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Abstract

In many recent applications, data is plentiful. By now, weéha rather clear understanding of how more data can
be used to improve the accuracy of learning algorithms. Récehere has been a growing interest in understanding
how more data can be leveraged to reduce the required tgainintime. In this paper, we study the runtime of
learning as a function of the number of available trainingregles, and underscore the main high-level techniques.
We provide some initial positive results showing that thetime can decrease exponentially while only requiring a
polynomial growth of the number of examples, and spell-ewesal interesting open problems.

1 Introduction

Machine learning are now prevalent in a large range of sfignéngineering and every-day tasks, ranging from
analysis of genomic data, through vehicle and aircraftrobin locating information on the web and providing users
with personalized recommendations. Meanwhile, our wods hecome increasingly “digitized” and the amount of
data available for training is dramatically increasing. i, we have a rather clear understanding of how more data
can be used to improve tlaecuracyof learning algorithms. In this paper we study how more datatwe beneficiary

for constructing morefficientlearning algorithms.

Roughly speaking, one way to show how more data can redutething runtime is as follows. Consider learning
by  finding a hypothesis in the hypothesis  class that minimize the  training
error. In many situations, this search problem is companiaily hard. One can
circumvent the hardness by replacing the original hypaghelass with a dif-
ferent (larger) hypothesis class, such that the searcHeoin the larger class
is computationally easier (e.g., the search problem in tve Imypothesis class
reduces to a convex optimization problem). On the flip sidemfthe statistical
point of view, the estimation error in the new hypothesisslmight be larger
than the estimation error in the original class, and thugh &ismall number
of examples, learning the larger class might lead to oviadittven though the
same amount of examples suffices for the original hypottetass. However,
having more training examples keeps the overfitting in cheokparticular, if
the number of extra examples we need for learning the new dasly polyno-
mially larger than the original number of examples, we endvith an efficient Figure 1:The Basic Approach
algorithm for the original problem. If, however, we don'teathose extra ex-
amples, our only option is to learn the original hypotheksg, which may be computationally harder.

The goal of this paper is to present a formal model for stuglgte runtime of learning algorithms as a function of
the available number of examples. After defining the formadled, we present a binary classification learning problem
for which we can provably (based on standard cryptograptgamption) demonstrate an inverse dependence of the
runtime on the number of examples. While there have beenqugeonstructions which demonstrated a similar phe-
nomenon, assuming the existence of a “perfect” hypothesishow this in the much more natural agnostic model of



http://arxiv.org/abs/1106.1216v2

learning. A possible criticism is that our learning problierstill rather synthetic. We continue with presenting selre
learning problems, which arise in natural settings, thaehmore efficient algorithms by relying on the availabilify o
more training data. Some of these examples are based onttiitéoimof Figure 1, but some are also based on other
ideas and techniques. However, for all these problems rihlgsis is based on upper bounds without having matching
lower bounds. This raises several interesting open prahlem

1.1 Related Work

[6] were the first to jointly study the computational and sdéengomplexity, and to show that a tradeoff between
runtime and sample size exists. In particular, they disfisiy between the information theoretic sample complexity
of a class and its computational sample complexity, theddieing the number of examples needed for learning the
class in polynomial time. They presented a learning probdmch is not efficiently learnable from a small training
set, and is efficient learnable from a polynomially largairting set. [11] showed that for a concept class composed
of 1-decision-lists ovef0, 1}™, which can be learned inefficiently usir@(1) examples, no algorithm can learn it
efficiently usingo(n) examples, and there is an efficient algorithm ugif{g) examples. The construction was also
extended td: decision-listsk > 1. with larger gaps.

In contrast to [6, 11], which focused on learning under thadizable case (namely, that the labels are generated
by some hypothesis in the class), we mostly focus on the mattgalagnosticsetting, where any distribution over
the example domain is possible, and there may be no hypsthésiour class that never errs. This is not just a
formality - in both [6, 11], the construction crucially re$i on the fact that the labels are provided by some hypothesis
in the class. In terms of techniques, we rely on the crypfagmassumption that one-way permutations exist, which
is the same assumption as in [11] and similar to the assumtif6]. We note that cryptographic assumptions are
common in proving lower bounds for efficient learnabilitpdain some sense they are even necessary [2]. However,
our construction is very different. For example, in bothI&], revealing information on the identity of the “correct”
hypothesis is split among many different examples. Theegfefficient learning is possible after sufficiently many
examples are collected, which then allows us to return tloeréct” hypothesis. In our agnostic setting, there is no
“correct” hypothesis, so this kind of approach cannot wdristead, our efficient learning procedure computes and
returns an improper predictor, which is not in the hypothekiss at all.

A potential weaknesses of our example, as well as the exagiyda in [6], is that our hypothesis class does not
consist of “natural” hypotheses. The class employed in {d bjore natural, but it is also a very carefully constructed
subset of decision lists. The goal of the second part of theipa to demonstrate gaps (though based on upper bounds)
for natural learning problems.

Another contribution of our model is that it captures theattadeoff between sample and computational complex-
ity rather then only distinguishing between polynomial anmh-polynomial time, which may not be refined enough.
Bottou and Bousquet [5] initiated a study on learning indlaga laden domair a scenario in which data is plentiful
and computation time is the main bottleneck. This is the oas®ny real life applications nowadays. Shalev-Shwartz
and Srebro [13] continued this line of research and showedticthe problem of training Support Vector Machines, a
joint statistical-computational analysis reveals howrti@ime of stochastic-gradient-descent can potentitdlyrease
with the number of training examples. However, this is ordymbnstrated via upper bounds. More importantly, the ad-
vantage of having more examples only improves running tignedmstant factors. In this paper, we will be interested
in larger factors of improvement, which scale with the pesbisize.

2 Formal Model Description

We consider the standard model of supervised statistiaatileg, in which each training example is an instance-targe
pair and the goal of the learner is to use past examples i togwedict the targets associated with future instances.
For example, in spam classification problems, an instane@ ismail message and the target is eitihér('spam’)

or —1 ('benign’). We denote the instance domain dsyand the target domain hy. A prediction rule is a mapping

h : X — Y. The performance of a predicthron an instance-target paitx,y) € X x Y, is measured by a loss
function?(h(x),y). For example, a natural loss function for classificatiorbfgms is the 0-1 los€(h(x),y) = 1 if

y # h(x) and0 otherwise.



A learning algorithm,A, receives a training set of examplessS,, = ((x1,v1),---, (Xm,ym)), Which are as-
sumed to be sampled i.i.d. from an unknown distribufidover the problem domaif C X x ). Using the training
data, together with any prior knowledge or assumptions eth@udistributionD, the learner forms a prediction rule.
The predictor is a random variable and we denote itly§,, ). The goal of the learner is to find a prediction rule with
low generalization error (a.k.a. risk), defined as the etqukloss:

err(h) o E(xy)~p[l(h(x),y)] .

The well known no-free-lunch theorem tells us that no altoni can minimize the risk without making some prior
assumptions o®. Following the agnostic PAC framework, we require that trerher will find a predictor whose risk
will be close toinf, ¢ err(h), whereH is called a hypothesis class (which is known to the learner).

We useerr(A(S,,)) to denote the expected risk of the predictor returnedibwhere expectation is with respect
to the random choice of the training set. We denoteibye(A, m) the upper bound on the expected runtiroéthe
algorithmA when running on any training set of examples. The main mathematical object that we proposedy st
is the following:

Ty e(m) =min{t : 3 Ast.V D, time(A,m) <t Aerr(A(m)) < én?f_[ err(h) + €}, 1)
€

where when na satisfies the above constraint we $gt.(m) = oo. Thus, Ty (m) measures the required runtime
to learn the clas${ with an excess error afgiven a budget ofn. training examples. Studying this function can show
us how more data can be used to decrease the required rurfttirelearning algorithm. The minimum value of

for which T3, .(m) < oo is the information-theoretic sample complexity. This esponds to the case in which we
ignore computation time. The other extreme case is the \llig (co). This corresponds to thiata laden domain
namely data is plentiful and computation time is the onltleaeck.

We continue with few additional definitions. In general, waka no assumptions on the distributibn However,
we sometime refer to the realizable case, in which we asshatéhe distributiorD satisfiesning ey, err(h) = 0. The
empirical error on the training examples, called the trajreérror, is denoted byrrg(h) ef LS (h(x4), i)

A common learning paradigm is Empirical Risk Minimizatialenoted ERM,, in which the learner can output any
predictor in{ that minimizesrrg (h). A learning algorithm is calledroperif it always returns a hypothesis frof.
Throughout this paper we are concerned viitiproperlearning, where the returned hypothesis can be any effigient
computed functiorh from instances to labelsy. Note that improper learning is just as useful as propeniagrfor
the purpose of deriving accurate predictors.

2.1 A Warm-up Example

To illustrate how more data can reduce runtime, considepithlelem of learning the class 8fterm disjunctive normal
form (DNF) formulas in the realizable case 3ADNF is a Boolean mapping, : {0,1}¢ — {0, 1}, that can be written
ash(x) = Th(x) vV Ta(x) Vv T5(x), where for each, T;(x) is a conjunction of an arbitrary number of literals, e.g.
Tl(x) =x1 N\ x3 N\ x5 N\ X7,

Since the number df-DNF formulas is at mos33¢, it follows that the information theoretic sample comptegxi
is O(d/e). However, it was shown [10, 9] that unless RP=NP, the seawmbigm of finding a3-DNF formula which
is (approximately) consistent with a given training setrazirbe performed ipoly(d) time. On the other hand, we
will show below that ifm = ©(d?/¢) thenTy (m) = poly(d/e). Note that there is no contradiction between the last
two sentences, since the former establishes hardngssgdrlearning while the latter claims feasibility of improper
learning.

To show the positive result, observe that each 3-DNF forroatabe rewritten as.,cr, ver, wers (v Vv V w)
for three sets of literaldy, Ty, T3. Definewy : {0,1}¢ — {0, 1}2(2””3 such that for each triplet of literals, v, w,
there are two indices i (x), indicating ifu V v vV w is true or false. Therefore, each 3-DNF can be represented
as a single conjunction ovef(x). As a result, the class &DNFs overx is a subset of the class of conjunctions
overy(x). The search problem of finding an ERM over the class of corjons is polynomially solvable (it can be

1To prevent trivialities, we also require that the runtimeapplying A(S,,) on any instance is at mosime(A, m).



cast as a linear programming, or can be solved using a simgéelg algorithm). However, the information theoretic
sample complexity of learning conjunctions 02é2d)? variables isO(d? /¢). We conclude that ifn = ©(d®/¢) then
Ty.o(m) = poly(d/e).

It is important to emphasize that the analysis above is rtedtfaetory for two reasons. First, we do not know if
it is not possible to improperly lear3tDNFs in polynomial time using)(d/¢) examples. All we know is that the
ERM approach is not efficient. Second, we do not know if therimfation theoretic sample complexity of learning
conjunctions overy(x) is Q(d®/¢). Maybe the specific structure of the range/ofields a lower sample complexity.

But, if we do believe that the above analysis indeed reflezsity, we obtain two points on the curg, .(m).
Still, we do not know how the rest of the curve looks like. Tisidlustrated below.

4 3QF | Samples|  Time

ERM over 3-DNF dfe notpoly(d)
ERM over Conjunctiong  d3/e poly(d/e)

Tyyg(m)

@ Conjunction

[\
7

3 Formal derivation of gaps

In this section, we formally show a learning problem whichibits an inverse dependence of the runtime on the
number of examples. As discussed in the Subsection 1.ldigtimguished from previous work in being applicable to
the natural agnostic setting, where we do not assume thafecpbypothesis exist. Since this assumption was crucial
in all previous works, the construction we use is ratheedé#ht.

To present the result, we will need the concept oha-way permutatiarintuitively, a one-way permutation over
{0,1}™is a permutation which is computationally hard to invert.rieltormally, let4,, denote the uniform distribution
over{0,1}", and let{0, 1}* denote the set of all finite bit strings. Then we have the falhg definition:

Definition 1. A one-way permutatio® : {0,1}* — {0,1}* is a function which for any:, maps{0, 1}" to itself;
there exists an algorithm for computiig(x), whose runtime is polynomial in the lengthxgfand for any (possibly
randomized) polynomial-time algorithod and any polynomiap(n) overn, Pryy, (A(P(x)) = x) < ﬁ for
sufficiently largen.

It is widely conjectured that such one-way permutationstexDne concrete candidate is the RSA permutation
function, which treatx € {0,1}" as a number i{0,...,2" — 1}, and returns”(x) = x> mod NV, whereN is a
product of two “random” primes of length such thaip — 1)(¢ — 1) does not divide3. However, since the existence
of such a one-way permutation would impR=# N P, there is no formal proof that such functions exist (see ¢r] f
this and related results).

Theorem 1. There exists an agnostic binary classification learninggtemn overt = {0,1}*" and) = {0, 1} with
the following properties:

e ltis inefficiently learnable with sample size = O(1/¢), and running timeD (2" + m).

e Assuming one-way permutations exist, there exist no polial@ime algorithm based on a sample of size
O(log(n)).

o Itis efficiently learnable with a sample of size= O(n/e?). Specifically, the training time i©(m), resulting
in an improper predictor whose runtime @(m?).

The theorem implies that in the reasonable regime wigre< log(n) < n/e2, we really get an inverse depen-
dence of the runtime on the training size. The theorem istiitued below:
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To prove the theorem, we will define the following learninglplem. Let¥ = {0, 1}?" and) = {0, 1}. We will treat
eachx € X as a pailr, s), wherer refers to the first bits inx, ands to the last: bits. Let(r,r’) = >_""_ | r;r; mod2

to denote inner product over the fiefdF'(2). Let P be a one-way permutation. Then the example domain is the

following subset oft’ x ):

m®|
T

o= —4=

Z={((r,s),b) : r,s €{0,1}", (P~ (s),r) = b}.

The loss function we use is simply the 0-1 1088 (x), y) = 1j(x)y-
The hypothesis clagd consists of randomized functions, parameterizei(y }", and defined as follows, where
U, is the uniform distribution 040, 1}:

H—{hx(r,s)—{<x’r> s = P(x) : xe{O,l}"},

b~U; otherwise

Learning with O(log(n)) Samples is Hard

We consider the following “hard” set of distributiod®, }, parameterized by € {0,1}": eachDy is a uniform
distribution over all((r, P(x)), (x,r)). Note that there are exact* such examples, one for each choicero&
{0,1}™. Also, note that for any such distributidp,, inf},c3, err(h) = 0, and this is achieved with the hypothesis

First, we will prove that with a sample sizea = O(log(n)), any efficient learner fails on at least one of the
distributionsD,. To see this, suppose on the contrary that we have an effidistitbution-free learnerd, that
works on allDy, in the sense of seeing = O(log(n)) examples and then outputting some hypothésisich that
h((r, P(x))) = (x,r) with even some non-trivial probability (e.g. at ledg + 1/poly(n)). We will soon show
how we can use such a learnérsuch that in probability at leasfpoly(n), we get an efficient algorithm’, which
given justP(x) andr, outputs(x, r) with probability at least/2 + 1/poly(n). However, by the Goldreich-Levin
Theorem ([7], Theorem 2.5.2), such an algorithm can be useffitiently invertP, violating the assumption thadt
is a one-way permutation.

Thus, we just need to show how giv&ix), r, we can efficiently computé, r) with probability at least /poly(n).
The procedure works as follows: we pisk= O(log(n)) vectorsry, ..., r,, uniformly at random fron{0, 1}", and
pick uniformly at random bits , . . ., b,,,. We then apply our learning algorithrhover the example§((r;, P(x)), b;) } 7 ,,
getting us some predictér. We then attempt to predi¢k, r) by computingh’((x’, P(x))).

To see why this procedure works, we note that with probghdft1/2™ = 1/poly(n), we picked values for
b1,...,bm suchthab;, = (x,r;) for all . If this event happened, then the training set we get isidigtd likem i.i.d.
examples fronD,. By our assumption or, and the fact thaituf, err(h) = 0, it follows that with probability at least
1/poly(n), A will return a hypothesis which predicts correctly with padiility at leastl /2 + 1/poly(n), as required.

Inefficient Distribution-Free Learning Possible with O(1/¢) Samples

Ignoring computational constraints, we can use the folhgngimple learning algorithm: given a training sample
{(ri,s;),b;},, find the most common valug amongsy, .. .,s,,, computex’ = P~1(s') (inefficiently, say by
exhaustive search), and return the hypothksis

To see why this works, we will need the following lemma, whittows that ifh, has a low error rate, then
s = P(x) is likely to appear frequently in the examples (the proofegp in Appendix A).



Lemma 1. For any distributionD over examples, and any fixed € {0,1}", it holds thatPrs(s = P(x)) =
1 — 2err(hy).

Suppose thaty is the hypothesis with a smallest generalization error entyppothesis class. We now do a case
analysis: iferr(hy) > 1/2 — ¢, then the predictoky returned by the algorithm is almost as good. This because the
probability in the lemma statement cannot be negative, sarfgpx’ (and in particular the one used by the algorithm),
we haveerr(hy ) < 1/2.

The other case we need to consider is thathy) < 1/2 — e. By the lemmas = P(x) is the value ok most
likely to occur in the sample (sindg; is the one with smallest generalization error), and its pbility of being picked
is atleastl — 2 x (1/2 — €) = e. This means that afte&p(1/¢) examples, then with overwhelming probability, tfe
we pick is such thaPrs(s = §) — Prs(s = s’) < ¢/2. But again by the lemma, this implies that(hy ) — err(hg) is
at moste/4. Soh, that our algorithm returns is af4-optimal classifier as required.

Efficient Distribution-Free Learning Possible with O(n /%) Samples
We will need the following lemma, whose proof appears in Apjir A:

Lemma 2. LetD’ be some distribution ovei0, 1}™, and suppose we sampl€ vectorsry, . . ., r,, from that distri-
bution. Then the probability that a freshly drawn vectas not spanned by, . .., r;,,/ is at mostn/m/’.

We use a similar algorithm to the one discussed earlier feffizient learning. However, instead of finding the
most commons’, computingx’ = P~1(s’) and returning:,, which cannot be done efficiently, we build a predictor
which is at most worse tharh,, and doesn't require us to find explicitly.

To do so, lef{((r;;,s;), bij)};-":/l be the subset of examples for whigh = s’. By definition of Z, we know that
for any such exampléx’,r;,) = (P~'(s'),r;,) = b;,. In other words, this gives us a set of valugs ..., r; ,, for
which we know(x’,r;, ), ..., (x',r; _,). As a consequence, for amyn the linear subspace spanneddy, . ..,r; ,,
we can efficiently computéx’, r). Let B denote this subspace. Then our improper predictor workslEsvs, given
some instancér, s):

e If s =5’ andr € B, output(x’, r) (note that this is the same output/as, by definition).
e If s # s/, output a random bit (note that this is the same outpuit.asby definition ofh,).
e If s =s"andr ¢ B, output a bit uniformly at random.

Note that checking whetherc B can always be done in at mad{m’®) < O(m?) time, via Gaussian elimination.

Now, we claim that the probability of the third case happgrimat moste/2. If this is indeed true, then our
improper predictor is only/2 worse (in terms of generalization error) frdm., which based on the argument in the
previous section, is alreadyclose to optimal.

So let us consider the possibility that= s’ andr ¢ B. If Prg(s = s’) < ¢, we are done, so let us suppose that
Prs(s = s’) > e. This means that:’ is unlikely to be much smaller thamn. More precisely, by the multiplicative
Chernoff boundPr(m’ < em/2) < exp(—em/8). Also, conditioned on some fixed’ > em/2, Lemma 2 assures
us thatPr(r ¢ Bls = ') < n/m’ < 2n/em. Overall, we get the following (the probabilities are ovee traw of the
training set and an additional example, s), b)):

Pr(s=s",r¢ B) = Pr(s=s,r¢ B,m' <em/2)+Pr(s=s",vr ¢ B,m' > em/2)
< Pr(m’ < em/2)+Pr(m' > em/2,r ¢ Bls=¢')

c- 2
< exp(—em/8) + Z Pr(m/)Pr(r ¢ Bls =s',m’) < exp(—em/8) + ﬁ
m/=em/2

By takingm = O(n/€?) examples, we can ensure this to be at most order



4 Gaps for natural learning problems

In this section we collect examples of natural learning f@ots in which we conjecture there is an inverse dependence
of the training time on the sample size. Some of these exanafileady appeared explicitly in previous literature, but
most are new, unpublished, or did not appear in such an é&daicn. We base our inverse dependence conjecture
on the current best known upper bounds. Of course, an imiteeolgen question is to show matching lower bounds.
However, our main goal here is to demonstrate general tqakaiof how to reduce the training runtime by requiring
more examples.

4.1 Agnostically Learning Preferences

Consider the sdtl] = {1,...,d}, and letX = [d] x [d] andY = {0, 1}. Thatis, each example is a p&ir j) and the
label indicates whetheris more preferable tg.

Consider the hypothesis class of all permutations @¥jewhich can be written a®& = {hw (4, j) = 1[w; > w;] :
w € R?}. The loss function is the 0-1 loss. Note that each hypotliesiscan be written as a Halfspadey, (i, j) =
sign((w,e’ — e’)). Therefore, in the realizable case (namely, exists H which perfectly predicts the labels of
all the examples in the training set), solving the ERM problean be performed in polynomial time. However, in
the agnostic case, finding a Halfspace that minimizes thebeumof mistakes is in general NP hard. The sample
complexity of agnostically learning &dimensional Halfspace i@(d/eQ) and we therefore obtain that with a non-
efficient algorithm, it is possible to learn usiayd/e?) examples.

On the other hand, in the following we show that with= ©(d?/¢?) it is possible to learn preferences in time
O(m). The idea is to define the hypothesis class of all Booleantiomg overX', namely,H, = {H(i,j) = M;; :

M e {0, 1}d2}. Clearly,H C H;. In addition,|H;| = 2¢* and therefore the sample complexity of learnitigusing
the ERM rule isO(d?/€?). Last, it is easy to verify that solving the ERM problem carebsily done in timed(m).
So, overall, we obtain the following:

| Samples|  Time
d/e? notpoly(d)
d?/e? d?/e?

ERM overH
ERM overH;

4.2 Agnostic Learning of Kernel-based Halfspaces

We now consider the popular class of kernel-based lineaigigs. In kernel predictors, the instanceare mapped
to a high-dimensional feature spawéx), and a linear predictor is learned in that space. Ratherwuaking with
1 (x) explicitly, one performs the learning implicitly using arkel functionk (x, x") which efficiently computes inner
products(y)(x), 1(x')) .

Since the dimensionality of the feature space may be highven afinite, the sample complexity of learning
Halfspaces in the feature space can be too large. One wasctororent this problem is to define a slightly different
concept class by replacing the non-continuous sign funatiith a Lipschitz continuous functior : R — [0, 1],
which is often called a transfer function. For example, we gse a sigmoidal transfer functigii,(a) = 1/(1 +
exp(—4La)), which is aL-Lipschitz function. The resulting hypothesis clasHs, = {x — dsig({(W, 9 (x))) :
[lwl]l2 < 1}, where we interpret the predictiai;, ((w, ¥ (x))) € [0,1] as the probability to predict a positive label.
The expected 0-1 loss then amountg(e, (x, y)) = |y — ¢sig ((W, P(x)))].

Using standard Rademacher complexity analysis (e.g. if3}) easy to see that the information theoretic sample
complexity of learning is O(L?/€?). However, from the computational complexity point of vielae ERM problem
amounts to solving a non-convex optimization problem (wéhpect tow). Adapting a technique due to [4] it is

possible to show that astaccurate solution to the ERM problem cam be calculatede tixp (O (’2—22 log(%))).

The idea is to observe that the solution can be identifiedifesme reveals us a subse{6f/¢)? non-noisy examples.
Therefore we can perform an exhaustive search oveflalt)? subsets of then examples in the training set and
identify the best solution.

In [12], a different algorithm has been proposed, that Iedne class,;, using time and sample complexity of at
mostexp (O (L log(%))). That is, the runtime of this algorithm is exponentially $levathan the runtime required to



solve the ERM problem using the technique described in [4ftfe sample complexity is also exponentially larger.
The main idea of the algorithm given in [12] is to define a newdtheses clas#{; = {x — (w, ¥ (Y (x))) : [|[w]2 <
B}, whereB = O((L/¢)*) andy is a mapping function for which

. . , 2 2
X)), X = = .
W’W( )) w(l/’( ))) 9 _ <w(x)7w(x/)> 9 _ /{(X,X/)
While it is not true that{ C #;, it is possible to show tha@{; “almost” containsH in the sense that for ea¢he H
there existd; € H; such that for alk, |h(x) — hi(x)| < e. The advantage df{; over? is that the functions ifi{;
are linear and hence the ERM problem with respeé{idoils down to a convex optimization problem and thus can
be solved in timeoly(m), wherem is the size of the training set. In summary, we obtain thefuihg

| Samples | Time
ERM overH L2/ poly (GXP (5—22 log(%)))
ERM over#; | poly (exp (L log(£))) | poly (exp (L log(£)))

4.3 Additional Examples

In Appendix B we list additional examples of inverse depemgeof runtime on sample size. These examples deal
with other learning settings like online learning and uresufsed learning. These examples are interesting singe the
show other techniques to obtain faster algorithms usinggetasample. For example, we demonstrate how to use
explorationfor injecting structure into the problem, which leads bettentime. The price of the exploration is the
need of a larger sample. For the unsupervised setting, vedl eecexisting example which shows polynomial gap for
learning the support of a certain sparse vector.

5 Discussion

In this paper, we formalized and discussed the phenomena ioivarse dependence between the running time and
the sample size. While this phenomena has also been discilsseme earlier works, it was under a restrictive
realizability assumption, that a perfect hypothesis sxishd the techniques mostly involved finding this hypothesi
In contrast, we frame our discussion in the more modern @mbrof agnostic and improper learning.

In the first half of our paper, we provided a novel construttichich shows such a tradeoff, based on a crypto-
graphic assumption. While the construction indeed has\arse dependence phenomenon, itis not based on a natural
learning problem. In the second half of the paper, we pravidere natural learning problems, which seem to have
this phenomenon. Some of these problems were based on tfiteimdescribed in the introduction, but some were
based on other techniques. However, the apparent invepgndence in these problems is based on the assumption
that the currently available upper bounds have matchingidd@ounds, which is not known to be true. Thus, we cannot
formally prove that they indeed become computationallyezagith the sample size.

Thus, a major open question is findimgtural learning problems, whose required running time phas/able
inverse dependence with the sample size. We believe thepieame outlined hint at the existence of such problems,
and provide clues as to the necessary techniques. Othdeprshre finding additional examples where this inverse
dependence seems to hold, as well as finding additional igpods for making this inverse dependence happen. The
ability to leverage large amounts of data to obtain more iefficalgorithms would surely be a great asset to any
machine learning application.
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A Technical Results

A.1 Proof of Lemma 1

Using the definition o2 andh,, we have

1 —err(hyx) = ((r,sﬁg)ND(b = hx(r,s))
= Pr(s = P(x)) Pr(b = hx(r,s)|s = P(x)) + Pr(s # P(x)) Pr(b = hx(r,s)|s # P(x))
— Pr(s = P(x)) % 1+ Pr(s £ P(x)) * % - %(Pr(s — P(x)) +1).

Rearranging, we get the result.

A.2 Proof of Lemma 2

Let p, denote the probability that after drawimg, . .., rg, i.i.d., an independently drawy,; is not spanned by
ri,...,r;. Also, let B, be a Bernoulli random variable with parametgr WheneverB;, = 1, the dimensionality of
the subspace spanned by the vectors we drew so far incrgaseSimce we are in an-dimensional space, we must
haveB; + ...+ B, < n with probability1. In particular, we have

TLZE[Bl-i-...—l—Bm/]:pl—l—...—i—pm/.

Also, for anyk < m/, by the assumption that the vectors are drawn i.i.d., we have

Py = Pr(ruvga g spary,..., 7)) < Pr(rpq1 € spargra, ..., me))
= PI‘(’I’k+1 ¢ Spar("’la ce- ,Tk)) = DPk-

Combining the two inequalities, it follows that’p,,, < n, sop,,,» < n/m’ as required.

B Additional Examples

B.1 Online Multiclass Categorization with Bandit Feedback

This example is based on [8]. It deals with another variarthefmulti-armed bandit problem. It shows how to use
explorationfor injecting structure into the problem, which leads to ardase in the required runtime. The price of
the exploration is a larger regret, which corresponds tatresd of a larger number of online rounds for achieving the
same target error.

The setting is as follows. At each online round, the learnst feceives a vectat; € R? and need to predict
one ofk labels (corresponding to arms). Then, the environmentsptic& correct labej;, without revealing it to the
learner, and only tells the learner the binary feedback liiforediction was correct or not.

We analyze the number of mistakes the learner will perforffi nounds, where we assume that there exists some
matrix W* € R¥¢ such that at each round the correct labeis= arg max, ¢4 (W *x),. We further assume that the
score of the correct label is higher than the runner-up bgastly and that the Frobenius norm Bf* is at mostl. We
also assume thatis order of1 /4?2 (this is not restricting due to the possibility of performirandom projections).

We now consider two algorithms. The first uses a multiclassioe of the Halving algorithm (see [8]) which can
be implemented with the bandit feedback and has a regrettboiuf(k2d). However, the runtime of this algorithm
is 2k,

The second algorithm is the Banditron of [8]. The Banditreesiexploration for reducing the learning problem
into the problem of learning multiclass classifier in thé fisformation case, which can be performed efficiently using
the Perceptron algorithm. In particular, in some of the dsithe Banditron guesses a random label, attempting to
“fish” the relevant information. This exploration yields mher regret bound a® (v kdT).

We can therefore draw the following table, which shows adddidbetween running time and number of rounds
required to obtain regret e. Note that we will usually want to be much smaller thaty'k.

10



| Rounds| Time
Inefficientalg.‘ k2d/e ‘T2’“d

Efficientalg. | kd/e? | Tkd

B.2 Sparse Principal Component Recovery

This example is taken from [1]. This time, it is in the contektinsupervisedtatistical learning.

The problem is as follows: we have an i.i.d. sample of veatoasvn fromR<?. The distribution is assumed to be
GaussianV (0, X2), with a “spiked” covariance structure. specifically, theadance matrix_ is assumed to be of the
form I, 4+ zz ', wherez is an unknowrsparsevector, with onlyk non-zero elements of the forsal /v/k. Our goal in
this setting is to detect the supportof

[1] provide two algorithms to deal with this problem. Theffinsethod is a simple diagonal thresholding scheme,
which takes the empirical covariance maftixand returns thé indices for which the diagonal entriesBfare largest.
Itis proven thatifin > ck? log(d—k) (for some constand), then the probability of not perfectly identifying the qagot
of z is at mostexp(—O(k?log(d — k))), which goes td) with & andd. Thus, we can view the sample complexity
of this algorithm asO(k? log(d — k)). In terms of running time, given a sample of size= O(k? log(d — k)), the
method requires computing the diagonabbaind sorting it, for a total runtime ad(k%dlog(d — k) + dlog(d)) =
O(k2dlog(d)).

The second algorithm is a more sophisticated semidefindtgramming (SDP) scheme, which can be solved
exactly in timeO(d* log(d)). Moreover, the sample complexity for perfect recovery isvah to be asymptotically
O(klog(d—k)). Summarizing, we have the following clear sample-time clexipy tradeoff. Note that here, the gaps
are only polynomial.

Samples | Time
SDP klog(d—k) | d*log(d)
Thresholding| k%log(d — k) | k*dlog(d)
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