
ar
X

iv
:1

10
6.

12
16

v2
 [

cs
.L

G
]

15
 J

un
 2

01
1

Using More Data to Speed-up Training Time

Shai Shalev-Shwartz
The Hebrew University

shais@cs.huji.ac.il

Ohad Shamir
Microsoft Research New-England

ohad@microsoft.com

Eran Tromer
Tel-Aviv University

tromer@cs.tau.ac.il

Abstract

In many recent applications, data is plentiful. By now, we have a rather clear understanding of how more data can
be used to improve the accuracy of learning algorithms. Recently, there has been a growing interest in understanding
how more data can be leveraged to reduce the required training runtime. In this paper, we study the runtime of
learning as a function of the number of available training examples, and underscore the main high-level techniques.
We provide some initial positive results showing that the runtime can decrease exponentially while only requiring a
polynomial growth of the number of examples, and spell-out several interesting open problems.

1 Introduction

Machine learning are now prevalent in a large range of scientific, engineering and every-day tasks, ranging from
analysis of genomic data, through vehicle and aircraft control to locating information on the web and providing users
with personalized recommendations. Meanwhile, our world has become increasingly “digitized” and the amount of
data available for training is dramatically increasing. Bynow, we have a rather clear understanding of how more data
can be used to improve theaccuracyof learning algorithms. In this paper we study how more data can be beneficiary
for constructing moreefficientlearning algorithms.

Roughly speaking, one way to show how more data can reduce thetraining runtime is as follows. Consider learning
by finding a hypothesis in the hypothesis class that minimizes the training

Original search
space

New search space

Figure 1:The Basic Approach

error. In many situations, this search problem is computationally hard. One can
circumvent the hardness by replacing the original hypothesis class with a dif-
ferent (larger) hypothesis class, such that the search problem in the larger class
is computationally easier (e.g., the search problem in the new hypothesis class
reduces to a convex optimization problem). On the flip side, from the statistical
point of view, the estimation error in the new hypothesis class might be larger
than the estimation error in the original class, and thus, with a small number
of examples, learning the larger class might lead to overfitting even though the
same amount of examples suffices for the original hypothesisclass. However,
having more training examples keeps the overfitting in check. In particular, if
the number of extra examples we need for learning the new class is only polyno-
mially larger than the original number of examples, we end upwith an efficient
algorithm for the original problem. If, however, we don’t have those extra ex-
amples, our only option is to learn the original hypothesis class, which may be computationally harder.

The goal of this paper is to present a formal model for studying the runtime of learning algorithms as a function of
the available number of examples. After defining the formal model, we present a binary classification learning problem
for which we can provably (based on standard cryptographic assumption) demonstrate an inverse dependence of the
runtime on the number of examples. While there have been previous constructions which demonstrated a similar phe-
nomenon, assuming the existence of a “perfect” hypothesis,we show this in the much more natural agnostic model of

1

http://arxiv.org/abs/1106.1216v2

learning. A possible criticism is that our learning problemis still rather synthetic. We continue with presenting several
learning problems, which arise in natural settings, that have more efficient algorithms by relying on the availability of
more training data. Some of these examples are based on the intuition of Figure 1, but some are also based on other
ideas and techniques. However, for all these problems, the analysis is based on upper bounds without having matching
lower bounds. This raises several interesting open problems.

1.1 Related Work

[6] were the first to jointly study the computational and sample complexity, and to show that a tradeoff between
runtime and sample size exists. In particular, they distinguish between the information theoretic sample complexity
of a class and its computational sample complexity, the latter being the number of examples needed for learning the
class in polynomial time. They presented a learning problemwhich is not efficiently learnable from a small training
set, and is efficient learnable from a polynomially larger training set. [11] showed that for a concept class composed
of 1-decision-lists over{0, 1}n, which can be learned inefficiently usingO(1) examples, no algorithm can learn it
efficiently usingo(n) examples, and there is an efficient algorithm usingΩ(n) examples. The construction was also
extended tok decision-lists,k ≥ 1. with larger gaps.

In contrast to [6, 11], which focused on learning under the realizable case (namely, that the labels are generated
by some hypothesis in the class), we mostly focus on the more naturalagnosticsetting, where any distribution over
the example domain is possible, and there may be no hypothesis h in our class that never errs. This is not just a
formality - in both [6, 11], the construction crucially relies on the fact that the labels are provided by some hypothesis
in the class. In terms of techniques, we rely on the cryptographic assumption that one-way permutations exist, which
is the same assumption as in [11] and similar to the assumption in [6]. We note that cryptographic assumptions are
common in proving lower bounds for efficient learnability, and in some sense they are even necessary [2]. However,
our construction is very different. For example, in both [6,11], revealing information on the identity of the “correct”
hypothesis is split among many different examples. Therefore, efficient learning is possible after sufficiently many
examples are collected, which then allows us to return the “correct” hypothesis. In our agnostic setting, there is no
“correct” hypothesis, so this kind of approach cannot work.Instead, our efficient learning procedure computes and
returns an improper predictor, which is not in the hypothesis class at all.

A potential weaknesses of our example, as well as the examplegiven in [6], is that our hypothesis class does not
consist of “natural” hypotheses. The class employed in [11]is more natural, but it is also a very carefully constructed
subset of decision lists. The goal of the second part of the paper is to demonstrate gaps (though based on upper bounds)
for natural learning problems.

Another contribution of our model is that it captures the exact tradeoff between sample and computational complex-
ity rather then only distinguishing between polynomial andnon-polynomial time, which may not be refined enough.
Bottou and Bousquet [5] initiated a study on learning in thedata laden domain– a scenario in which data is plentiful
and computation time is the main bottleneck. This is the casein many real life applications nowadays. Shalev-Shwartz
and Srebro [13] continued this line of research and showed how for the problem of training Support Vector Machines, a
joint statistical-computational analysis reveals how theruntime of stochastic-gradient-descent can potentiallydecrease
with the number of training examples. However, this is only demonstrated via upper bounds. More importantly, the ad-
vantage of having more examples only improves running time by constant factors. In this paper, we will be interested
in larger factors of improvement, which scale with the problem size.

2 Formal Model Description

We consider the standard model of supervised statistical learning, in which each training example is an instance-target
pair and the goal of the learner is to use past examples in order to predict the targets associated with future instances.
For example, in spam classification problems, an instance isan email message and the target is either+1 (’spam’)
or −1 (’benign’). We denote the instance domain byX and the target domain byY. A prediction rule is a mapping
h : X → Y. The performance of a predictorh on an instance-target pair,(x, y) ∈ X × Y, is measured by a loss
functionℓ(h(x), y). For example, a natural loss function for classification problems is the 0-1 loss,ℓ(h(x), y) = 1 if
y 6= h(x) and0 otherwise.

2

A learning algorithm,A, receives a training set ofm examples,Sm = ((x1, y1), . . . , (xm, ym)), which are as-
sumed to be sampled i.i.d. from an unknown distributionD over the problem domainZ ⊆ X ×Y. Using the training
data, together with any prior knowledge or assumptions about the distributionD, the learner forms a prediction rule.
The predictor is a random variable and we denote it byA(Sm). The goal of the learner is to find a prediction rule with
low generalization error (a.k.a. risk), defined as the expected loss:

err(h)
def
= E(x,y)∼D[ℓ(h(x), y)] .

The well known no-free-lunch theorem tells us that no algorithm can minimize the risk without making some prior
assumptions onD. Following the agnostic PAC framework, we require that the learner will find a predictor whose risk
will be close toinfh∈H err(h), whereH is called a hypothesis class (which is known to the learner).

We useerr(A(Sm)) to denote the expected risk of the predictor returned byA, where expectation is with respect
to the random choice of the training set. We denote bytime(A,m) the upper bound on the expected runtime1 of the
algorithmA when running on any training set ofm examples. The main mathematical object that we propose to study
is the following:

TH,ǫ(m) = min{t : ∃ A s.t.∀ D, time(A,m) ≤ t ∧ err(A(m)) ≤ inf
h∈H

err(h) + ǫ} , (1)

where when not satisfies the above constraint we setTH,ǫ(m) = ∞. Thus,TH,ǫ(m) measures the required runtime
to learn the classH with an excess error ofǫ given a budget ofm training examples. Studying this function can show
us how more data can be used to decrease the required runtime of the learning algorithm. The minimum value ofm
for whichTH,ǫ(m) < ∞ is the information-theoretic sample complexity. This corresponds to the case in which we
ignore computation time. The other extreme case is the valueof TH,ǫ(∞). This corresponds to thedata laden domain,
namely data is plentiful and computation time is the only bottleneck.

We continue with few additional definitions. In general, we make no assumptions on the distributionD. However,
we sometime refer to the realizable case, in which we assume that the distributionD satisfiesminh∈H err(h) = 0. The

empirical error on the training examples, called the training error, is denoted byerrS(h)
def
= 1

m

∑m
i=1 ℓ(h(xi), yi).

A common learning paradigm is Empirical Risk Minimization,denoted ERMH, in which the learner can output any
predictor inH that minimizeserrS(h). A learning algorithm is calledproper if it always returns a hypothesis fromH.
Throughout this paper we are concerned withimproperlearning, where the returned hypothesis can be any efficiently
computed functionh from instancesx to labelsy. Note that improper learning is just as useful as proper learning for
the purpose of deriving accurate predictors.

2.1 A Warm-up Example

To illustrate how more data can reduce runtime, consider theproblem of learning the class of3-term disjunctive normal
form (DNF) formulas in the realizable case. A3-DNF is a Boolean mapping,h : {0, 1}d → {0, 1}, that can be written
ash(x) = T1(x) ∨ T2(x) ∨ T3(x), where for eachi, Ti(x) is a conjunction of an arbitrary number of literals, e.g.
Ti(x) = x1 ∧ ¬x3 ∧ x5 ∧ ¬x7.

Since the number of3-DNF formulas is at most33d, it follows that the information theoretic sample complexity
isO(d/ǫ). However, it was shown [10, 9] that unless RP=NP, the search problem of finding a3-DNF formula which
is (approximately) consistent with a given training set cannot be performed inpoly(d) time. On the other hand, we
will show below that ifm = Θ(d3/ǫ) thenTH,ǫ(m) = poly(d/ǫ). Note that there is no contradiction between the last
two sentences, since the former establishes hardness ofproper learning while the latter claims feasibility of improper
learning.

To show the positive result, observe that each 3-DNF formulacan be rewritten as∧u∈T1,v∈T2,w∈T3
(u ∨ v ∨ w)

for three sets of literalsT1, T2, T3. Defineψ : {0, 1}d → {0, 1}2(2d)3 such that for each triplet of literalsu, v, w,
there are two indices inψ(x), indicating if u ∨ v ∨ w is true or false. Therefore, each 3-DNF can be represented
as a single conjunction overψ(x). As a result, the class of3-DNFs overx is a subset of the class of conjunctions
overψ(x). The search problem of finding an ERM over the class of conjunctions is polynomially solvable (it can be

1To prevent trivialities, we also require that the runtime ofapplyingA(Sm) on any instance is at mosttime(A,m).

3

cast as a linear programming, or can be solved using a simple greedy algorithm). However, the information theoretic
sample complexity of learning conjunctions over2(2d)3 variables isO(d3/ǫ). We conclude that ifm = Θ(d3/ǫ) then
TH,ǫ(m) = poly(d/ǫ).

It is important to emphasize that the analysis above is not satisfactory for two reasons. First, we do not know if
it is not possible to improperly learn3-DNFs in polynomial time usingO(d/ǫ) examples. All we know is that the
ERM approach is not efficient. Second, we do not know if the information theoretic sample complexity of learning
conjunctions overψ(x) isΩ(d3/ǫ). Maybe the specific structure of the range ofψ yields a lower sample complexity.

But, if we do believe that the above analysis indeed reflects reality, we obtain two points on the curveTH,ǫ(m).
Still, we do not know how the rest of the curve looks like. Thisis illustrated below.

?TH,ǫ(m)

m

3-DNF

Conjunction

Samples Time
ERM over 3-DNF d/ǫ notpoly(d)
ERM over Conjunctions d3/ǫ poly(d/ǫ)

3 Formal derivation of gaps

In this section, we formally show a learning problem which exhibits an inverse dependence of the runtime on the
number of examples. As discussed in the Subsection 1.1, it isdistinguished from previous work in being applicable to
the natural agnostic setting, where we do not assume that a perfect hypothesis exist. Since this assumption was crucial
in all previous works, the construction we use is rather different.

To present the result, we will need the concept of aone-way permutation. Intuitively, a one-way permutation over
{0, 1}n is a permutation which is computationally hard to invert. More formally, letUn denote the uniform distribution
over{0, 1}n, and let{0, 1}∗ denote the set of all finite bit strings. Then we have the following definition:

Definition 1. A one-way permutationP : {0, 1}∗ 7→ {0, 1}∗ is a function which for anyn, maps{0, 1}n to itself;
there exists an algorithm for computingP (x), whose runtime is polynomial in the length ofx; and for any (possibly
randomized) polynomial-time algorithmA and any polynomialp(n) over n, Prx∼Un

(A(P (x)) = x) < 1
p(n) for

sufficiently largen.

It is widely conjectured that such one-way permutations exist. One concrete candidate is the RSA permutation
function, which treatsx ∈ {0, 1}n as a number in{0, . . . , 2n − 1}, and returnsP (x) = x

3 modN , whereN is a
product of two “random” primes of lengthn such that(p− 1)(q − 1) does not divide3. However, since the existence
of such a one-way permutation would implyP 6= NP , there is no formal proof that such functions exist (see [7] for
this and related results).

Theorem 1. There exists an agnostic binary classification learning problem overX = {0, 1}2n andY = {0, 1} with
the following properties:

• It is inefficiently learnable with sample sizem = O(1/ǫ), and running timeO(2n +m).

• Assuming one-way permutations exist, there exist no polynomial-time algorithm based on a sample of size
O(log(n)).

• It is efficiently learnable with a sample of sizem = O(n/ǫ2). Specifically, the training time isO(m), resulting
in an improper predictor whose runtime isO(m3).

The theorem implies that in the reasonable regime where1/ǫ ≤ log(n) ≤ n/ǫ2, we really get an inverse depen-
dence of the runtime on the training size. The theorem is illustrated below:

4

TH,ǫ(m)

2n + 1
ǫ

> poly(n)

n3

ǫ6

m
n
ǫ2log(n)1

ǫ

To prove the theorem, we will define the following learning problem. LetX = {0, 1}2n andY = {0, 1}. We will treat
eachx ∈ X as a pair(r, s), wherer refers to the firstn bits inx, ands to the lastn bits. Let〈r, r′〉 = ∑n

i=1 rir
′
i mod2

to denote inner product over the fieldGF (2). Let P be a one-way permutation. Then the example domain is the
following subset ofX × Y:

Z = {((r, s), b) : r, s ∈ {0, 1}n, 〈P−1(s), r〉 = b}.

The loss function we use is simply the 0-1 loss,ℓ(h(x), y) = 1h(x) 6=y.
The hypothesis classH consists of randomized functions, parameterized by{0, 1}n, and defined as follows, where

U1 is the uniform distribution on{0, 1}:

H =

{

hx(r, s) =

{

〈x, r〉 s = P (x)

b ∼ U1 otherwise
: x ∈ {0, 1}n

}

,

Learning with O(log(n)) Samples is Hard

We consider the following “hard” set of distributions{Dx}, parameterized byx ∈ {0, 1}n: eachDx is a uniform
distribution over all((r, P (x)), 〈x, r〉). Note that there are exactly2n such examples, one for each choice ofr ∈
{0, 1}n. Also, note that for any such distributionDx, infh∈H err(h) = 0, and this is achieved with the hypothesishx.

First, we will prove that with a sample sizem = O(log(n)), any efficient learner fails on at least one of the
distributionsDx. To see this, suppose on the contrary that we have an efficientdistribution-free learnerA, that
works on allDx, in the sense of seeingm = O(log(n)) examples and then outputting some hypothesish such that
h((r, P (x))) = 〈x, r〉 with even some non-trivial probability (e.g. at least1/2 + 1/poly(n)). We will soon show
how we can use such a learnerA, such that in probability at least1/poly(n), we get an efficient algorithmA′, which
given justP (x) andr, outputs〈x, r〉 with probability at least1/2 + 1/poly(n). However, by the Goldreich-Levin
Theorem ([7], Theorem 2.5.2), such an algorithm can be used to efficiently invertP , violating the assumption thatP
is a one-way permutation.

Thus, we just need to show how givenP (x), r, we can efficiently compute〈x, r〉 with probability at least1/poly(n).
The procedure works as follows: we pickm = O(log(n)) vectorsr1, . . . , rm uniformly at random from{0, 1}n, and
pick uniformly at random bitsb1, . . . , bm. We then apply our learning algorithmA over the examples{((ri, P (x)), bi)}mi=1,
getting us some predictorh′. We then attempt to predict〈x, r〉 by computingh′((x′, P (x))).

To see why this procedure works, we note that with probability of 1/2m = 1/poly(n), we picked values for
b1, . . . , bm such thatbi = 〈x, ri〉 for all i. If this event happened, then the training set we get is distributed likem i.i.d.
examples fromDx. By our assumption onA, and the fact thatinfh err(h) = 0, it follows that with probability at least
1/poly(n),A will return a hypothesis which predicts correctly with probability at least1/2+ 1/poly(n), as required.

Inefficient Distribution-Free Learning Possible withO(1/ǫ) Samples

Ignoring computational constraints, we can use the following simple learning algorithm: given a training sample
{(ri, si), bi}mi=1, find the most common values′ amongs1, . . . , sm, computex′ = P−1(s′) (inefficiently, say by
exhaustive search), and return the hypothesishx′ .

To see why this works, we will need the following lemma, whichshows that ifhx has a low error rate, then
s = P (x) is likely to appear frequently in the examples (the proof appears in Appendix A).

5

Lemma 1. For any distributionD over examples, and any fixedx ∈ {0, 1}n, it holds thatPrs(s = P (x)) =
1− 2err(hx).

Suppose thathx̂ is the hypothesis with a smallest generalization error in the hypothesis class. We now do a case
analysis: iferr(hx̂) > 1/2 − ǫ, then the predictorhx′ returned by the algorithm is almost as good. This because the
probability in the lemma statement cannot be negative, so for anyx′ (and in particular the one used by the algorithm),
we haveerr(hx′) ≤ 1/2.

The other case we need to consider is thaterr(hx̂) ≤ 1/2 − ǫ. By the lemma,̂s = P (x̂) is the value ofs most
likely to occur in the sample (sincehx̂ is the one with smallest generalization error), and its probability of being picked
is at least1 − 2 ∗ (1/2 − ǫ) = ǫ. This means that afterO(1/ǫ) examples, then with overwhelming probability, thes′

we pick is such thatPrs(s = ŝ)−Prs(s = s
′) ≤ ǫ/2. But again by the lemma, this implies thaterr(hx′)− err(hx̂) is

at mostǫ/4. Sohx′ that our algorithm returns is anǫ/4-optimal classifier as required.

Efficient Distribution-Free Learning Possible with O(n/ǫ2) Samples

We will need the following lemma, whose proof appears in Appendix A:

Lemma 2. LetD′ be some distribution over{0, 1}n, and suppose we samplem′ vectorsr1, . . . , rm′ from that distri-
bution. Then the probability that a freshly drawn vectorr is not spanned byr1, . . . , rm′ is at mostn/m′.

We use a similar algorithm to the one discussed earlier for inefficient learning. However, instead of finding the
most commons′, computingx′ = P−1(s′) and returninghx′ , which cannot be done efficiently, we build a predictor
which is at mostǫ worse thanhx′ , and doesn’t require us to findx′ explicitly.

To do so, let{((rij , sij), bij)}m
′

j=1 be the subset of examples for whichsij = s
′. By definition ofZ, we know that

for any such example,〈x′, rij 〉 = 〈P−1(s′), rij 〉 = bij . In other words, this gives us a set of valuesri1 , . . . , rim′
, for

which we know〈x′, ri1〉, . . . , 〈x′, rim′
〉. As a consequence, for anyr in the linear subspace spanned byri1 , . . . , rim′

,
we can efficiently compute〈x′, r〉. LetB denote this subspace. Then our improper predictor works as follows, given
some instance(r, s):

• If s = s
′ andr ∈ B, output〈x′, r〉 (note that this is the same output ashx′ , by definition).

• If s 6= s
′, output a random bit (note that this is the same output ashx′ , by definition ofhx′).

• If s = s
′ andr /∈ B, output a bit uniformly at random.

Note that checking whetherr ∈ B can always be done in at mostO(m′3) ≤ O(m3) time, via Gaussian elimination.
Now, we claim that the probability of the third case happening is at mostǫ/2. If this is indeed true, then our

improper predictor is onlyǫ/2 worse (in terms of generalization error) fromhx′ , which based on the argument in the
previous section, is alreadyǫ-close to optimal.

So let us consider the possibility thats = s
′ andr /∈ B. If Prs(s = s

′) ≤ ǫ, we are done, so let us suppose that
Prs(s = s

′) > ǫ. This means thatm′ is unlikely to be much smaller thanǫm. More precisely, by the multiplicative
Chernoff bound,Pr(m′ < ǫm/2) ≤ exp(−ǫm/8). Also, conditioned on some fixedm′ ≥ ǫm/2, Lemma 2 assures
us thatPr(r /∈ B|s = s

′) ≤ n/m′ ≤ 2n/ǫm. Overall, we get the following (the probabilities are over the draw of the
training set and an additional example((r, s), b)):

Pr(s = s
′, r /∈ B) = Pr(s = s

′, r /∈ B,m′ < ǫm/2) + Pr(s = s
′, r /∈ B,m′ ≥ ǫm/2)

≤ Pr(m′ < ǫm/2) + Pr(m′ ≥ ǫm/2, r /∈ B|s = s
′)

≤ exp(−ǫm/8) +
∞
∑

m′=ǫm/2

Pr(m′) Pr(r /∈ B|s = s
′,m′) ≤ exp(−ǫm/8) + 2n

ǫm
.

By takingm = O(n/ǫ2) examples, we can ensure this to be at most orderǫ.

6

4 Gaps for natural learning problems

In this section we collect examples of natural learning problems in which we conjecture there is an inverse dependence
of the training time on the sample size. Some of these examples already appeared explicitly in previous literature, but
most are new, unpublished, or did not appear in such an explicit form. We base our inverse dependence conjecture
on the current best known upper bounds. Of course, an immediate open question is to show matching lower bounds.
However, our main goal here is to demonstrate general techniques of how to reduce the training runtime by requiring
more examples.

4.1 Agnostically Learning Preferences

Consider the set[d] = {1, . . . , d}, and letX = [d]× [d] andY = {0, 1}. That is, each example is a pair(i, j) and the
label indicates whetheri is more preferable toj.

Consider the hypothesis class of all permutations over[d] which can be written asH = {hw(i, j) = 1[wi > wj] :
w ∈ R

d}. The loss function is the 0-1 loss. Note that each hypothesisin H can be written as a Halfspace:hw(i, j) =
sign(〈w, ei − e

j〉). Therefore, in the realizable case (namely, existsh ∈ H which perfectly predicts the labels of
all the examples in the training set), solving the ERM problem can be performed in polynomial time. However, in
the agnostic case, finding a Halfspace that minimizes the number of mistakes is in general NP hard. The sample
complexity of agnostically learning ad-dimensional Halfspace is̃O(d/ǫ2) and we therefore obtain that with a non-
efficient algorithm, it is possible to learn using̃O(d/ǫ2) examples.

On the other hand, in the following we show that withm = Θ(d2/ǫ2) it is possible to learn preferences in time
O(m). The idea is to define the hypothesis class of all Boolean functions overX , namely,H1 = {H(i, j) = Mi,j :

M ∈ {0, 1}d2}. Clearly,H ⊂ H1. In addition,|H1| = 2d
2

and therefore the sample complexity of learningH1 using
the ERM rule isO(d2/ǫ2). Last, it is easy to verify that solving the ERM problem can beeasily done in timeO(m).
So, overall, we obtain the following:

Samples Time
ERM overH d/ǫ2 notpoly(d)
ERM overH1 d2/ǫ2 d2/ǫ2

4.2 Agnostic Learning of Kernel-based Halfspaces

We now consider the popular class of kernel-based linear predictors. In kernel predictors, the instancesx are mapped
to a high-dimensional feature spaceψ(x), and a linear predictor is learned in that space. Rather thanworking with
ψ(x) explicitly, one performs the learning implicitly using a kernel functionk(x,x′) which efficiently computes inner
products〈ψ(x), ψ(x′)〉 .

Since the dimensionality of the feature space may be high or even infinite, the sample complexity of learning
Halfspaces in the feature space can be too large. One way to circumvent this problem is to define a slightly different
concept class by replacing the non-continuous sign function with a Lipschitz continuous function,φ : R → [0, 1],
which is often called a transfer function. For example, we can use a sigmoidal transfer functionφsig(a) = 1/(1 +
exp(−4La)), which is aL-Lipschitz function. The resulting hypothesis class isHsig = {x 7→ φsig(〈w, ψ(x)〉) :
‖w‖2 ≤ 1}, where we interpret the predictionφsig(〈w, ψ(x)〉) ∈ [0, 1] as the probability to predict a positive label.
The expected 0-1 loss then amounts toℓ(w, (x, y)) = |y − φsig(〈w, ψ(x)〉)|.

Using standard Rademacher complexity analysis (e.g. [3]),it is easy to see that the information theoretic sample
complexity of learningH isO(L2/ǫ2). However, from the computational complexity point of view,the ERM problem
amounts to solving a non-convex optimization problem (withrespect tow). Adapting a technique due to [4] it is

possible to show that anǫ-accurate solution to the ERM problem cam be calculated in time exp
(

O
(

L2

ǫ2 log(Lǫ)
))

.

The idea is to observe that the solution can be identified if someone reveals us a subset of(L/ǫ)2 non-noisy examples.
Therefore we can perform an exhaustive search over all(L/ǫ)2 subsets of them examples in the training set and
identify the best solution.

In [12], a different algorithm has been proposed, that learns the classHsig using time and sample complexity of at
mostexp

(

O
(

L log(Lǫ)
))

. That is, the runtime of this algorithm is exponentially smaller than the runtime required to

7

solve the ERM problem using the technique described in [4], but the sample complexity is also exponentially larger.
The main idea of the algorithm given in [12] is to define a new hypotheses class,H1 = {x 7→ 〈w, ψ̂(ψ(x))〉 : ‖w‖2 ≤
B}, whereB = O((L/ǫ)L) andψ̂ is a mapping function for which

〈ψ̂(ψ(x)), ψ̂(ψ(x′))〉 =
2

2− 〈ψ(x), ψ(x′)〉 =
2

2− k(x,x′)
.

While it is not true thatH ⊂ H1, it is possible to show thatH1 “almost” containsH in the sense that for eachh ∈ H
there existsh1 ∈ H1 such that for allx, |h(x)− h1(x)| ≤ ǫ. The advantage ofH1 overH is that the functions inH1

are linear and hence the ERM problem with respect toH1 boils down to a convex optimization problem and thus can
be solved in timepoly(m), wherem is the size of the training set. In summary, we obtain the following

Samples Time

ERM overH L2/ǫ2 poly
(

exp
(

L2

ǫ2 log(Lǫ)
))

ERM overH1 poly
(

exp
(

L log(Lǫ)
))

poly
(

exp
(

L log(Lǫ)
))

4.3 Additional Examples

In Appendix B we list additional examples of inverse dependence of runtime on sample size. These examples deal
with other learning settings like online learning and unsupervised learning. These examples are interesting since they
show other techniques to obtain faster algorithms using a larger sample. For example, we demonstrate how to use
explorationfor injecting structure into the problem, which leads better runtime. The price of the exploration is the
need of a larger sample. For the unsupervised setting, we recall an existing example which shows polynomial gap for
learning the support of a certain sparse vector.

5 Discussion

In this paper, we formalized and discussed the phenomena of an inverse dependence between the running time and
the sample size. While this phenomena has also been discussed in some earlier works, it was under a restrictive
realizability assumption, that a perfect hypothesis exists, and the techniques mostly involved finding this hypothesis.
In contrast, we frame our discussion in the more modern approach of agnostic and improper learning.

In the first half of our paper, we provided a novel construction which shows such a tradeoff, based on a crypto-
graphic assumption. While the construction indeed has an inverse dependence phenomenon, it is not based on a natural
learning problem. In the second half of the paper, we provided more natural learning problems, which seem to have
this phenomenon. Some of these problems were based on the intuition described in the introduction, but some were
based on other techniques. However, the apparent inverse dependence in these problems is based on the assumption
that the currently available upper bounds have matching lower bounds, which is not known to be true. Thus, we cannot
formally prove that they indeed become computationally easier with the sample size.

Thus, a major open question is findingnatural learning problems, whose required running time hasprovable
inverse dependence with the sample size. We believe the examples we outlined hint at the existence of such problems,
and provide clues as to the necessary techniques. Other problems are finding additional examples where this inverse
dependence seems to hold, as well as finding additional techniques for making this inverse dependence happen. The
ability to leverage large amounts of data to obtain more efficient algorithms would surely be a great asset to any
machine learning application.

References
[1] A. Amini and M. Wainwright. High-dimensional analysis of semidefinite relaxations for sparse prinicpal components. Annals

of Statistics, 37(5B):2877–2921, 2009.

[2] B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-case assumptions. InFOCS, 2008.

8

[3] P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results.Journal of Machine
Learning Research, 3:463–482, 2002.

[4] S. Ben-David and H. Simon. Efficient learning of linear perceptrons. InNIPS, 2000.

[5] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. InNIPS, 2008.

[6] S. Decatur, O. Goldreich, and D. Ron. Computational sample complexity.SIAM Journal on Computing, 29, 1998.

[7] O. Goldreich.Foundations of Cryptography. Cambridge University Press, 2001.

[8] S. Kakade, S. Shalev-Shwartz, and A. Tewari. Efficient bandit algorithms for online multiclass prediction. InInternational
Conference on Machine Learning, 2008.

[9] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning.Machine Learning, 17:115–141, 1994.

[10] L. Pitt and L. Valiant. Computational limitations on learning from examples.Journal of the ACM, 35(4):965–984, October
1988.

[11] R. Servedio. Computational sample complexity and attribute-efficient learning.J. of Comput. Syst. Sci., 60(1):161–178, 2000.

[12] S. Shalev-Shwartz, O. Shamir, and K. Sridharan. Learning kernel-based halfspaces with the zero-one loss. InCOLT, 2010.

[13] S. Shalev-Shwartz and N. Srebro. Svm optimization: Inverse dependence on training set size. InICML, 2008.

9

A Technical Results

A.1 Proof of Lemma 1

Using the definition ofZ andhx, we have

1− err(hx) = Pr
((r,s),b)∼D

(b = hx(r, s))

= Pr(s = P (x)) Pr(b = hx(r, s)|s = P (x)) + Pr(s 6= P (x)) Pr(b = hx(r, s)|s 6= P (x))

= Pr(s = P (x)) ∗ 1 + Pr(s 6= P (x)) ∗ 1

2
=

1

2
(Pr(s = P (x)) + 1).

Rearranging, we get the result.

A.2 Proof of Lemma 2

Let pk denote the probability that after drawingr1, . . . , rk, i.i.d., an independently drawnrk+1 is not spanned by
r1, . . . , rk. Also, letBk be a Bernoulli random variable with parameterpk. WheneverBk = 1, the dimensionality of
the subspace spanned by the vectors we drew so far increases by 1. Since we are in ann-dimensional space, we must
haveB1 + . . .+Bm′ ≤ n with probability1. In particular, we have

n ≥ E[B1 + . . .+Bm′] = p1 + . . .+ pm′ .

Also, for anyk ≤ m′, by the assumption that the vectors are drawn i.i.d., we have

p′m = Pr(rm′+1 /∈ span(r1, . . . , rm′)) ≤ Pr(rm′+1 /∈ span(r1, . . . , rk))

= Pr(rk+1 /∈ span(r1, . . . , rk)) = pk.

Combining the two inequalities, it follows thatm′pm′ ≤ n, sopm′ ≤ n/m′ as required.

B Additional Examples

B.1 Online Multiclass Categorization with Bandit Feedback

This example is based on [8]. It deals with another variant ofthe multi-armed bandit problem. It shows how to use
explorationfor injecting structure into the problem, which leads to a decrease in the required runtime. The price of
the exploration is a larger regret, which corresponds to theneed of a larger number of online rounds for achieving the
same target error.

The setting is as follows. At each online round, the learner first receives a vectorxt ∈ R
d and need to predict

one ofk labels (corresponding to arms). Then, the environment picks the correct labelyt, without revealing it to the
learner, and only tells the learner the binary feedback of ifhis prediction was correct or not.

We analyze the number of mistakes the learner will perform inT rounds, where we assume that there exists some
matrixW ⋆ ∈ R

k,d such that at each round the correct label isyt = argmaxy∈[k](W
⋆
x)y. We further assume that the

score of the correct label is higher than the runner-up by at leastγ and that the Frobenius norm ofW ⋆ is at most1. We
also assume thatd is order of1/γ2 (this is not restricting due to the possibility of performing random projections).

We now consider two algorithms. The first uses a multiclass version of the Halving algorithm (see [8]) which can
be implemented with the bandit feedback and has a regret bound of Õ(k2d). However, the runtime of this algorithm
is 2kd.

The second algorithm is the Banditron of [8]. The Banditron uses exploration for reducing the learning problem
into the problem of learning multiclass classifier in the full information case, which can be performed efficiently using
the Perceptron algorithm. In particular, in some of the rounds the Banditron guesses a random label, attempting to
“fish” the relevant information. This exploration yields a higher regret bound ofO(

√
kdT).

We can therefore draw the following table, which shows a tradeoff between running time and number of rounds
required to obtain regret≤ ǫ. Note that we will usually wantǫ to be much smaller than1/k.

10

Rounds Time
Inefficient alg. k2d/ǫ T 2kd

Efficient alg. kd/ǫ2 Tkd

B.2 Sparse Principal Component Recovery

This example is taken from [1]. This time, it is in the contextof unsupervisedstatistical learning.
The problem is as follows: we have an i.i.d. sample of vectorsdrawn fromR

d. The distribution is assumed to be
GaussianN (0,Σ), with a “spiked” covariance structure. specifically, the covariance matrixΣ is assumed to be of the
form Id + zz

⊤, wherez is an unknownsparsevector, with onlyk non-zero elements of the form±1/
√
k. Our goal in

this setting is to detect the support ofz.
[1] provide two algorithms to deal with this problem. The first method is a simple diagonal thresholding scheme,

which takes the empirical covariance matrixΣ̂, and returns thek indices for which the diagonal entries ofΣ̂ are largest.
It is proven that ifm ≥ ck2 log(d−k) (for some constantc), then the probability of not perfectly identifying the support
of z is at mostexp(−O(k2 log(d − k))), which goes to0 with k andd. Thus, we can view the sample complexity
of this algorithm asO(k2 log(d − k)). In terms of running time, given a sample of sizem = O(k2 log(d − k)), the
method requires computing the diagonal ofΣ̂ and sorting it, for a total runtime ofO(k2d log(d − k) + d log(d)) =
O(k2d log(d)).

The second algorithm is a more sophisticated semidefinite programming (SDP) scheme, which can be solved
exactly in timeO(d4 log(d)). Moreover, the sample complexity for perfect recovery is shown to be asymptotically
O(k log(d−k)). Summarizing, we have the following clear sample-time complexity tradeoff. Note that here, the gaps
are only polynomial.

Samples Time
SDP k log(d− k) d4 log(d)
Thresholding k2 log(d− k) k2d log(d)

11

