Nn(0,0l,). The family (X)1<i<p is ordered by a permutatiarn
defined byv j € {1, o-l(j) = (j)and¥ j € {k+1, ..., p}, X»(j) is the variable that maximizes:
{ITIx <Xy 1y Xory - 1)>uf 3.V iefl, ., phfoa(D), ... oa(j — D}
NitllTsy,., o € 113
Dille’ = Ty, €113
whereSgg,o. ) = SPaNKr (1), -» Xory(v29) N Vg aNdVig.ou ) = S.eraty ® V-

We can then calculate the statistitg; =

Lemma 3.5. We have a stochastic upper boundln‘kt N forall 0 < k < p and for all te 7:
underH, given by(@) and on the event,Adefined by@) :

U] DNt < Tkt (16)

Let Ty.;(u) denote the probability for the statistitk; to be larger tham.
SetVa €]0,1[,YVO< k< p,

Mo = sup{Up, i, — Tir(a)] (17)
teTk

where{a, t € 7} is a collection of number in ]0,1[ chosen in accordance tddfiewing pro-

cedure:

P5. For allt € 7k, ot = an Wherea,, is thea-quantile of the random variable

inf YT
Jnt kt{ Tt}

The null hypothesi@k is rejected wherh?lk,(,Ais positive. In fact, the second step of the procedure
'B’ is to calculate My, from k = O until Mk,QAis negative. The calculation of the collection
{at, t € Tk} with procedure P5 gives a final tdd of level a.
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In summary, this two-step procedure 'B’ whenis unknown consists in ordering the
variables and then estimating by J = {(1), .. ,(kB) } whereks = inf{k > O; My, < 0). The
procedure is proved to be powerful in the next theorem; we givupper bound of the probability
to wrongly estimate) under some conditions on the data. Let us introduce somdiomtahat
will be used in the following theorem:

e(p-

K
= log(17wl/a@), m = exp(A¢/Nkt), mp = exp( Iog( Dy ))) M = 2mm,. Denote
Jt

Dt
Akt)= 1+ m, Aok, 1) = (1 + 2NT) M andAs(k, t) = 2A1(k, t) + Aa(k, t).

Theorem 3.6. Let Y obey to moddfl. We assume that g n and that(X)i<i<p is a linearly
independent family. We define by J the{:;,qﬁ, # 0} Leta andy be fixed in0, 1][.

The procedure estimates J by— {(2), .. (kB) WherekB = inflk > O, Mka < 0}, WhereMkQ is
defined by{I7) and{a:, t € 7y} is calculated according to the procedure P5.

We consider the conditiofiRs k) stated agRs) : 3t < logy(ko — K) such that

1
Sinf{IMsul?. S € Bz| >

Al [“ 2+ (2+—I09( y ))

where Ak, t) = 2! [2 + — + Az(k, t)Iog(
andVvd < ko, By = spar(X|) lcJ|l=

O'
n

2! (6 + 4log (g)) + 3log (%)} , (18)

(Iogg(p; K) + 1)

)] + (1 + Ag(k, 1) log

If Yk < ko — 1 the condition(Rsx) holds, then
P(JzJ)<y+a+6 (19)

wheres = P, (A ) = P.(3 (j) < ko/Bj) = 0).

This theorem is non asymptotic and shows that under sometaorgion the data, the testing
procedure 'B’ presented in this section is powerful. As foe®reni3.R of Sectidn 3.1.1, the first
step of the procedure -the ordering of the variables- hamanoitant part in Theorefm 3.6.

Remark 3.7. The condition Rzx) can be simplified under the assumption tHat Zn—k)/2 and
log(p — k) > 1. Indeed, in this case, the right hafdl(18) is upper boungied b

log(p - K) N log(ko)
Nk,t n ’

C(”,U”n» ')” a, O—)Zt (20)

whereC(||ulln, v, @, o) is a constant depending dpl|», v, @ ando.

A simulation study in Sectiolnl 4 will show that this testingppedure combined with a good
way to order variables -in order to minimizge performs well.
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3.2.2. The particular case whe(¥;)1<i<p is an orthonormal family

When (X)1<i<p is an orthonormal family, the conditiorR{x) of Theoren{ 36 can be ex-
pressed dierently, making explicit use of th&ls. The new condition obtained in the case of an
orthonormal family is also easier to satisfy.

Corollary 3.8. LetY obey to modéll). We assume that ¢ n and that(X;)1<i<p is an orthonor-
mal family. We define J by the 4¢i3; # 0}. Leta andy be fixed in0, 1[.

The procedure estimates J By= {(1), .., (kg)} wherekg = infk > 0, M, < 0}, whereMy, is
defined by{I7) and{as,t € 7k} is calculated according to the procedure P5.

We consider the conditioffRayisk) Stated agRapisk) : It < logz(ko — k) such that

2B 2

Z ,BGZ(J)+0- (2+—Iog( ko))

j=k+2t

20'2

Ak, 1)
k,

2 sl 2]

where Kk t) =t [2 + it + Ag(k t)Iog e(p k)) |092(p; k) + 1)

andos is defined such th@ﬁaz(m <..< |,3(,2(k0)|

+ (1 + Ag(k, 1)) Iog(

If Yk < ko — 1the conditionRspisk) holds, then
P(J#J)<y+a+6 (21)

wheres =P, (A ) = P.(3 (j) < ko/Bj) = 0).

RemarK3.V is also verified in the particular case wh £i<,, is an orthonormal family.

3.3. Thecase pn

We will now discuss the high-dimensional case with non-tedevariablesp > n. This
section fits the two-step procedures previously introdueé&digh-dimensional analysis. Verzelen
[15] shows that whetolog(ep/ko)/[nlog(n)] > 4, called the ultra-high dimensional case, it is
almost impossible to estimate the supporpBofWe will then consider that we are not in the
ultra-high dimensional case.

The family (X)1<i<p is now a dependent family. As said at the beginning of Se@iowe
assume that the decompositiorwois unique, i.e3!J c {1, ..., p}/u = X jey XjB8j. We still have
|J| = ko. The general procedure defined at the beginning of Sectiemains the same; the first
step orders the variables and the second step estikates

Procedure 'A defined in Sectién 3.1 when the variance is kmand procedure 'B’ defined in
Sectio 3.2 when the variance is unknown are still appledhit with some minor modifications.
The first modification we have to make concerns the definitidh® subspace¥ andS,«).
Indeed, we have to take into account that the famiy.(i<p, is a dependent family. Let define
a = dim(spanky, ..., Xp)), note thatn < n, hence we set:

Yk < a— 1, tmax = [l0g2(a — k — 1)] and noteVyy = spani), ..., X(s)) wheres is defined by

Sc = inf{s/dim(spank), ..., X(9)) = k} andSg,¢) = SpanK(sc1)s - Xisc+aw)) N Vg Wheregig

is defined byge: = inf{g/dim(span¥s1), ..., Xs+g)) = 2'}. With these definitions, we have
12



dim(Vy) = k and dimBy;) = 2.
The second modification we have to make concerns the cotistiuaf the respective upper
boundU,it andYy; in Lemma 31l and Lemnfa3.5. Indeed,@s n, these upper bounds are
constructed as following:

Letk € {0,..,a— 2}, € ~ Na(0,0?l,). The family (X)1<i<p is ordered byr; defined by:
Vijell..,shoi(j) = (J)andV j € {sc + L,..., p}, Xoyj is the variable that maximizes:

Once we havg such that dimg X, (1), ..., Xoyj) >) = &, the next ordered variableg;, (.1

can be any remaining unordered variablegin.., pj\{oc1(2), ..., o1(j)} . We could complete
o1 by an arbitrary order on the remaining variables, but sineeashieve to construct a family
(X1 ()s - Xory(jy) that describe®R?, we do not care about the remaining unordered variables.

We can then calculate the statistics:

1 | |HS(k)7(r1(1) 6/ | |ﬁ Nk,t | |HS(k)7(r1(1) 6/ | |ﬁ
kit = Ty an kit

- Dk,t”e/ - HV(k)_(,l(g 6,”%
whereSy o) = SPaNKe(s+1)s - Xo(seri)) N V(IL() wherery; is defined by
e = inf{q/dim(spané((,l(sﬁl), e X(r1(5k+q))) = 2t} andV(k),(,l(t) = S(k),(rl(t) & V.

With those two modifications, Theordm B.2 of Section 3.1.d @aheoreni 316 of Section
[3.2.1 apply assuminky < a. A simulation study is given in the next section showing tat
procedure 'B’ performs well.

4. Simulation study

In this section, we comment the results of the simulatiostihich are presented in the
[Appendix_A. Our aim was to test the performances of our sielechethods. Six methods were
compared; the procedure described in Se¢fion 2 with ordereables, denoted "pre-ordered” in
the tables of Appendix A, the two-step procedure 'B’ degediin Sectiofi3 with non-ordered
variables, either with ordered p-values denoted "procpealwith the Bolasso order denoted
"procbol”, the FDR procedure described in Bunea et al. [6&, tasso method and the Bolasso
technique. For the purpose of comparison, we consideredisign of the simulations of Bunea
et al. [6]. The comparison of the first method and the othetmfair and was not performed
because of prior information being available on the redaitiportance of the variables. The two
kinds of method have to be compared separately.

The simulation was performed in several frameworks: in t@mon case wherX()i<i<p
is a linearly independent family, in a more precise case dttlgonormal case), and in a more
general case (the high-dimensional case). For the laftef-DR procedure of Bunea et al. [6]
cannot be computed as p-values can not be obtained withdsedquares estimate with gl
variables. In this case we compared an adjusted FDR (deRrftB@); a p-value was calculated
for each variable; from the regression of Y onto the variable concerned. As oeetl in the
introduction, this is a natural extension of the FDR procedn high-dimensional analysis and
extended FDR is currently widely used in biology for QTL rasz# and transcriptome analysis.

Concerning the design of our simulations, we simulqiétdependentvecto%}* ~ Nn(O, 1),
and set the predictops; = X}‘/||X}‘||, for j = 1,..., p. The response variab¥was computed via
Y = B X, + ... + i, X, + € Wheree is a vector of independent standard Gaussian variables,

13



{i1, i) = J c {1,..,p} andB; € {+/n,6}. We considered two instances ky (5 or 10). In
each instance, samples of= 100 and 500 in the low-dimensional case, ang 100 in the
high-dimensional case have been simulated. We &g vary with the sample siza. In the
orthonormal case, we set the predictéfsj = 1, ..., pas an orthonormal basis of spg\.., X)
(principal component for example). When > n, the number of non-zero cigients,|J|,
was checked. Indeed, we assume that the decompositigiwab unique, so we had to check
the possibility that, even thougky non-zero cofficients were simulated, several other vari-
ables might be included in spafy, ..., Xiko) because of collinearity. All variables included in
span,, ..., Xi ) were looked for. In all simulations described above andrial in the tables
ATHA3 in, there were no other variableslithan the one used to simulafe Thus
the aim of all simulations remained the same, i.e the esiimatf J = {i1, .., ix,}.

When (X)1<i<p is not an orthonormal family, the calculation ©f, with (@) demands a lot
of computational time, as a calculation\gf andQy,,, is needed for eack. Since a variable
selection method is not only judged on its results but alsdsofastness, useless calculations in
our procedure had to be avoided. The Gram-Schmidt processiged to get an orthonormal
family out of (Xi)1<i<p. Thus the calculation o\(")x-0 was done once and for all.

Decompose | > 0:
Xicet = Ty, (Xicr) + Ty (K1)

Note (€))j-1.x an orthonormal basis &f, then:

k K

Iy, (Xs1) = Z <Xi,€>€ and Ty (X)) = Xt — Z < Xisl, €] > €
=1 =1

Iy (X2) Tz (Xa) My, (Xp)

[Ty (Xl 1Ty (XNl IIHv;_l(Xp)II

We called that orthonormal family<, .., X,). Y had been decomposed as:

The family (Xy, .., Xp) was modified int{xl,

Y = )N(lﬁl + ..+ )N(kBk + )~(k+1,§k+1 + ..+ )N(pBp +€ (22)

Vi (aV

ThenSi; = span&.1, .., Xk:2) and sd(lls, YIZ = 52, + ... + B2, .. This technique avoided a lot
of useless and redundant calculations.

The decomposition of Gram-Schmidt has also been used inaiv@rdered variables case with
the two-step procedure 'A’ and 'B’ once the variables haverberdered.

When (X)i<i<p is an orthonormal family, we used another upper bound of thtistics
Up,, Ny, in our simulations than the one in Lemial3.5. Indeed, we caamimban upper bound
which does not depend on the family;1<i<, nor on the order on that family.

Letly, ..., I, bepi.i.d. standard Gaussian variables, andligfl > ... > [I(y)l.

We definevk=0,..,p-1, VD=0,..,p-k-1,Lxp = Z?:HDH F

We have a stochastic upper bounC&n‘m,Nm forall 0 < k < p and for allt € 7: underHy and
on the eveni:

Nit Zp, . pk

0 DNy £ —7————
kt:Nkt —
T Dit Lkpy + Knop
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whereK,_, is a chi-square variable with— p degrees of freedom ard} p is defined by[(1B).
The simulations were performed with this new upper bound.

The results of the simulation study are presented in TablHAA3. The method displayed
as FDR in the simulation tables corresponds to the procetkseribed in Bunea et al.| [6], by
choosingg (user level) as @ and 005.

Thel! penalty of the Lasso was tuned via 10-cross validation. €oring the Bolasso tech-
nigue, we choosi¢ = 100 bootstrap iterations; the frequency threshold andénalpy were also
tuned via 10-cross validation.

Concerning the Bolasso for ordering, we chose to stop tHeottieny algorithm (see Section
[B) as soon as mip( 60) variables were ordered. The objective was to spare ledilon because
it is uneasy to distinguish the remaining variables aftenttin(p, 60)th position. The dichotomy
algorithm assumes that when a variable reaches a frequéicyhe frequency stays at 1 when
the penalty decreases. In practice this assumption mighitdieg, the algorithm is then restarted.

Concerning the three procedures presented in this paparesalts are displayed for a level
« € {0.1,0.05}. For the ordered caseX§i<i<p became X;, X_;) and the collectiofa, t € 7y}
was chosen in accordance to the procedure P1, which demamutedccomputational time than
P2, but which was far much powerful. For the non-ordered,dhsecollection{as,t € 7} was
chosen with the procedure P5, whef){<i<, was not an orthonormal family, as the variance was
considered unknown in the simulation.

In all tables, the first row gives an estimationsof Pll(AlEO)' This estimation is not mentioned
for the first procedure as the variables have already beamextdsa = 0. In low dimension, the
parametemreflect the well-conditioned of the matrk m = max<j<p, mj; where ()< j<p =
(XTX)~1/n, alowmmeans that the matrix is well-conditioned. The second row "Truth” records
the percentage of times the true model is selected,; i.e.dheepntage of time we actually found
J = J. The third row, labelled "Inclusions”, records the numbéwariables selected, average
over 500 replications. "Correct inclusions” records thenfer of relevant variables that are
included in the selected model, average too. The MSE (Meaar®d Error) is calculated by
average over all simulation$S E= X", (Y; — (XB3)i)/n, whereY = X3, with 3 an estimation
of B with non zero values only od.

First, concerning the ordered case procedure, Tablg§ Z31al show that this procedure
gave excellent results, even in the high-dimensional cétbearigher number of variables than
the number of observations (Talile_A.3). These results arsurprising because our choices
of g verified condition R) of Theoren[ 2.1l with a very smajl, so the probability of wrongly
estimatingky was almost reduced te.

Concerning all the other methods tested, Tablé A.1 showstibaDR procedure performed
slightly better in the orthonormal case whgnwas small. Table"A]2 shows results in the com-
mon case whenX)ii<p was not an orthonormal family. Our procedure with the Balamsler
gave the best results, especially compared to the FDR puoe&chich gave weak results.

Table[A.3 focuses on the main aim of this paper, the high-dsimmal case. We chose two
alternatives for the number of variablgs= 300 andp = 600. The table shows that the FDR2
was far from satisfactory. Indeed, nearly no true model weoevered in the 500 simulations.
In fact, Table[A.B shows that our "procbol” procedure outpemed the others whep >>
n. However, a combination of a smalh and a high number of variables induced a high
and consequently decreased the power of our "procbol” naetivdoreover, the results of the
"procbol” method become less satisfactory with an increas¢he value oky because of the
overestimation of the statistics in Lemial3.5.
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5. Conclusion

This paper tackled the problem of recovering the set of eglevariables] in a sparse lin-
ear model, especially when the number of varialgjesas higher than the sample siae We
proposed three new methods based on hypotheses testingnates: one when the variables
were ordered and two when they were not; one if the variankeas/n and the other when the
variance is unknown. The three procedures are proved towerfid under some conditions on
the data. The simulations showed that these new procedutiesréormed all the other methods
tested in a common case but also in the high-dimensional edseh was the aim of this study.
For instance, a method commonly used in applied sciencesigagcurate results in simulation.
Finally, a crucial point in these new methods remains the twagrder variables. To improve

the two-step procedure presented in this paper, a bettetovagler variables than the Bolasso
technique needs to be found.
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Appendix A. Simulation results

Results pre-ordered procpval procbol FDR Lasso | Bolasso
a@=0.1 @=0.05| ¢=0.1 @=0.05| @=0.1 @=0.05| g=0.1 @=0.05
ko=10n=10Qp=80,8= yn,m=0.01
6 =0.00 6 =0.00 6 =0.00
Truth 0.89 0.95 0.98 0.99 0.98 0.99 0.88 0.95 0.80 | 0.75
Inclusions 10.58 10.22 10.06 10.01 10.05 10.02 10.16 10.07 | 10.93 | 10.80
Correctincl. | 10.00 10.00 | 10.00 9.99 10.00 10.00 | 10.00 10.00 | 10.00 | 10.00
MSE 0.11 0.11 0.11 0.10 0.10 0.10 0.11 0.11 0.15 0.15
ko =5,n=100p=3808=6m=0.01
6 =0.00 6 =001 6 =001
Truth 0.89 0.96 0.75 0.70 0.80 0.76 0.81 0.78 0.73 | 0.72
Inclusions 5.6 5.19 4.82 4.68 4.89 4.78 4.97 4.80 5.91 5.82
Correctincl. | 5.00 5.00 4.77 4.67 4.82 4.74 4.85 4.74 4.96 4.99
MSE 0.06 0.06 0.13 0.16 0.11 0.14 0.11 0.15 0.12 0.10
Table A.1: The orthonormal case
Results pre-ordered procpval procbol FDR Lasso | Bolasso
a=0.1 @=0.05| ¢=0.1 @=0.05| @=0.1 @=0.05| g=0.1 @=0.05
ko=10,n=100p=804= ynm= 0102
6 =046 6 =0.00 6 =045
Truth 0.92 0.96 0.54 0.54 0.94 0.96 0.13 0.10 0.29 0.67
Inclusions 10.33 10.15 12.06 11.62 10.08 10.05 7.55 6.60 12.18 | 10.70
Correctincl. | 10.00 10.00 9.92 9.90 10.00 10.00 7.34 6.53 10.00 | 9.99
MSE 0.12 0.11 0.20 0.22 0.11 0.11 2.97 3.72 0.18 0.14
ko =5n=100p=804=6m=0.103
6 =0.88 6 =007 6=0.82
Truth 0.91 0.95 0.11 0.11 0.86 0.84 0.00 0.00 0.27 0.47
Inclusions 5.37 5.13 6.30 5.54 5.00 4.94 0.98 0.66 7.22 6.14
Correctincl. | 5.00 5.00 4.05 3.90 491 4.87 0.86 0.62 4.94 4.94
MSE 0.06 0.06 0.40 0.44 0.08 0.09 1.42 1.45 0.16 0.13
ko =10,n=500Q p = 4503 = vn,m = 0.040
6 =0.02 6 =0.00 6 =001
Truth 0.91 0.95 0.98 0.98 0.94 0.96 0.84 0.85 0.88 | 0.99
Inclusions 11.09 10.32 10.05 10.05 10.07 10.04 10.12  9.99 10.26 | 10.01
Correctincl. | 10.00 10.00 | 10.00 10.00 | 10.00 10.00 | 9.94 9.90 10.00 | 10.00
MSE 0.02 0.02 0.02 0.02 0.02 0.02 0.30 0.31 0.02 0.02
ko =5,n=500 p=4503=6m=0.044
6 =100 6 =007 6 =100
Truth 0.89 0.95 0.00 0.00 0.86 0.84 0.00 0.00 0.68 0.27
Inclusions 7.35 6.06 2.19 1.68 4.95 4.88 0.09 0.05 537 | 3.78
Correctincl. | 5.00 5.00 1.22 1.16 4.90 4.85 0.07 0.05 491 3.78
MSE 0.02 0.01 0.27 0.28 0.02 0.02 0.36 0.36 0.03 | 0.09

Table A.2: The non orthonormal cage< n
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Results pre-ordered procpval procbol FDR2 Lasso | Bolasso
a=0.1 @=0.05| ¢=0.1 @=0.05| @=0.1 @=0.05| g=0.1 @=0.05
ko =10,n=100 p= 3008 = vn
6 =100 6 =0.00 6 =100
Truth 0.91 0.96 0.00 0.00 0.99 0.99 0.00 0.00 0.60 | 0.78

Inclusions 10.53 10.14 8.92 8.68 10.01 10.01 | 4.17 3.38 11.05 | 10.46
Correctincl. | 10.00 10.00 | 8.35 8.36 10.00 10.00 | 4.17 3.38 10.00 | 10.00

MSE 0.11 0.10 1.56 1.63 0.10 0.10 5.21 6.04 0.15 0.13
ko=5n=100p=3008=6
6 =0.65 6 =0.09 6 =0.60
Truth 0.93 0.96 0.33 0.33 0.79 0.74 0.03 0.01 0.38 0.56

Inclusions 5438 5.16 4.62 4.50 4.88 4.78 3.22 2.74 7.57 6.32
Correctincl. | 5.00 5.00 4.32 4.24 4.82 4.74 3.15 271 4.92 4.90

MSE 006 005 |027 029 |011 014 |066 079 | 018 | 015
ko=10n=100p=6005= vn
5 =1.00 §=017 5 =1.00
Truth 089 095 | 000 000 |08 083 |000 000 | 000 |0.25

Inclusions 10.66  10.21 | 4.88 4.36 10.30 10.20 | 2.33 2.02 16.97 | 12.24
Correctincl. | 10.00 10.00 | 4.68 4.23 9.99 9.99 2.33 2.02 9.99 9.99

MSE 0.12 0.11 4.11 4.56 0.11 0.11 6.34 6.69 0.31 0.20
ko=5n=100p=6008=6
6 =0.95 6=0.30 6 =0.92
Truth 0.912 0.96 0.05 0.05 0.62 0.56 0.00 0.00 0.11 0.26

Inclusions 5.43 5.12 3.36 3.22 4.62 4.48 1.48 1.18 10.52 | 7.49
Correctincl. | 5.00 5.00 3.14 3.04 4.50 4.39 1.46 1.17 459 4.65
MSE 0.06 0.06 0.59 0.62 0.22 0.25 1.10 1.22 0.37 0.30

Table A.3: The high-dimensional cagez> n

Appendix B. Proofs

Proof of Theorem[21l Letk < ky — 1 and assume thaR{) holds. According to Baraud et al.
[2], the power of the tedtl, P, (T, > 0), is greater than & y/ko. This is equivalent to

P, (Hx is acceptedk y/ko.

Moreover, for allk > ko, P,(Tk > 0) < @, sincea is the level of the tegty.

Then we have:

P, (k > ko) < P, (H, is rejected)= P,(Ty,o > 0) < @

and

ko—1

P, (k < ko) PP,(H; is accepted)
0

IA

j=

Koy /Ko.

IA

Hence we obtain
Pu(k # ko) < P (k < ko) + Pu(k > ko) <y +a
which concludes the proof of](5).
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Proof of Corollary2.3 Let p < nandky < p such thatp = An, whereA < 1. We seta,, =
vn = 1/n. We setvk, Vt, a; = n thusy .+ @ < apn. With these choices, we have that the

log,(n)’ 100,(1)
2
n

conditions of Remark 212 are verified. Indegd= > exp(Ng¢/10) becausé + 2!

 Die+ L 2! +log(1
p = An. Moreovery, = 1/n > 2expENgi/21) and the ratie k‘tN k= n+ kg( gyt) <
k.t — K=

An+ log(1/a)

(1-An
With these condition€;(k, t) andCs(k, t) behave like constants, and thus
for t = min(lloga(p — K)J, inf{t, 2' > ko}) the condition Ry) is verified for allk < ko — 1 and n

large enough:
Ca(k,t) 4 [2t log (%) + Cs(k, t)log (%)} — 0, thus Theorem 211 can
\j ary ayy | e

be applied an@®,(k # ko) < yn + an. In particular,P,(k # ko) — 0.

IA

remains bounded.

[ 0] = 0 ama””

O
Proof of Theorem[3.2 Letk < k.

1
We use the identity(a, b) € R?, (a+ b)? > Eaz - b2. On the eventy:
Vtel ={0,...,logz(ko — K)}:

2
“HS(k)\(t)Y“n

2
“HS(k)\(t) (/‘l + E)”n

1
> Sl nlin = s el
1
> Sinf{IMsulf. S € Ba) ~ sy, ell?

whereBx = {span¥),| c J|I| = 2}. Hence:

1 — 1
P(Vt € L SlMsy VI < Ul (@) 0 Ako)

1 —
P(Vt € L SlMsy @+ I < Ug, (@) N Ako)

IA

1. 1 —1
P(Vt el, ﬁmf{nnsynﬁ,s € Bz} - ;uns(k)\(t)enﬁ <UL (@) N Ako)

We have on the ever,, and fork + 2! < kg that||ITs, , €ll3 < sup{||1'[se||ﬁ, Se th}. Moreover,

2

2 —
for S € By, |[sel2 ~ %X%- Note thatBx| = I;? . Let denoteZ; = ——=— andz(u) the
g

probability for the statisti@; to be larger than u. We denggg(u) the probability for a chi-square
with d degrees of freedom to be larger thanMe have an upper bound of the{L))-quantile of

the statisticZ;: Z;*(u) < x,*(u/[Bz[)/n. Indeed:
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yol t yol t
P(ZQXZ(?BZDJ P(Sup{u senns Bz} th(ur<|B2|)]

< =
2 00—y
< D Pmsel > ~xt(u/1B2)
SeByt
u
Ba|— < u.
= 1Peligy =
Therefore, the following condition
1
(cond,) : dtel, 57 Inf{HHS’an,SGBg} —Xz}(lyék(r)+ul ()

implies that:

1. 2 1 > —71
P(vtel, ﬁmf{unsﬂun,s € ng} — —5IMsellf < Ui, () N A < y/ko. (B.1)
Let us denot&/0 < d,

Gia = {spank), I < {1,... p\{(2), ... (K)}, Il = d}. (B.2)

Note that|Gy 4| = (pa k). ThenUit < sup{||Hse||ﬁ,S € Gk,zt}. This inequality leads us to an
— 1
upper bound of the (1-u)-quantile Uﬁ({t: U&,t (W) < X2 (U/IGizl)/n.

—1
Using U&,t (u) < )?51(u/|Gk,2t|)/n in the condition ¢ond.), we obtain the conditioncond k)
which still implies [B.1):

1. 1 (Y/Ko) | =1 @
—inf || Ba) > = izt T :
(condh)  3tel, —inf {[lsulf, S € B} > [XZ (lB |)+X (|Gk,2t|)}

Moreover, Laurent and Massalrt [10] showed that€or Xﬁi

P(K 2 d+2Vdx+2x) <e™. (B.3)
d
Then ford = 2t andx, = Iog(| /Zkl)we have(2t (Téko) < 242 2%+ 2%, Smce(g) (edD) ,

U+Vv< yu+ yvforallu>0,v> 0andsince/l < u, 4/u < u, we obtain:

2tlog( I())+Iog(k°) thus
Y
)?5‘1(%) < 2t{1+2 Iog( K))+2Iog( K)) +
21

5+ 4log (g)

A

2| V2llog(ke/7) + log(ko/v)|
+ 2| V2log(ko/y) + log(ko/7)]

20

21
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Ford = 2' andx, = log(|Gx 2|/a1), we obtain:

Ol @/IGeal) < 2 {1+2 Iog(e(p )) 2Iog(e(p )) + 2[ y2Tog(L/ay) + log(L/ay)]
< 2 5+4Iog(p; k) +2[\/2tlog(l/at)+|Og(1/at)].

We also have an upper bound ofal, Yt € 7. Indeed , the construction ¢f:,t € 7} with
—1
the procedure P3 gives th]a(ﬂt € Tk UI%,I > U&,t (a/t)) = @. ThusVt € Ty, a; = «/|7l, since

—
]P’(Elt €Tk U&’t > UI%,t (a/I‘TkI)) <a.
Hence we obtain:

o (a/IGyzl) < 2

(5| el ) oo )

Using the inequalitya+y/u + b+/v < Va2 + b2+/u+v which holds for any positive numbers
a, b, u, v, we finally get the conditionR, ) which implies [B.1):
(Rex) : Jt e | such that

1 2t
53Nt {IMsulf. S € Bz} > =

o0 4|Og((p k)ko)] i[ 2H1log(koy|frk|) g(kogu)}

202 22
This leads to

P (Vt € 1, Sl YIE < U, (@) Ako) -
Hence

—1
]P’(VI €1, U <UL (a) N Ako) < y/ko.

Then, vk < ko, P (kanis = k N Ay,) < ¥/ko, wherekapis = [J.
We can calculat@,l(j # J):

Pu(J#J) < PuJ#J NA)+PA)

IA

ko-1
[Z P, (Kanis = | N Ak,) + Pyu(Kasis > ko N Ako)] +P(AL)
=)

Koy/ko + a + 6.
And then[[(I2) is proved. O

Proof of Lenma33 UnderH, and on the evenh :
Ukt = Mgy YNIZ/02 = Mgy (1 + €)l13/ 0 = ||Hs(k)m€||2/0'
The family (X;); is orthonormal, thusUy = Z] 2 < e X >2 o
As € ~ Nn(0,02ly), we havevl < j < p,< & Xj; >~ N(O, 0'2) and the variables €, Xj >, j =
1. pareiid. Thug<e X >, j > K ={< e Xn>m¢ J} = {oW, ..., oWy}
SOZEE{L < €, X(j) >ﬁ /0'2 < 2?:1 W(Zj)/n = Zk,Dkvt/n.

IA
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Proof of Corollary[3.4 Letk < k.
o2 is defined such thdg, )| < ... < [Boyky)|, NOtEE(j11) = [ITTs ;) €ll, Vj € (K+1,..., k+2% with k+
2' < ko.

Similarly as in the proof of Theorem 3.2, using the equam{linsynﬁ, Se Bzx} = 212‘:1:3(2;2(1')'

we get that: _
~1
1 ZD 1,p—k(a’t)
P|Vtel, ;unsmvuz < - N A,

1 2 1 k2t D:L pfk(“t)
PVt e 82 2 k,ts
< [ tel, 202 zj 1: aa(j) no2 zj k: (i+1) = n N Ag

On the evenfy,, {< €, X(j+1) > K< j <k+ 2'-1ci<e Xj >, j € J}, which implies that we
have an stochastic upper bou 2 e 1) < 02 2ok,
Hence the following condition

1< 1= _
(conds): Tt <10Ga(ko =)/ 55 ) ) 2 [Z0Lp(20) + 2oL/
j=

implies that
2t k+2t-1 7-1 ()
1 2 1 2 Dkv‘,p—k at
P[VIEI’T‘-ZZBU'Z(I)_F‘-Z Z E(jJrl)S—n ﬁAkO S’}//k()
=1 =
This leads to
1 —
P(VI € I,;HHS@_@YHﬁ < ZDi:‘,p—k(a’t) N Ako) < vy/ko. (B.4)

LetO<u<1,0< Dandd < D. In the following, we study the behavior of the {1u) quantile
of the statisticZy p in order to obtain a more explicit condition thasofds ).

Let defineVyp = {I c{1,...,D}/|l| =d}. Note that|Vyp| = (2) Let recall thatZqp is de-
fined by [I3) aZyp = Z?zl W(Zj) whereW, ..., Wp areD i.i.d. standard Gaussian variables

ordered agWy)| > ... > |W;p)l. We have thatZyp < sup{zi€| V\/iz,l evd,D}. Note that for

| € Vap, Siet W2, ~ x5 B
We obtain that the (£ u)-quantile ofZyp is lower thanyg~* (u/|Vgpl):

A

]P’(Zd,D > xa* (U/|Vd,D|)) < P[SUD{Z W2, VI e Vd,D} > xa * (u/|Vd,D|)]

iel

Y P[Z WY > ot (u/|vd,D|)]
1eVap iel
u
< |Vaol <u.
0 [Va,ol

Using the expression of the upper boundygt(u) from the proof of Theorei 3.2, we get the

condition Ronisk) from an upper bound of the right part in the conditiaoridk). The end of

the proof is the same as in the proof of Theofenh 3.2. O
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Proof of Theorem[3.6l Letk < kg and 0< y < 1. Denotd = {0, ..., | logx(ko — K)1}.
From the proof of Theorein 3.2 (more precisely the conditon(l)), we have that if the fol-
lowing condition is verified:

Dt | o o1 (7—/%) (B.5)

1 2 1
— Byt > 7T - - — X ot
Jte 1/5inf{IMsulf. S € Bz = Ty (e)Qu T Tl

whereQ;_, denote the (+ u)-quantile of the statistic$Y — Hv(k)v(t)Yllﬁ under the everdy,,
then we have:

k,
]P)(Vt el ”HS(k)(t)Y”n < Tkt(a't)Ql v/2ko N7 N . N Ako) < v/ 2Ko.
SincelP (Vt e 1,Up, N, < T;tl(at) N Ako) < |[n|c {IED(LNJD“,,\,kt < f;%(m) N Ako)} and since
d 5 < ) ! 9

]P)(ODk,t,Nki < ‘fﬂ,tl(at) N Ako) < P(”Y - HV(k»(t)Y”ﬁ > Quy/2 N Ako)

<y/2ko
+]P)(“H5<k)(r>Y||2 = o) =120 Ql 7/2k0 A Ako]
Dxt
< v/ko.
we have that the condition(B.5) implies that
P(vte 1, Upn, < Titlar) NAG) < v/ko. (B.6)

In the following, we give an upper bound of the right part[ingB For this doing, we have to
give an upper bound Of;}(at) andQ1—y,2k-
Assume we are on the eveiit and undety, then

2
Nk,t | |HS(k)7(,1(‘) Yl |ﬁ _ Nk,t | |HS(k)_(,1(1) 6| | n
Dk,t”Y - HV(k)_(,l(‘) Y”% Dk,t”Y - HV(k)Y - HS(k)T{,l(ge”% '

kt =

As we are on the everf, and undeiHy, the spaceé/y is not a random space. Thus for any
subspaces of dimensionDy; = 2!, we have thallIsY||3 = |[TIsell3 ~ o%v5/n and we have that
NicalITs Y113
DictllY = Iy, Y — TIs YII3
Nicil Tselln
Ditlle — Tlyy+se€ll2’

”Y HV(k)Y HSY”Z ||1_[(SGBV(1<))l EHn ~ O Xn (21+k)/n Henc‘-’ ~ FDk,lst,l'

Thus on the everdy and undet, Tyt < sup{

defined by[(B.R).
We deduce that the (& u)-quantile ofYy; is IowerthatFDk N (u/|Gk ). Indeed:

Se Gk’zt}, whereGy » is

A

= Ny Tsell3 —
1 5 n 1
: (Tk’t g FDk't’Nk‘t (U/|Gk,2‘|)) = F (Sup{ Di¢lle — HV(k)+sE||%’ S €Gkzy> FDk‘t’Nk't (U/|Gk’2t|)

Nyl Tsell —
> Pty > Fob, /G

_ 2
SEGkvzt Dk,t ”6 HV(k)+SG||n

|Gk 2|

IA

YU <y
Gzl ~
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Baraud et al.[2] gave an upper boundrgf}, (u), for 0 < D,0 < N and 0< u:

DFp (W) < D+ 2\/D (1 + %)Iog(é) + (1+ 2%) g [exp(%log (%)) - 1}.

Since exp) — 1 < uexp@) for anyu > 0, Yu+v < yu+ v forallu> 0,v > 0 and since

at > /|7, we derive that:
t
: 2N2t(1+ 2 g ). m.g(m)}
Nict 07 2 a

D D .
whereAy(k t) = 1+ N—k‘ As(k 1) = (1+ 2N—k‘) M andAs(k,t) = 2A1(k t) + Aa(k, t) with

= log(|7«l/a@), m = exp(At/Nky), mp = exp( Iog(e('o2 ))) M = 2mmy.

Since Vab+ mb< a/2 + (m+ 1/2)b holds for any positive numbegs b, m, we obtain that:

2Tii(a) < 2

1+ As(k log (e(p k))

ZtTk (at) < 2t

(B.7)

1+ AZ(k, 1) + As(k, tlog (e(p k))

+(1+ Ax(k 1) log ('T"')

We have now to find an upper bound®@{_,,,-
Q126 i defined byP (IIY = Ty, YII2 > Quy2k, N A) < ¥/2k.
We always have thatfY — Ily,, YIla < |lull3 + llell3. ThusY O < u < 1, the (1- u)-quantile of
Y = Tly,, “)Y||2 is lower than the (% u)-quantile off|ul|? + ||el[2.
As |lell2 ~ o2y2/n, we can use the equation (B.3) fag = log(2ke/y) and we obtain that
Xnt(y/2Ko) < N+ 2% + 2X,.

Therefore
SN+ 2/NX + 2%y

Quy/2ko < IR+ 0 . (B.8)
and as 1+ 24/u+ 2u < 2 + 3u, we get
2
Quymo < Il + o 2+ 2iog(22]). ©.9)

Combining [B.7)[B.P) in[(B.b) and using that

/\,751(7'{32('0) < 2 5+4log(§) +2[\/2‘Iog(2k0/y)+Iog(2ko/y)]
2t
< 2 6+4Iog(§) + 3log(2ko/)

we obtain the following condition:
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(Rsk) : dt €| such that

Di(FL G
ktFpy, NK1(ozt/| 2) i+ ( Iog(Zko))]

Sint{IMlsul?,S € By} > ['
oz :2t (6 +4log (g)) + 3Iog( )
> A2 ik + 0?2+ 2ioa(22))
e sl o2

whereA(k,t) = 2!

24 ik + As(k, t)Iog(e(p ))

+ (1 + Ax(k 1) log ('Tk')
The condition Rsy) leads to[(B.F) and thus
Pu(J # 3 NA) +P(AY)
ko—1
[Z Pu(ks = j N Ag)+Pu(ks > ko N Ako)) +P(A])
j=0

koy/ko + a + 6.
And then [I9) is proved. O

P.(J # J)

IA

IA

IA

Proof of Remark[3.4 In the following,C(a, b) denote a constant depending on the paramaters

g()

andb. Under the assumption that 2 (n — k)/2 and since/ x > 2, —— < 1 we have that:

Dkt p-k 2t n-k 2t n-k
—lo I 2 I <2
Nt @’(Dk,t Shok—2 9 )=k T )=
D Dkt P- k
Moreover the ratidy /Ny is bounded by 1, thusg(m,) < 4— 4N—I g ) <12.
k.t k.t kit

As the ratio 4 /N is bounded byC’(@) and sinceM < 2expC (a))exp(12), we have that!
is bounded byC” (@). ThusA1(k,t) < V2, As(k,t) < 3C”(e) andAs(k, t) < 2V2 + 3C” ().
We obtain under the conditidng(p — k) > 1 thatA(k, t) < 2'C(a)log(p - K).

We also have thgt|u||? + o (2 + %Iog (%)) < C(|lulln, > o) sincelog(ko)/n < 1,

and that 2(6 + 4log (g)) + 3log (ZI;O) < 2'(6 + 4log (ko) + 3Iog( ko)] < 2'C(y)log(ko).

We finally obtain equatioi(20). O

Proof of Corollary@.8 The diferences between the two conditioRg ) and Rapisk) lie in the
fact that inf{||Hsp||ﬁ,S € th} = ?:1,3(2;2(,-) and that the upper bound @f1_,,2, is modified,

whereQi_, 2, is defined byP (||Y My Y12 > Quyjake N Ako) < y/2ko.

Indeed, on the evem!tk0 we have thal]Y — H\,(k)mYH2 < Z’ 2t 02( +||€ll2, whereo; is defined
such thatB,, )l < ... < [Ber,k)l- We get from there the conditiof bisk)- O
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