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Abstract

Abstract. In this paper we study grouped variable selection problems by
proposing a specified prior, called the nested spike and slab prior, to model
collective behavior of regression coefficients. At the group level, the nested
spike and slab prior puts positive mass on the event that the l2-norm of the
grouped coefficients is equal to zero. At the individual level, each coefficient is
assumed to follow a spike and slab prior. We carry out maximum a posteriori
estimation for the model by applying blockwise coordinate descent algorithms
to solve an optimization problem involving an approximate objective modified
by majorization-minimization techniques. Simulation studies show that the
proposed estimator performs relatively well in the situations in which the true
and redundant covariates are both covered by the same group. Asymptotic
analysis under a frequentist’s framework further shows that the l2 estimation
error of the proposed estimator can have a better upper bound if the group
that covers the true covariates does not cover too many redundant covariates.
In addition, given some regular conditions hold, the proposed estimator is
asymptotically invariant to group structures, and its model selection consis-
tency can be established without imposing irrepresentable-type conditions.
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1 Introduction

Variable selection has long been an important issue in regression-based statistical
analysis. Recently, many efficient methods have been developed to tackle the prob-
lems in the situation when the number of covariates is large. At the same time, many
efforts have also been made in understanding the statistical properties of these meth-
ods. In this paper we focus on grouped variable selection problems. More specifically,
we study variable selection in the following regression model:

yi =

(
∑

j∈G1

xijβj

)
+

(
∑

j∈G2

xijβj

)
+ · · ·+

(
∑

j∈Gm

xijβj

)
+ ǫi, (1.1)

where yi is the response variable for subject i, Gk ⊆ {1, 2, · · · , p} is the index set
associated to the kth group, and ǫi is the corresponding error term following some
specified distribution. Throughout the paper, we focus on non-overlapping cases, i.e.
for two index sets Gk and Gk′ with k, k′ ∈ {1, 2, · · · , m}, we assume Gk ∩ Gk′ = ∅
for k 6= k′. Now let βGk

denote the regression vector with entries indexed by Gk.
Grouped variable selection aims to select covariates groupwisely, that is, entries in
βGk

are either estimated with non-zero values or they are all estimated with zero
values. In grouped variable selection, one benchmark method for estimating β =
(βG1 , βG2, · · · , βGm

) is the group lasso [32]:

β̂GL = argmin
β

{
1

2

∣∣∣∣
∣∣∣∣y −

m∑

k=1

XGk
βGk

∣∣∣∣
∣∣∣∣
2

2

+ λ

m∑

k=1

wk||βGk
||2
}
, (1.2)

where XGk
is an n× |Gk| matrix representing the covariates indexed by Gk, λ ≥ 0 is

the tuning parameter, and wk is a specified weight corresponding to the kth group.
The group lasso estimator (1.2) has several advantages over the lasso in dealing

with the variable selection problem associated with model (1.1). First, since the
l2-norm ||βGk

||2 is not separable in βGk
, the group lasso provides a more suitable way

for regression coefficient estimation when either covariates have meaningful interpre-
tations as a whole [19, 22, 8], or they can be expressed as a group of dummy variables
[32], or they are represented as linear combinations of basis functions [2, 23, 14]. In
addition, as shown in [13, 16], given some regular conditions hold, the l2 estimation
error of (1.2) can have an order of magnitude similar or even smaller than that of
the lasso estimator. Moreover, like the lasso, (1.2) can also enjoy model selection
consistency if some irrepresentable-type conditions [33] are satisfied [2, 23, 22, 16].

Note that the group lasso estimator (1.2) is only able to produce between-group-
sparsity, that is, once the l2-norm ||βGk

||2 is estimated with a non-zero value, all
entries in βGk

will be estimated with non-zero values. However, sometimes the pre-
specified group structure may not exactly cover the true covariates. As a result of
that, redundant covariates may be wrongly selected in the model, along with the true
covariates. To correct this, one need to consider within-group-sparsity. Friedman et
al. [10] proposed the sparse group lasso estimation by adding an l1 penalty to the
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objective function stated in (1.2). Under the sparse group lasso estimation, within-
group-sparsity can be reached, since with the l1 penalty the regression coefficients in
the active groups are allowed to have zero-valued estimates.

In this paper we will study the grouped variable selection problem by developing
a specified spike and slab prior [21], called the nested spike and slab prior, to model
the group regression coefficient vector βGk

. The nested spike and slab prior assigns
positive mass on events {||βGk

||2 = 0} and {||βGk
||2 6= 0} to represent the sparsity

between group coefficient vectors βG1 , βG2, · · · , βGm
. Given that ||βGk

||2 6= 0, it
further assigns each entry in βGk

with a spike and slab prior [21]. Under the nested
spike and slab prior, sparsity between groups and sparsity within a group can be
achieved simultaneously with a positive probability.

We then develop a method to carry out maximum a posteriori (MAP) estimation
for the model. More specifically, we formulate the estimation problem as an optimiza-
tion problem in which the objective function is approximated by the majorization-
minimization algorithms [15, 30]. We then solve the optimization problem by propos-
ing blockwise coordinate descent algorithms based on the ideas developed in [10, 9].
Simulation studies show that the proposed estimator performs relatively well in the
situations in which the within-group-sparsity is present. However, its performance
may get deteriorated if the true covariates are scattered over a large number of groups
that contain many redundant covariates.

Further we will show that under a frequentist’s framework, the proposed MAP
estimator can have a better l2 estimation error bound if the number of groups that
cover the true covariates and the numbers of redundant covariates in such groups are
small. In addition, if some regular conditions on tuning parameters hold, the values
of the proposed estimates will be asymptotically invariant to group structures. We
will also establish model selection consistency for the proposed estimator. The result
does not require one to impose the irrepresentable-type conditions.

The paper is organized as follows. In Section 3 we develop the nested spike and
slab prior and construct a Bayesian hierarchical model based on the proposed prior.
We then present a method to carry out maximum a posteriori estimation for the
model. In Section 4 we conduct a simulation study to demonstrate finite sample
properties of the proposed estimator. In Section 5 we establish asymptotic results
for the proposed estimator under a frequentist’s framework. Section 6 contains two
real data examples. Section 7 is the discussion.

2 Notation

For the kth index set Gk, we let qk denote the number of elements in it, i.e. qk = |Gk|.
For the jth covariate, we let kj denote the index for the group that j belongs to,
that is, if j ∈ Gk′, then kj = k′. For a p-dimensional vector b = (b1, b2, · · · , bp), we
define (b)j = bj and bGk

be the vector whose entries are those indexed by Gk in b.
For the vector b, we define the associated l1-norm by ||b||1 =

∑p
j=1 |bj | and l2-norm

by ||b||2 = (
∑p

j=1 |bj |2)1/2. We define the sign function of z by sign(z) = 1 if z > 0;
sign(z) = −1 if z < 0; sign(z) = 0 if z = 0. Finally, we define the soft-thresholding
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operator STλ by

STλ(z) = sign(z)(|z| − λ)+. (2.1)

3 Nested spike and slab prior

Since our aim is to jointly select covariates indexed by Gk, therefore the information
about whether βGk

is a zero vector or not is crucial. Practically, we assign probability
mass on event {||βGk

||2 6= 0} to express our belief that βGk
is not a zero vector. Let

θk denote the probability. With θk, we further assume βGk
follows a distribution

which has a density given by

f(βGk
) = θk

{
∏

j∈Gk

[
ωjg(βj) + (1− ωj)δ(−ξ,ξ)(βj)

]}

+(1− θk)δ0(||βGk
||2), (3.1)

where ωj ∈ [0, 1], g(βj) is some specified density defined on R\(−ξ, ξ), and δ0(||βGk
||2)

is the Dirac delta function centered at event {||βGk
||2 = 0}. The density (3.1) is called

the nested spike and slab prior, since the joint spike and slab prior assigned on entries
in βGk

at the individual level is wrapped by a spike and slab prior assigned at the
group level. The nested spike and slab prior (3.1) implies that βGk

has probability
θk to be a non-zero vector. In addition, given that βGk

is not a zero vector, the
entries in βGk

are independently distributed, and each entry will have probability ωj

to follow a distribution with density g(βj) and probability 1−ωj to fall uniformly in
the region (−ξ, ξ).

For practical purposes, we introduce two sets of Bernoulli variables γ = (γ1, γ2, · · · , γm)
and α = (α1, α2, · · · , αp). The former will be used to model regression coefficients
at the group level while the latter will be used to model regression coefficients at the
individual level. Below we reformulate the nested spike and slab prior (3.1) in terms
of α and γ. For group k, we let γk ∼ Bernoulli(θk). For j ∈ Gk, we assume αj | γk = 1
∼ Bernoulli(ωj). Here αj is defined conditional on γk = 1, reflecting the nested struc-
ture of (3.1). Now conditional on γk and αGk

, the density f(βGk
| γk, αGk

) has the
same format as the nested spike and slab prior (3.1) with θk replaced by γk and ωj

replaced by αj . Further it can be shown that the expectation Eγk ,αGk
[f(βGk

|γk, αGk
)]

is the nested spike and slab prior (3.1). In addition, given γk and αGk
are known,

the prior density f(βGk
| γk, αGk

) has an equivalent representation:

f(βGk
| γk, αGk

) =

{
∏

j∈Gk

g(βj)
αjδ(−ξ,ξ)(βj)

1−αj

}γk

δ0(||βGk
||2)1−γk . (3.2)

Below we will use the augmented form (3.2) to derive the joint posterior density of
β, α and γ.
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3.1 Model

We now turn back to regression model (1.1). With the prior setting given above, we
can construct a hierarchical Bayesian model and carry out inference on parameters
in (1.1). For practical purposes, we will only focuses on a situation in which the
region (−ξ, ξ) is a small region concentrating around 0, that is, ξ → 0. Under
this situation, we can represent (1.1) in terms of Bernoulli variables α and γ by
yi =

∑m
k=1 γk(

∑
j∈Gk

xijαjβj) + ǫi. Given that there are n subjects, we assume

yi| X, β, α, γ, σ2 ∼ Normal

{
m∑

k=1

γk

(∑

j∈Gk

xijαjβj

)
, σ2

}
, for i = 1, 2, · · · , n,

βGk
| αGk

, γk, σ
2, λ ∼ γk

[
∏

j∈Gk

{
αjNormal(0, σ2λ−1)I{R \ (−ξ, ξ)}

+(1− αj)δ(−ξ,ξ)(βj)

}]

+(1− γk)δ0(||βGk
||2), for k = 1, 2, · · · , m,

αGk
| γk, ωGk

∼
{ ∏

j∈Gk

Bernoulli(ωj)

}γk

δ0(αGk
)1−γk , for k = 1, 2, · · · , m,

γk| θk ∼ Bernoulli(θk), for k = 1, 2, · · · , m. (3.3)

Under hierarchical Bayesian model (3.3), the joint posterior density of β, α and γ is
given by

f(β, α, γ| y,X, λ, σ2, ω, θ)

∝ f(y| X, β, α, γ, σ2)f(β| α, γ, σ2, λ)f(α| γ, ω)f(γ| θ), (3.4)

where y = (y1, y2, · · · , yn), and for notational simplicity, similar definitions are ap-
plied to ω and θ. With the joint posterior density (3.4), various methods can be
proposed to make inference on the parameters. Here we adopt the maximum a pos-
teriori (MAP) approach to carrying out the parameter estimation. We define the
maximum a posteriori estimator for β, α and γ by

(β̂, α̂, γ̂) = arg min
β,α,γ

−2 log f(β, α, γ| y,X, λ, σ2, ω, θ),

where

−2 log f(β, α, γ| y,X, λ, σ2, ω, θ)

= −2 log f(y| X, β, α, γ, σ2)

−2 log{f(β| α, γ, σ2, λ)f(α| γ, ω)f(γ| θ)}
−2 log{normalizing constant}. (3.5)
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3.2 Parameter estimation

By definition, we can write γk = I{||βGk
||2 6= 0} and αj = I{βj /∈ (−ξ, ξ)| ||βGkj

||2 6=
0}, where kj is the index for the group that j belongs to. With argumented rep-
resentation (3.2), the second term on the right hand side of (3.5) can be expressed
as

−2 log{f(β| α, γ, σ2, λ)f(α| γ, ω)f(γ| θ)}

=
λ

σ2

m∑

k=1

γk

(∑

j∈Gk

αjβ
2
j

)
+ log

(
2πσ2

λ

) m∑

k=1

∑

j∈Gk

γkαj

+

m∑

k=1

∑

j∈Gk

[
log

(
1− ωj

ωj

)2]
γkαj

+

m∑

k=1

{
log

[(
1− θk
θk

)2 ∏

j∈Gk

(
1

1− ωj

)2]}
γk. (3.6)

Here we have used the facts that (1−αj) log δ(−ξ,ξ)(βj) = 0, (1−γk) log δ0(||βGk
||2) =

0, and (1− γk) log δ0(αGk
) = 0 in deriving (3.6).

In addition, given that ξ → 0, we have αj ≈ I{βj 6= 0| ||βGkj
||2 6= 0}. Further

by a direct calculation, we have γkjαj = I{βj 6= 0 ∩ ||βGkj
||2 6= 0} = I{||βGkj

||2 6=
0| βj 6= 0}I{βj 6= 0}. Note that the expectation of the index I{||βGkj

||2 6= 0| βj 6= 0}
is P(||βGkj

||2 6= 0| βj 6= 0), which is obviously equal to 1 since j ∈ Gkj and βj 6= 0

implies ||βGkj
||2 6= 0 almost surely. This further implies that I{||βGkj

||2 6= 0| βj 6= 0}
is equal to 1 almost surely. Therefore we have

γkjαj = I{βj 6= 0}. (3.7)

Now consider the hyperparameters λ, σ2, θ, ω. Since there is no easy way to de-
termine values of these hyperparameters, therefore for practical purposes, we will
impose some constraints on these hyperparameters. We assume ωj = ω1 for all j.
Further we define ρ1 = σ2 log{[(2πσ2)/λ][(1 − ω1)/ω1]

2} and assume ρ1 ≥ 0. For
the fourth term on the right hand side of (3.6) that involves θk’s, we adopt the
following parametrization. We will assume all γk’s in the fourth term on the right
hand side of (3.6) have an equal weight. Given that ωj = ω1 for all j, we can
choose appropriate θk’s from interval [0, 1] to make the weights of γk’s the same
for all k. Let θ∗k be such appropriate value of θk. With values of θ∗k’s, we define
ρ2 = σ2 log{[(1− θ∗k)/θ

∗
k]

2/
√
qk(1− ω1)

−2
√
qk}, where qk = |Gk|. We assume ρ2 ≥ 0.

With (3.7) and the definitions of ρ1 and ρ2, minimizing (3.5) with respect to β,
α and γ is equivalent to minimizing the function

V (β) =

∣∣∣∣
∣∣∣∣y −

m∑

k=1

XGk
βGk

∣∣∣∣
∣∣∣∣
2

2

+ λ

m∑

k=1

||βGk
||22

+ρ1

m∑

k=1

∑

j∈Gk

I{βj 6= 0}+ ρ2

m∑

k=1

√
qkI
{
||βGk

||2 6= 0
}

(3.8)
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with respect to β. Here we define the gvsnss estimator (Grouped Variable Selection
via Nested Spike and Slab Priors) as the one that minimizes (3.8). Below we provide
a numerical procedure to calculate the gvsnss estimator.

3.2.1 Majorization-minimization algorithms

Since the last two terms in (3.8) are discrete in their domain, the minimization
problem involving (3.8) is combinatorial and in general is considered to be difficult.
Here we adopt a continuous relaxation procedure to modify (3.8). More specifically,
we use the function

gτ (a) =
log(1 + τ−1|a|)
log(1 + τ−1)

(3.9)

to approximate index function I{a 6= 0}. It can be shown that gτ (a) → I{a 6= 0}
as τ → 0 [26, 31]. Figure 1 shows I{a 6= 0} and gτ (a) and the absolute difference
between the two functions as a function of − log τ . Since (3.9) is continuous on R,
the combinatorial nature of I{a 6= 0} is relaxed. However, (3.9) is not convex in
a, and using (3.9) for continuous relaxation on (3.8) still makes (3.8) remain non-
convex. We adopt a majorization-minimization approach to tackling this problem.
Majorization-minimization (MM) algorithms [15, 30] aim to solve difficult minimiza-
tion problems by modifying the corresponding objective functions so that solution
spaces of the modified ones are easier to explore. For an objective function V ∗(a),
the modification procedure relies on finding a function V ∗∗(a; a(d)) that satisfies the
following properties:

V ∗∗(a; a(d)) ≥ V ∗(a) for all a,

V ∗∗(a(d); a(d)) = V ∗(a(d)). (3.10)

In (3.10), the objective function V ∗(a) is said to be majorized by V ∗∗(a; a(d)). In
this sense, V ∗∗(a; a(d)) is called the majorization function. In addition, (3.10) im-
plies that V ∗∗(a; a(d)) is tangent to V ∗(a) at a(d). Moreover if a(d+1) is a mini-
mizer of V ∗∗(a; a(d)), then (3.10) further implies that V ∗(a(d)) = V ∗∗(a(d); a(d)) ≥
V ∗∗(a(d+1); a(d)) ≥ V ∗(a(d+1)), which means that the iteration procedure a(d) pushes
V ∗(a) toward its minimum.

Now we turn back to function (3.9). Note that, since log(a) is a concave function
of a for a > 0, therefore the inequality

log(a′) +
a

a′
− 1 ≥ log(a) (3.11)

holds for all a > 0 and a′ > 0. Note that the left hand side of (3.11) is convex in a.
In addition, if we let a = a′, then (3.11) becomes an equality, which implies that the
left hand side of (3.11) satisfies the properties stated in (3.10), therefore is a valid
function for majorizing log(a).
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Now by applying (3.9) and the left hand side of (3.11) to
∑m

k=1

∑
j∈Gk

I{βj 6= 0},
we can establish the following inequality:

m∑

k=1

∑

j∈Gk

I{βj 6= 0}

= lim
τ→0

m∑

k=1

∑

j∈Gk

log(1 + τ−1|βj|)
log(1 + τ−1)

≤ lim
τ→0

1

log(1 + τ−1)

p∑

j=1

(
log
(
1 + τ−1|β ′

j|
)
+
τ + |βj|
τ + |β ′

j|
− 1

)
. (3.12)

Similarly for
∑m

k=1{||βGk
||2 6= 0}, we have

m∑

k=1

√
qkI{||βGk

||2 6= 0} ≤ lim
τ→0

1

log(1 + τ−1)

×
m∑

k=1

√
qk

(
log
(
1 + τ−1||β ′

Gk
||2
)
+
τ + ||βGk

||2
τ + ||β ′

Gk
||2

− 1

)
.

(3.13)

3.2.2 Blockwise coordinate descent algorithms

With the majorization-minimization results (3.12) and (3.13), we can establish an
iterative scheme to find the minimizer of (3.8). In practice, we use the blockwise
iterative scheme

β̂
(d+1)
Gk

= argmin
βGk

{∣∣∣∣r−Gk
−XGk

βGk

∣∣∣∣2
2
+ λ||βGk

||22

+λ1||ν̂(d)Gk
βGk

||1 + λ2φ̂
(d)
k ||βGk

||2
}

(3.14)

to find the solution that minimizes (3.8), where λ1 = ρ1 limτ→0[log(1 + τ−1)]−1,
λ2 = ρ2 limτ→0[log(1 + τ−1)]−1, and r−Gk

= y −∑k′ 6=kXGk′
βGk′

. In addition, for

j ∈ Gk, ν̂
(d)
j = limτ→0(τ + |β̂(d)

j |)−1, and φ̂
(d)
k = limτ→0

√
qk(τ + ||β̂(d)

Gk
||2)−1.

With the objective function stated in (3.14), one can derive associated KKT

conditions and solve them for the minimizer β̂
(d+1)
Gk

. However, the third and fourth
terms on the right hand side of (3.14) are not smooth, therefore special attention
is needed to obtain a gradient-like vector for (3.14). Here we adopt a subgradient-
based approach to tackling this problem. For the idea of subgradients and related
theoretical properties, please see Section B.5 of [4]. By applying the subgradient
calculus to the objective function in (3.14) with respect to βGk

, we can obtain a
gradient-like vector for the objective function. Then by setting the vector to zero,
we obtain the subgradient equations

2XT
Gk
r−Gk

− 2XT
Gk
XGk

βGk
− 2λβGk

− λ1ν̂
(d)
Gk
hGk

− λ2φ̂
(d)
k vGk

= 0, (3.15)

8



where hGk
is a subgradient vector of the l1-norm ||βGk

||1, and its entry is defined as
that, for j ∈ Gk hj = 1 if βj > 0; hj = h∗j ∈ [−1, 1] if βj = 0; and hj = −1 if βj < 0.
In addition, vGk

is a subgradient vector of the l2-norm ||βGk
||2 and is defined as

vGk
=

{
βGk

/||βGk
||2 if ||βGk

||2 6= 0,

v∗Gk
such that ||v∗Gk

||22 ≤ 1 if ||βGk
||2 = 0.

(3.16)

Below we adopt a method provided by Friedman et al. [10] to solve the subgradient
equations (3.15). The method uses a testing procedure to identify whether βGk

is a
zero vector or not. First note that, if βGk

= 0, then the subgradient equations (3.15)
becomes

2XT
Gk
r−Gk

− λ1ν̂
(d)
Gk
hGk

= λ2φ̂
(d)
k vGk

. (3.17)

Now by definition (3.16), if ||βGk
||2 = 0, i.e. βGk

is a zero vector, then ||vGk
||2 ≤ 1,

therefore (3.17) implies that

||2XT
Gk
r−Gk

− λ1ν̂
(d)
Gk
hGk

||2 ≤ λ2φ̂
(d)
k . (3.18)

To numerically verify the condition (3.18), we need to know hGk
. Friedman et al.

[10] provided a practical way to estimate hGk
by solving the least squares problem

minhGk
||2XT

Gk
r−Gk

− λ1ν̂
(d)
Gk
hGk

||22 subject to −1 ≤ hj ≤ 1 for j ∈ Gk. The resulting
estimate takes a soft-thresholding form, and by plugging it into (3.18), one obtains

∣∣∣
∣∣∣ST

λ1ν̂
(d)
Gk

(2XT
Gk
r−Gk

)
∣∣∣
∣∣∣
2
≤ λ2φ̂

(d)
k , (3.19)

Note that if condition (3.19) holds, we let β̂
(d+1)
Gk

= 0, otherwise we go further to
estimate entries in βGk

with other values.
Below we describe a numerical procedure for estimating non-zero entries in βGk

.
First note that, as shown in [29], the l2-norm ||βGk

||2 on the right hand side of (3.14)
can be bounded in a way such that

||β ′
Gk
||2 +

1

2||β ′
Gk
||2

(||βGk
||22 − ||β ′

Gk
||22) ≥ ||βGk

||2. (3.20)

Here the function on the left hand side is convex in βGk
. Now if we let βGk

= β ′
Gk
,

then the equality will hold between the two sides of (3.20). Therefore the function on
the left hand side of (3.20) majorizes ||βGk

||2. With the majorization result (3.20),
we construct the following iterative scheme:

β̂
(d1+1,d2+1)
Gk

= argmin
βj

{∣∣∣∣r−Gk
−XGk

βGk

∣∣∣∣2
2

+λ1||ν̂(d1)Gk
βGk

||1 +
(
λ+

λ2φ̂
(d1)
k

2||β̂(d1+1,d2)
k ||2

)
||βGk

||22
}

(3.21)

9



to obtain β̂
(d1+1)
Gk

. The scheme (3.21) can be approximated by the following iterative
least squares procedure:

β̂
(d1+1,d2+1)
Gk

=

[
XT

Gk
XGk

+

(
λ+

λ2φ̂
(d1)
k

2||β̂(d1+1,d2)
Gk

||2

)
Iqk×qk

]−1

ST
λ1ν̂

(d1)
Gk

/2

(
XT

Gk
r−Gk

)
,(3.22)

where ST
λ1ν̂

(d1)
Gk

/2
(XT

Gk
r−Gk

) is the soft thresholding operator defined in (2.1). A least

squares result similar to (3.22) can be found in [9]. For large-scale problems, we
construct a one dimensional soft thresholding scheme to approximate (3.21). The
soft-thresholding scheme is given by

β̂
(d1+1,d2+1)
j =

(
n∑

i=1

x2ij + λ+
λ2φ̂

(d1)
kj

2||β̂(d1+1,d2)
kj

||2

)−1

ST
λ1ν̂

(d1)
j /2

(
n∑

i=1

xijr
(∗)
i,−j

)
, (3.23)

where r
(∗)
i,−j = ri,−Gk

−∑j′ 6=j;j′,j∈Gk
xij′β

(∗)
j′ with β

(∗)
j′ = β

(d1+1,d2+1)
j′ for j′ < j and

β
(∗)
j′ = β

(d1+1,d2)
j′ for j′ > j.

3.3 Determining tuning parameter values

For λ1, λ2 and λ, we adopt a grid search strategy to find their optimal values. Here
we assume that each column of design matrix X is standardized. To find optimal λ1,
we search along a grid of candidate values in the interval [0, λ∗1], where λ

∗
1 is defined as

λ∗1 = 2.05τ ×maxj∈{1,2,··· ,p} |xTj y|. To find optimal λ2, we search along a grid of can-
didate values in the interval [0, λ∗2], where λ

∗
2 = 1.1τ×maxk∈{1,2,··· ,m} ||2XT

Gk
y||2/

√
qk.

For λ, we assume it decreases with sample size n and is proportional to λ2. More
specifically, we let λ = λ2/(10n). With the reparametrization on λ given above, we
only need to do grid searches for λ1 and λ2. For parameter τ , we let τ = 5× 10−4.

3.4 Connection with other approaches

Recent research on variable selection using maximum a posteriori estimation includes
[12, 31]. Armagan et al. [1] developed a shrinkage-based method for variable selection
based on the generalized double Pareto priors. The idea of using spike and slab
priors in grouped variable selection has also been adopted by Scheipl et al. [25], who
developed an MCMC-based approach to carrying out posterior inference on additive
regression models. The idea of using (3.9) in approximating an index function has
been mentioned in [7, 26, 18, 31]. Tipping [28] has pointed out a connection between
the log function (3.9) and the improper Student’s t density.

4 Simulation study

In this section we study finite sample properties of the gvsnss estimator by fitting
regression models with simulated data. In the simulation study, we assume the

10



covariates are randomly divided into m groups, and the true covariates, i.e. the
covariates with non-zero coefficients, are covered by r ≤ m groups. We will focus on
the following two situations:

i. The true covariates are covered by the r groups, but at the same time, some
redundant covariates, i.e. the covariates with zero coefficients, are also covered
by the r groups.

ii. The true covariates are re-assigned with different group labels. In this situation,
r, the number of groups that covers the true covariates, will change.

To create the first situation, we focuses on varying the level of sparsity in the groups
that contain the true covariates. To create the second situation, we focuses on re-
assigning covariates to other groups according to some group switching probabilities.
Under the two situations, each simulation experiment is characterized by the pair
(spr, mis-labeled), where ”spr” denotes the level of within-group-sparsity and ”mis-
labeled” denotes the group switching probability. For a covariate in an active group,
spr = 0.3 means that the value of its coefficient will have probability 0.3 to be coerced
to zero, and mis-labeled = 0.3 means that it will be re-assigned with a different group
label with probability 0.3.

Below we introduce the basic simulation scheme. For the n × p design matrix
X , we generate its rows i.i.d. from MVN(0, Ip×p). For regression coefficients β =
(β1, β2, · · · , βp), we first randomly assign the corresponding covariates into m groups.
We then choose r ≤ m groups of covariates and generate their coefficients i.i.d. from
Normal(0, 1). We further set coefficients of the covariates in the rest of m− r groups
to zero. We then re-proceed each coefficient by either coercing its value to zero or
re-assigning its covariate with a different group label according to the pre-specified
values in (spr, mis-labeled). For the error vector ǫ, we generate its entries i.i.d. from
Normal(0, 1). Finally, we compute the response vector y = Xβ + ǫ.

4.1 Methods for comparisons

We conducted two gvsnss estimations for the regression model. The first one used
five fold cross validation for tuning parameter selection. The second one used the
following logarithm of the Bayes factor:

log BF(Ŝ, null; y) =
n

2
log

{
yTy

yT (λ−1XŜX
T
Ŝ
+ In×n)−1y

}
− 1

2
log
∣∣λ−1XŜX

T
Ŝ
+ In×n

∣∣

(4.1)

for tuning parameter selection, where Ŝ = {j : β̂gvsnss,j 6= 0}. The logarithm Bayes
factor (4.1) corresponds to the model that assigns Normal(0, σ2/λ) on βj and Inverse-
Gamma(τ1, τ2) on σ

2 with τ1 and τ2 both approaching to zero. For tuning parameter
selection, we searched optimal λ1 along a grid of 20 candidate values and optimal λ2
along a grid of another 20 candidate values.

11



We also conducted three other estimations for the regression model. The first
one is the group lasso using five fold cross validation for tuning parameter selection.
The second one is also the group lasso but using a naive AIC for tuning parameter
selection. The naive AIC is given by nAIC = ||y − Xβ̂GL||22/σ̂2 + 2ŝGL, where σ̂

2

is estimated from the null model and ŝGL is the number of non-zero entries in β̂GL.
Numerical calculations for the two group lasso estimations were done by using R
package grplasso [19]. The third one is the lasso using ten fold cross validation for
tuning parameter estimation. We used R package glmnet [11] to carry out numerical
computations for the lasso estimation. For all the three estimations, we searched
optimal tuning parameters along a grid of 100 candidate values.

We collected three performance measures at each simulation run. The first one
is the sign-adjusted false positive rate, which is defined as

SFPR =
#{j ∈ Ŝ : sign(β̂j) 6= sign(βtrue,j)}

|Ŝ|
.

The second one is the squared l2 estimation error, which is defined as

l2-dis =

∑p
j=1(β̂j − βtrue,j)

2

p
.

The third one is the predictive mean squared error, which is defined as

PMSE =

∑n′

i=1(yi,new − xTi,newβ̂)
2

n′ ,

where n′ = 10 × n, yi,new and xi,new are new data points generated under the same
simulation scheme.

4.2 Results

In practice, we let p = 200, m = 10, and r = 2. We considered different values of
sample size n and the pair (spr, mis-labeled) in generating data points.

We first considered the scenario in which the group switching probability is zero.
The results are shown in Figure 2, with the first, second and third rows being the
plots of SFPR, l2-dis and PMSE, respectively and the first, second and third columns
being the plots for cases with spr = 0, 0.3, 0.6, respectively. Each point in the plot
is an average over 100 simulation runs. The results show that the gvsnss estimator
has relatively good performances over the group lasso in variable selection when the
level of within-group-sparsity is increasing. In addition, among the five estimations,
the gvsnss estimation using the Bayes factor has relatively small values in squared l2
estimation error and PMSE. However, we also noticed that the advantages of using
group-based estimations such as the group lasso or gvsnss estimations over the lasso
estimation will gradually disappear as the level of within-group-sparsity increases.

We then considered scenarios under different group switching probabilities. The
results are given in Figures 3 and 4 for group switching probability equal to 0.1 and
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0.5, respectively. The results show that the gvsnss estimator can still have relatively
good performances over other benchmark estimation methods in variable selection.
However, we also noticed the lasso estimation almost dominates performances in l2
estimation error and PMSE over group-based estimation methods in these scenarios,
especially when the group switching probability is high. A high group switching
probability will lead to an increase in r, the number of groups that cover the true
covariates. In Section 5 we will give a theoretical explanation to these simulation
results by deriving an upper bound for the l2 estimation error.

5 Asymptotic analysis

In this section we investigate asymptotic behavior of the gvsnss estimator. Before
presenting these results, we give some notation definitions. For simplicity, we define
β = βtrue throughout this section. Further define S = {j : βj 6= 0} and GR =
{Gk : k ∈ R}, a collection of disjoint index sets Gk’s indexed by R that covers S,
i.e. S ⊆ GR. Define s = |S|, the number of non-zero coefficients, qR = | ∪k∈R Gk|,
the number of indices covered by GR, and r = |R|, the number of groups that cover
indices for covariates with non-zero coefficients.

Now consider the following function:

Vτ (w
′, β ′, G′) =

∣∣∣∣ǫ′ −Xw′∣∣∣∣2
2
+ λ||w′ + β ′||22

+ρ1

p∑

j=1

log(1 + τ−1|w′
j + β ′

j |)
log(1 + τ−1)

+ρ2

m′∑

k=1

√
q′k
log(1 + τ−1||w′

G′

k
+ β ′

G′

k
||2)

log(1 + τ−1)
, (5.1)

where ǫ′ = y − Xβ ′, G′ = {G′
k : k = 1, 2, · · · , m} and q′k = |G′

k|. At a fixed τ ′, we

define β̂τ ′ by

β̂τ ′ = argmin
β′

lim
τ→τ ′

Vτ (0, β
′, G). (5.2)

Further define Ŝτ ′ = {j : β̂τ ′

j 6= 0} and ŝτ
′

= |Ŝτ ′|. Note that if we let τ → 0, then
Vτ (0, β

′, G′) will approach to the objective function (3.8). Therefore technically we
can express the gvsnss estimator as

β̂gvsnss = argmin
β′

lim
τ→0

Vτ (0, β
′, G). (5.3)

We further define Ŝ = {j : β̂gvsnss 6= 0} and ŝ = |Ŝ|. Note that by definition, as

τ → 0, (5.2) becomes β̂0 = argminβ′ limτ→0 Vτ (0, β
′, G) = β̂gvsnss. As a result of

that, we have Ŝτ → Ŝ and ŝτ → ŝ as τ → 0.
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5.1 l2 estimation error

One useful concept to justify the advantage of group-based estimation is the strong
group sparsity [13]. We say the true coefficient vector β is (s0, r0) strongly group-
sparse if there exists a collection of index sets GR = {Gk : k ∈ R} such that

S ⊆ GR with qR = |GR| ≤ s0 and r = |R| ≤ r0. For group lasso β̂GL defined in
(1.2), Huang and Zhang [13] showed that if β is (s0, r0) strongly group-sparse, then
given some regular conditions hold, with 1 − α probability, the l2 estimation error
||β̂GL−β||2 = O(n−1/2

√
s0 + r0 log(m/α)). The order of magnitude implies that the

group lasso estimation can be beneficial if qR, the number of indices in GR, and r,
the number of index sets that cover S, are small.

Here we have to note that directly comparing rates of the l2 estimation error
between the lasso and group lasso is not easy since it requires one to derive the
rates under the same assumptions. Lounici et al. [16] provided such comparisons
for multi-task learning cases and showed that the upper bound for the l2 estimation
error of the group lasso can have an order of magnitude smaller than the lower bound
for the l2 estimation error of the lasso.

Below we start our investigation on the l2 estimation error ||β̂gvsnss − β||2 by

deriving a deterministic upper bound for ||β̂τ − β||2.

Theorem 5.1. For ǫ = y −Xβ, τ ∈ [0, 1), and 1 ≤ max(qR, ŝ
τ ) ≤ p, we have,

||β̂τ − β||2 ≤ q
1/2
R

κn + λn−1

{
4

[
1 +

(
ŝτ

4s

)1/2] ||XT ǫ||∞
n

+ 2max
j∈S

|βj|
λ

n

+

[
2c−1

2 + 1

log(τ−1)
+ c−1

3

](
ρ1 + ρ2
n

)}
, (5.4)

where κn = n−1minw w
TXTXw, c2 = minj∈Ŝτ |β̂τ

j |, and c3 = minj∈S |βj|.

Theorem 5.1 does not rely on any distribution assumption on the error vector ǫ.
It is stated in a deterministic way and does not have any probabilistic interpretation.

Below we will give some conditions that are useful in deriving upper bounds for
||β̂gvsnss − β||2 in a situation in which some distribution assumption is imposed on ǫ.

Assumption 1. Let κn be the same as the one defined in Theorem 5.4. We
assume κn + λn−1 > 0 as n→ ∞.

Assumption 1 is similar to Condition A1 in [34]. It mainly serves as a statement to
guarantee that the minimum eigenvalue of the matrix n−1(XTX + λIp×p) is positive
when n → ∞. Note that without Assumption 1, κn will be equal to zero when
n < p < ∞, but the minimum eigenvalue value κn + n−1λ = n−1λ will remain
positive if λ > 0. Assumption 1 further implies that

√
n(κn + λn−1) → ∞ when

n→ ∞.

Theorem 5.2. Assume that ǫi’s are i.i.d. as Normal(0, σ2). Further assume that
n−1

∑n
i=1 x

2
ij = ζj, for j = 1, 2, · · · , p, τ = n−1, λ = A1ψn, ρ1 = A2ψn, ρ2 = A3ψn
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with A1, A2 and A3 being some positive constants, and

ψn = 2σ

√
2nmax

j
ζj

[
log

(
m

α

)
+ log q

]
, (5.5)

where α is a non-negative constant and q = m−1
∑m

k=1 qk. Then given that Assump-
tion 1 holds, for 1 ≤ max(qR, ŝ) ≤ p, with 1− α probability, we have

||β̂gvsnss − β||2 ≤
2
√
2σΛnmaxj ζ

1/2
j√

n(κn + Ωn)

√
qR

[
log

(
m

α

)
+ log q

]
,

(5.6)

as n→ ∞, where

Λn =

{
2

[
1 +

(
ŝ

4s

)1/2]
+ 2max

j∈S
|βj|A1

+(A2 + A3)

[
2c−1

2 + 1

log(n)
+ c−1

3

]}
, (5.7)

Ωn = 2A1σ

√
2maxj ζj

n

[
log

(
m

α

)
+ log q

]
, (5.8)

where ŝ = |Ŝ|, c2 and c3 are defined in Theorem 5.4.

The deterministic result stated in Theorem 5.1 will serve as a bone for deriving
upper bound (5.6). Note that since we have assumed τ = n−1, therefore effectively

we have β̂τ → β̂gvsnss and Ŝ
τ → Ŝ as n → ∞. Detailed derivations of Theorem 5.1

and Theorem 5.2 are given in Appendix A.
Note that the bound (5.6) is proportional to q

1/2
R and by definition

qR = s+
∑

k∈R
#{j ∈ Gk : βj = 0}.

Given that s is fixed, the result implies that, if groups that contain the true covariates
also contain large numbers of redundant covariates, or if the true covariates are
scattered over a large number of groups, like the scenarios with high group switching
probabilities we have seen in Section 4, then the gvsnss estimator will not perform
well.

Now if we adopt an equal group setting, i.e. q1 = q2, · · · ,= qm, and let ζj =
1 for j = 1, 2, · · · , p, then qR = |GR| = |R| × |Gk| = rq1, and the right hand
side of (5.6) will have an order of magnitude equal to n−1/2

√
r log q1 + r log(m/α).

Further note that log q1 ≤ q1. Therefore with 1− α probability, as n→ ∞, we have
||β̂gvsnss − β||2 = O(n−1/2

√
s0 + r0 log(m/α)), where r0 = r and s0 = qR. The result

given above implies that the gvsnss estimator can achieve an l2 estimation error with
an order of magnitude proportional to that of the group lasso established in [13].

The following corollary states that if the maximum size of groups is equal to one,
then the gvsnss estimator can have an l2 estimation error with an order of magnitude
similar to that of the lasso established in [20, 5].

15



Corollary 5.1. Assume that maxk qk = 1 and ζj = 1 for j = 1, 2, · · · , p. Then given
that all assumptions stated in Theorem 5.2 hold, with 1− α probability, we have

||β̂gvsnss − β||2 ≤ 2
√
2σΛn√

n(κn + Ωn)

√
s log

(
p

α

)
(5.9)

as n→ ∞, where Λn is the same as the one defined in (5.7) and

Ωn = 2A1σ

√
2

n
log

(
p

α

)
.

Proof of Corollary 5.1. Obviously given that the maximum group size is one,
qR = s. In addition, the number of groups is m = p. Then by inserting the results
given above into the right hand side of (5.6), we obtain (5.9), which completes the
proof.

5.2 Label-invariance property

Here we show that the gvsnss estimator (5.3) is asymptotically invariant to group
structures. We consider two collections of index sets G∗ = {G∗

k : k = 1, 2, · · · , m∗}
andG∗∗ = {G∗∗

l : l = 1, 2, · · · , m∗∗}. In the following discussion as well as in the proof
we will see ∗ and ∗∗ attached to various vector-valued quantities and the presence
of ∗ (or ∗∗) in a given vector means that the entries of the vector are indexed by G∗

k

(or G∗∗
k ) in the original vector.

Our result relies on the fact that the third term in Vτ (0, β
′, G′) allows the gvsnss

estimation to produce zero estimates for coefficients whose covariates are in active
groups. Without this setting, we would be unable to establish the label-invariance
property for some cases, and β̂∗

gvsnss = argminβ′ limτ→0 Vτ (0, β
′, G∗) might never be

a solution to the subgradient equations of limτ→0 Vτ (0, β
′, G∗∗), where G∗∗ is an

arbitrary collection of index sets. Therefore we assume ρ1 > 0. In addition, our
result relies on evaluating the difference between the log-sum penalties involving l2-
norms in Vτ (0, β

′, G∗) and Vτ (0, β
′, G∗∗). Since ρ2 and the size of a group play a

crucial role in the evaluation process, we will also impose an assumption on their
orders of magnitude.

Theorem 5.3. Assume that

β̂τ∗ = argmin
β′

Vτ (0, β
′, G∗)

is the unique solution to the subgradient equations of Vτ (0, β
′, G∗) for all τ ∈ [0, 1).

Further assume that ρ1 > 0, ρ2 maxk
√
qk = o(log n), and τ = n−1. Then as n →

∞, β̂∗
gvsnss = argminβ′ limτ→0 Vτ (0, β

′, G∗) is the minimizer of limτ→0 Vτ (0, β
′, G∗∗),

where G∗∗ is an arbitrary collection of index sets.
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5.3 Variable selection and sign consistency

Here we study asymptotic behavior of the gvsnss estimator in variable selection. In
particular, we focus on sign consistency of the estimated coefficients. We explain
the idea of sign consistency first. An estimator β̂(n) is said to be sign consistent in

estimating β if probability P{sign(β̂(n)) = sign(β)} approaches to one as n → ∞.

Given the sign consistency holds, the estimated index set Ŝ(n) = {j : β̂j(n) 6= 0} will
be the same as the true index set S, therefore the sign consistency implies variable
selection consistency, that is, asymptotically with probability one, non-zero valued
coefficients will have non-zero estimated values, and zero-valued coefficients will be
estimated with zero values.

Below we derive a lower bound for P{sign(β̂τ) = sign(β)}. Then with τ = n−1,

we have β̂τ → β̂gvsnss as n → ∞, and in turn, the lower bound for P{sign(β̂gvsnss) =
sign(β)} can be established asymptotically. The following assumptions on eigenval-
ues of matrices are useful in deriving the lower bound.

Assumption 2. Define CSS = n−1(XT
SXS +λIs×s). Define κmin = minw wCSSw.

We assume 0 < κmin <∞ as n→ ∞.
Assumption 3. Define ςmax = maxw n

−1wXSX
T
Sw. We assume 0 < ςmax < ∞

as n→ ∞.
Assumption 4. Define νmax,k = maxw n

−1wXGk
XT

Gk
w and νmax = maxk νmax,k.

For k = 1, 2, · · · , m, we assume 0 < νmax,k <∞ as n→ ∞.

Theorem 5.4. Assume that ǫi’s are i.i.d. as Normal(0, σ2). Further assume that
n−1

∑n
i=1 x

2
ij = 1 for j = 1, 2, · · · , p, τ = n−1, λ = O(n1/2), ρ1 = O(n1/2), ρ2 =

O(n1/2), and p = o(n(log(n + 1))−2). Then given that Assumptions 2, 3 and 4 hold,

the probability P
{
sign(β̂τ ) = sign(β)

}
can be bounded from below in a way such that

P
{
sign(β̂τ) = sign(β)

}

≥ 1− exp

{
− n

(
ψ2
1,nκ

2
min

2σ2
− log s

n

)}

− exp

{
− n

[
ψ2
2,nκ

2
min

8n(ςmax + κmin)2σ2
− log sc1

n

]}

− exp

{
− n

[
κ2minψ

2
3,n

16n2νmax(ςmax + κmin)2σ2
− 0.35− log rc

n

]}
, (5.10)

where sc1 = |Sc
1| with Sc

1 = Sc ∩ GR, r
c = |Rc|, ψ1,n, ψ2,n and ψ3,n are non-

negative constants and as n → ∞, ψ1,n = O(1), ψ2,n = O(n3/2(logn)−1) and
ψ3,n = O(n3/2(logn)−1).

The proof can be found in Appendix C. The proof will start by exploring the KKT
conditions associated to the minimization problem involving objective function (5.1).
Note that in Theorem 5.4 we do not assume that the irrepresentable-type conditions
[33] should hold.
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Corollary 5.2. Assume that all assumptions and results stated in Theorem 5.4 hold.
Then

P
{
sign(β̂gvsnss) = sign(β)

}
→ 1

as n→ ∞.

Proof of Corollary 5.2. Note that s ≤ p = o(n(log(1+n))−2), therefore n−1 log s→
0 as n → ∞. In addition, ψ1,n = O(1), therefore (2σ2)−1ψ2

1,nκ
2
min > 0. Then as

n→ ∞, the first exponential term in (5.10) will approach to zero. For the second ex-
ponential term in (5.10), since ψ2,n = O(n3/2(log(n))−1), therefore we have n−1ψ2

2,n =
O(n2(log(n))−2) → ∞ as n → ∞. In addition, sc1 ≤ p = o(n(log(1 + n))−2), there-
fore n−1 log sc1 → 0 as n → ∞. Then as n → ∞, the second exponential term in
(5.10) will approach to zero. Furthermore, since n−2ψ2

3,n = O(n(logn)−2) → ∞ and
n−1 log rc → 0 as n → ∞, therefore the third exponential term in (5.10) will ap-

proach to zero as n → ∞. Finally note that since τ = n−1, therefore β̂τ → β̂gvsnss
as n → ∞. The results given above imply that P

{
sign(β̂gvsnss) = sign(β)

}
→ 1 as

n→ ∞, which completes the proof.

6 Real data examples

6.1 The U.S. industrial product index

The data set we consider here contains the monthly-based U.S. industrial produc-
tion index and 125 macroeconomic variables, spanning from July 1964 to December
2010. The industrial production index is an important indicator for economic policy-
making. Our aim here is to predict the growth rate of the industrial production index
from the 125 macroeconomic variables. Similar data set was used in [27, 3, 17]. The
125 macroeconomic variables are essentially a subset of the 132 variables used by
Bai and Ng [3]. For the 125 macroeconomic variables, we follow a benchmark cate-
gorization to divide them into 8 groups: 1) output and income (OI), 2) labor market
(LM), 3) housing (H), 4) consumption, orders and inventories (COI), 5) money and
credits (MC), 6) bond and exchange rates (BE), 7) prices (P), 8) stock market (SM).

Now let IPt denote the level of the industrial production index at time t. We
define the growth rate at time t+ t′ by yt+t′ = (t′)−11200[log(IPt+t′)− log(IPt)]. The
plot in the top left panel of Figure 5 shows the corresponding time series trend. We
further model the growth rate yt+t′ by

yt+t′ = η0 +
3∑

l=0

zt−lηl+1 +
8∑

k=1

∑

j∈Gk

xtjβj + εt+t′ , (6.1)

where zt−l = 1200[log(IPt−l)− log(IPt−l−1)] is the lth lag term, xtj is the jth macroe-
conomic variable at time t, Gk is the index set corresponding to the kth macroeco-
nomic group, and εt+t′ is the error term.
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We adopt an expanding window scheme to carry out real time estimation for
model (6.1). That is, we estimate parameters ηl’s and βj’s with information from
time 1 to time t. Note that in such setting, at time t, dependent variable yt′′+t′ is
only available for t′′ = 1, . . . , t−t′. Let η̂1,t−t′

l ’s and β̂1,t−t′

j ’s denote the corresponding
estimates. With model (6.1) and the estimates, at time t, we predict yt+t′ by

ŷt+t′ = η̂1,t−t′

0 +
3∑

l=0

zt−lη̂
1,t−t′

l+1 +
8∑

k=1

∑

j∈Gk

xtj β̂
1,t−t′

j . (6.2)

In practice, we let t′ = 12, which corresponds to one year change. The prediction
is started from t = 132 (June 1975) and ended at t = 546 (December 2009). Under
this setting, there are 415 time blocks. For each time block, we applied two methods
to estimate parameters in model (6.1). The first method used the gvsnss to select
the 125 macroeconomic variables and then re-estimate regression coefficients of the
selected variables with the ordinary least squares method. For the gvsnss estimation,
we used five fold cross validation to select the tuning parameter. The second method
is similar to the first one but using the lasso for variable selection. For the lasso
estimation, we also used five fold cross validation to select the tuning parameter.

In addition, we also used principal components (PCs) of the selected variables
to construct models for prediction. For simplicity, we use the first four PCs for the
prediction. If the number of selected variables is less than four, we use the selected
variables as the predictors.

The plot in the top right panel of Figure 5 shows the number of selected variables
for the 415 time blocks while plots in the bottom panel of Figure 5 show frequencies
of selected variables for each macroeconomic group under the gvsnss and the lasso,
respectively. The results show that the gvsnss estimation selected less variables and
produced stronger between-group-sparsity and within-group-sparsity than the lasso.

In addition, we also reported the out-of-sample mean squared error under the
two estimation methods. The out-of-sample mean squared error is defined as

MSEt′

OS =
1

T − t′

T−t′∑

t=1

(yt+t′ − ŷt+t′)
2. (6.3)

The results are shown in Table 1 and Figure 6, where Model 1 is the model without
the lag terms, Model 2 is the model with the lag terms, PC is the model using the
first four PCs of all macroeconomic variables, and AR is the model with the lag
terms but without the grouped variable terms. The results suggest that including
the macroeconomic variables can slightly improve the prediction results.

6.2 Retirement plan data

The data set, adopted from [6, 24], contains information about employee retirement
plans of 92 firms. The retirement plans are managed by a company called Best
Retirement Inc. (BRI). The response variable is the contribution to retirement plan
at the end of the first year. It is measured at the logarithm scale. Let yi denote the
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response variable corresponding to the ith retirement plan. Our aim here is to help
the company to assess whether the presence of a specially trained sales, named Susan
Shepard, has a positive effect on yi. For the ith retirement plan, we define xi9 = 1
if Susan Shepard is present and xi9 = 0 otherwise. The data set also contains eight
other variables. To fully assess the presence of Susan Shepard on yi, we will consider
interactions between xi9 and the eight variables in the regression model. We call the
collection of xi9 and the interaction terms the ”Susan Shepard Effect” group. Let
GSSE denote the set that contains indices of covariates in the Susan Shepard Effect
group. We will jointly estimate regression coefficients of the covariates with indices
in GSSE. After some calculations, we excluded one interaction variable that has the
same value for all retirement plans. The set GSSE therefore only contains indices of
eight variables.

We model the expectation of the response variable µi = E(yi| β, xi) by

µi =
8∑

j=1

xijβj +
∑

j∈GSSE

xijβj . (6.4)

We applied three methods, the gvsnss with five fold cross validation, the gvsnss with
the Bayes factor, and the lasso with ten fold cross validation to estimate parameters
in model (6.4). To carry out the parameter estimations, each column of design
matrix X was standardized to have mean zero and variance one. The results are
shown in Figure 7. The estimation results under the lasso suggest that covariates
in the Susan Shepard Effect group do have positive effects on the response variable
while the results under the two gvsnss estimations imply that covariates in the Susan
Shepard Effect group do not have such effects.

We also carried out 100 sub-sampling estimations for the model. At each sub-
sampling instance, we randomly split two thirds of the data into the training set and
one third of the data into the test set. We used data from the training set to estimate
parameters in model (6.4) and data from the test set to compute the predictive mean
squared error. We also computed the number of covariates with non-zero estimated
coefficients and the number of covariates with positive estimated coefficients in the
Susan Shepard Effect group. The results are shown in Table 2.

7 Discussion

We have proposed a specified prior, called the nested spike and slab prior, to model
collective behavior of regression coefficients in grouped variable selection. We have
developed numerical procedures for solving the optimization problem related to max-
imum a posteriori estimation for the model. Simulation studies showed that the
proposed estimator performs relatively well in variable selection when within-group-
sparsity is present. However, we have found the proposed estimator will loss its
advantage in parameter estimation if groups that contain the true covariates also
contain too many redundant covariates. Subsequent asymptotic analysis also con-
firmed our findings.
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With suitable modifications, the nested spike and slab prior can be extended
to tackle grouped variable selection problems in the generalized linear models, time
series models such as autoregressive and moving average models, or graphical models
in covariance matrix estimation.
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A Proof of Theorems 5.1 and 5.2

Proof of Theorem 5.1. Now define w = β̂τ − β. It can be shown that w is the
minimizer of the objective function Vτ (w

∗, β, G) defined in (5.1) with respect to w∗.
Therefore Vτ (w, β,G) ≤ Vτ (0, β, G). Here Vτ (0, β, G) can be explicitly expressed as

Vτ (0, β, G) = ||ǫ||22 + λ||β||22

+ρ1

p∑

j=1

log(1 + τ−1|βj|)
log(1 + τ−1)

+ ρ2

m∑

k=1

√
qk
log(1 + τ−1||βGk

||2)
log(1 + τ−1)

.

where ǫ = y −Xβ. Further note that

∣∣∣∣ǫ−Xw
∣∣∣∣2
2
+ λ||w + β||22

= ǫT ǫ+ wTXTXw − 2wTXT ǫ+ λ(wTw + 2wTβ + βTβ)

= ||ǫ||22 + wT (XTX + λ)w − 2wT (XT ǫ− λβ) + λ||β||22.

With the results given above, we can compute Vτ (w, β,G)−Vτ(0, β, G). In addition,
since Vτ (w, β,G)−Vτ(0, β, G) ≤ 0, therefore by rearranging the terms in Vτ (w, β,G)−
Vτ (0, β, G), we obtain

wT (XTX + λ)w (A.1)

≤ 2wT (XT ǫ− λβ) (A.2)

+ρ1

p∑

j=1

[
log(1 + τ−1|βj |)
log(1 + τ−1)

− log(1 + τ−1|wj + βj|)
log(1 + τ−1)

]
(A.3)

+ρ2

m∑

k=1

√
qk

[
log(1 + τ−1||βGk

||2)
log(1 + τ−1)

− log(1 + τ−1||wGk
+ βGk

||2)
log(1 + τ−1)

]
. (A.4)

Note that by Assumption 1, (A.1) can be bounded from below in a way such that

wT (XTX + λI)w ≥ n(κn + λn−1)||w||22. (A.5)

In the following discussion we derive inequalities to bound (A.2), (A.3) and (A.4).

Deriving an upper bound for (A.3). We first derive an inequality to bound the

difference
∑p

j=1[log(1 + τ−1|βj |)− log(1 + τ−1|wj + βj |). For j ∈ Ŝτ = {j : β̂τ
j 6= 0},

|wj + βj | = |β̂τ
j | > 0. Then given that τ ∈ [0, 1), for j ∈ Ŝτ , we have

log

(
1 + τ−1|βj|

1 + τ−1|wj + βj|

)
= log

(
1 +

|βj | − |wj + βj |
τ + |wj + βj|

)

≤ |βj| − |wj + βj |
τ + |wj + βj|

≤ |βj| − |wj + βj |+ |wj|
τ + |wj + βj|

. (A.6)
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Now for j ∈ Ŝτ ∩ Sc, we have βj = 0, therefore for j ∈ Ŝτ ∩ Sc, the right hand side

of (A.6) is zero. For j ∈ Ŝτ ∩ S, note that |βj| − |wj + βj | ≤ |βj − wj − βj | = |wj|.
Then with the result given above, we have

∑

j∈Ŝτ

log

(
1 + τ−1|βj|

1 + τ−1|wj + βj|

)
≤

∑

j∈Ŝτ∩S

|βj − wj − βj |+ |wj|
τ + |wj + βj |

≤ 2c−1
2

∑

j∈Ŝτ∩S

|wj|

≤ 2c−1
2

∑

j∈S
|wj|

≤ 2c−1
2 s1/2||w||2, (A.7)

where c2 = minj∈Ŝτ |β̂j|.
Now consider the summation over indices j ∈ (Ŝτ )c. Note that for j ∈ (Ŝτ )c∩Sc,

we have β̂τ
j = βj = 0, therefore the difference log(1+τ−1|βj|)−log(1+τ−1|wj+βj |) =

0. On the other hand, for j ∈ (Ŝτ )c ∩ S, we have |wj + βj | = |β̂τ
j − βj + βj | = 0 and

|βj| = |β̂τ
j − βj | = |wj|. Therefore for j ∈ (Ŝτ )c ∩ S, we have

log(1 + τ−1|βj|)− log(1 + τ−1|wj + βj |) = log(τ + |wj|) + log(τ−1),

In addition, for τ ∈ [0, 1), log(τ + |wj|) ≤ log(1 + |wj|) ≤ |wj|. Now with c3 =
minj∈S |βj |, we have c3 ≤ minj∈(Ŝτ )c∩S |βj| = minj∈(Ŝτ )c∩S |wj| ≤ |wj| for any j ∈
(Ŝτ )c ∩ S. Therefore with the results given above, we have

∑

j∈(Ŝτ )c

log(1 + τ−1|βj|)− log(1 + τ−1|wj + βj |)

≤
∑

j∈Ŝc∩S

|wj|
[
1 + c−1

3 log(τ−1)
]

≤
[
1 + c−1

3 log(τ−1)
]∑

j∈S
|wj|

≤
[
1 + c−1

3 log(τ−1)
]
s1/2||w||2. (A.8)

For τ ∈ [0, 1), we have [log(1 + τ−1)]−1 ≤ [log(τ−1)]−1. Now combining results in
(A.7) and (A.8), we can bound (A.3) in a way such that

ρ1

p∑

j=1

[
log(1 + τ−1|βj|)
log(1 + τ−1)

− log(1 + τ−1|wj + βj|)
log(1 + τ−1)

]

≤ ρ1
log(τ−1)

[
∑

j∈Ŝ

log

(
1 + τ−1|βj |

1 + τ−1|wj + βj |

)
+
∑

j∈Ŝc

log

(
1 + τ−1|βj |

1 + τ−1|wj + βj |

)]

≤ ρ1
log(τ−1)

{
2c−1

2 s1/2||w||2 +
[
1 + c−1

3 log(τ−1)
]
s1/2||w||2

}

= ρ1

[
2c−1

2 + 1

log(τ−1)
+ c−1

3

]
s1/2||w||2. (A.9)
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Deriving an upper bound for (A.4). Similarly, for k ∈ R̂τ = {k : ||β̂τ
Gk
||2 > 0},

we have ||wGk
+ βGk

||2 = ||β̂τ
Gk
||2 > 0. In turn, we have

log

(
1 + τ−1||βGk

||2
1 + τ−1||wGk

+ βGk
||2

)
≤ ||βGk

||2 − ||wGk
+ βGk

||2 + ||wGk
||2

τ + ||wGk
+ βGk

||2
. (A.10)

for k ∈ R̂τ .
Now if k ∈ R̂τ ∩ Rc, where Rc = {k : ||βGk

||2 = 0}, then the right hand side of

(A.10) is zero. On the other hand, for j ∈ GR̂τ ∩ S, we have c2 = minj∈Ŝτ |β̂j | ≤
mink∈R̂τ ||β̂Gk

||2 ≤ ||β̂Gk
||2. In addition, ||βGk

||2 − ||wGk
+ βGk

||2 ≤ ||βGk
− wGk

−
βGk

||2 = ||wGk
||2. Then with the results given above, we can further obtain

∑

k∈R̂τ

√
qk log

(
1 + τ−1||βGk

||2
1 + τ−1||wGk

+ βGk
||2

)
≤

∑

k∈R̂τ∩R

√
qk

2||wGk
||2

τ + ||wGk
+ βGk

||2

≤
∑

k∈R̂τ∩R

√
qk
2||wGk

||2
c2

≤ 2c−1
2

(∑

k∈R

√
qk

2

)1/2(∑

k∈R
||wGk

||22
)1/2

≤ 2c−1
2 q

1/2
R ||w||2, (A.11)

where qR = |GR| =
∑

k∈R qk is the number of indices covered by GR. We now consider

the summation over indices k ∈ (R̂τ )c. If k ∈ (R̂τ )c, ||β̂τ
Gk
||2 = 0. Therefore, we have

||wGk
+ βGk

||2 = ||β̂τ
Gk

− βGk
+ βGk

||2 = 0 and ||βGk
||2 = ||β̂τ

Gk
− βGk

||2 = ||wGk
||2. In

turn,

log(1 + τ−1||βGk
||2)− log(1 + τ−1||wGk

+ βGk
||2) = log(τ + ||wGk

||2) + log(τ−1)

for k ∈ (R̂τ )c. In addition, for τ ∈ [0, 1), log(τ+||βGk
||2) ≤ log(1+||βGk

||2) ≤ ||βGk
||2.

Further note that

c3 = min
j∈S

|βj| ≤ min
k∈(R̂τ )c,||βGk

||2 6=0
||βGk

||2 = min
k∈(R̂τ )c,||wGk

||2 6=0
||wGk

||2.

Moreover, for an arbitrary index k ∈ (R̂τ )c, ||wGk
||2 = ||βGk

||2, therefore ||wGk
||2 6= 0

implies ||βGk
||2 6= 0 and the index k ∈ R. Now by applying the results given above,
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we have
∑

k∈(R̂τ )c

√
qk
[
log(1 + τ−1||βGk

||2)− log(1 + τ−1||wGk
+ βGk

||2)
]

=
∑

k∈(R̂τ )c,||wGk
||2 6=0

√
qk
[
log(τ + ||wGk

||2) + log(τ−1)
]

+
∑

k∈(R̂τ )c,||wGk
||2=0

√
qk
[
log(τ + ||wGk

||2) + log(τ−1)
]

≤
[
1 + c−1

3 log(τ−1)
] ∑

k∈(R̂τ )c,k∈R

√
qk||wGk

||2

≤
[
1 + c−1

3 log(τ−1)
]
q
1/2
R ||w||2. (A.12)

Combining the results in (A.11) and (A.12), we can bound (A.4) in a way such that

ρ2

m∑

k=1

√
qk

[
log(1 + τ−1||βGk

||2)
log(1 + τ−1)

− log(1 + τ−1||wGk
+ βGk

||2)
log(1 + τ−1)

]

≤ ρ2
log(τ−1)

[
∑

k∈R̂τ

√
qk log

(
1 + τ−1||βGk

||2
1 + τ−1||wGk

+ βGk
||2

)

+
∑

k∈(R̂τ )c

√
qk log

(
1 + τ−1||βGk

||2
1 + τ−1||wGk

+ βGk
||2

)]

≤ ρ2
log(τ−1)

{
2c−1

2 q
1/2
R ||w||2 +

[
1 + c−1

3 log(τ−1)
]
q
1/2
R ||w||2

}

= ρ2

[
2c−1

2 + 1

log(τ−1)
+ c−1

3

]
q
1/2
R ||w||2. (A.13)

Deriving an upper bound for (A.2). First note that

wTXT ǫ ≤ ||w||1||XT ǫ||∞.
Now for ||w||1, we can decompose it as

||w||1 = ||wŜτ∩S||1 + ||wŜτ∩Sc||1 + ||w(Ŝτ )c∩S||1 + ||w(Ŝτ )c∩Sc||1. (A.14)

Note that for the first and third terms on the right hand side of (A.14), we have
||wŜτ∩S||1 ≤ ||wS||1 and ||w(Ŝτ )c∩S||1 ≤ ||wS||1. For the second term on the right

hand side of (A.14), we have ||wŜτ∩Sc||1 ≤ ||wŜτ ||1. The fourth term on the right

hand side of (A.14) is zero since (Ŝτ )c∩Sc is an intersection of indices for entries with

zero values in β and entries with zero values in β̂τ . With the results given above, we
can further bound ||w||1 in a way such that

||w||1 ≤ 2||wS||1 + ||wŜτ ||1

≤ s1/2
[
2 +

(
ŝτ

s

)1/2]
||w||2. (A.15)
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With the result in (A.15), we can bound (A.2) in a way such that

2wT (XT ǫ− λβ) ≤ 2||w||1||XT ǫ||∞ + 2λ|wTβ|

≤ 2s1/2
[
2 +

(
ŝτ

s

)1/2]
||w||2||XT ǫ||∞

+2λ||w||2s1/2 max
j∈S

|βj|. (A.16)

Combining the results (A.9), (A.13) and (A.16), we obtain

n(κn + λn−1)||w||22 ≤ 2s1/2
[
2 +

(
ŝτ

s

)1/2]
||w||2||XT ǫ||∞ + 2λs1/2 max

j∈S
|βj|||w||2

+ρ1

[
2c−1

2 + 1

log(τ−1)
+ c−1

3

]
s1/2||w||2

+ρ2

[
2c−1

2 + 1

log(τ−1)
+ c−1

3

]
q
1/2
R ||w||2. (A.17)

Then by using the fact that s = |S| ≤ |GR| = qR and doing some rearrangement in
(A.17), we obtain the inequality (5.4), which completes the proof.

Proof of Theorem 5.2. We start our proof by showing that with at least 1 − α
probability, the inequality 2||XT ǫ||∞ < ψn will hold, where ψn is defined in (5.5).
Note that {2||XT ǫ||∞ < ψn} is equivalent to the following event:

A =
m⋂

k=1

{
2||XT

Gk
ǫ||∞ < ψn

}
.

We will establish the inequality P(A) = 1 − P(Ac) ≥ 1 − α by showing that given
ψn is defined in (5.5), P(Ac) ≤ α. The technique we use to derive the inequality
P(Ac) ≤ α is borrowed from Lemma B.1 of [5]. Note that the tail probability P(Ac)
can be bounded in a way such that

P(Ac) = P

(
m⋃

k=1

{
2||XT

Gk
ǫ||∞ ≥ ψn

})

≤
m∑

k=1

P

(
||XT

Gk
ǫ||∞ ≥ ψn

2

)
≤

m∑

k=1

∑

j∈Gk

P

(∣∣∣∣
n∑

i=1

xijǫi

∣∣∣∣ ≥
ψn

2

)
. (A.18)

Under assumptions given in Theorem 5.2, ǫi’s are i.i.d. normal variables with mean
zero and variance σ2, therefore

∑n
i=1 xijǫi is a normal variable with mean zero and

variance σ2
∑n

i=1 x
2
ij = nζjσ

2. In turn, we can express |∑n
i=1 xijǫi| =

√
nζjσ|Z|,

where Z is a standard normal variable. By using the Chernoff bound argument on
the tail probability of a standard normal variable, we can bound the right hand side
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of (A.18) in a way such that

m∑

k=1

∑

j∈Gk

P

(∣∣∣∣
n∑

i=1

xijǫi

∣∣∣∣ ≥
ψn

2

)
≤

m∑

k=1

qkP

(
|Z| ≥ ψn

2
√
nmaxj ζjσ

)

≤ m
m∑

k=1

qk
m

exp

(
− ψ2

n

8nmaxj ζjσ2

)

≤ m exp

(
− ψ2

n

8nσ2maxj ζj
+ log q

)
,

(A.19)

where q = m−1
∑k

k=1 qk. With ψn defined in (5.5), the right hand side of (A.19) is
equal to α, and further with (A.18), we obtain P(Ac) ≤ α, which implies that with
ψn defined in (5.5), P(A) = 1− P(Ac) ≥ 1− α.

To complete the proof, note that since we have assumed τ = n−1, therefore
effectively we have β̂τ → β̂gvsnss and ŝτ → ŝ as n → ∞. Therefore with the result
from Theorem 5.1 and the assumptions on λ, ρ1, ρ2 and τ , as n→ ∞, the inequality

||β̂gvsnss − β||2 ≤
q
1/2
R

(κn + Ωn)

Λnψn

n
(A.20)

will hold with 1−α probability, where Λn is defined in (5.7) and Ωn = n−1λ is defined
in (5.8) and ψn defined in (5.5), which completes the proof.

B Proof of Theorem 5.3

Proof of Theorem 5.3. Now define

Uτ (β
′, G∗, G∗∗) = ρ2

m∗∑

k=1

√
q∗k
log(1 + τ−1||β ′

G∗

k
||2)

log(1 + τ−1)

−ρ2
m∗∗∑

l=1

√
q∗∗l

log(1 + τ−1||β ′
G∗∗

l
||2)

log(1 + τ−1)
. (B.1)

where β ′
G∗

k
is the coefficient vector in which the elements are those indexed by G∗

k

in the vector β ′. The vector β ′
G∗∗

l
follows a similar definition. The function (B.1)

is the difference between the log-sum penalties involving l2-norms indexed by G∗

and G∗∗. Note that, with (B.1), the objective function Vτ (0, β
′, G∗) in (5.10) can be

re-expressed as

Vτ (0, β
′, G∗) = Vτ (0, β

′, G∗∗) + Uτ (β
′, G∗, G∗∗). (B.2)

Since β̂τ∗ is the minimizer of Vτ (0, β
′, G∗), therefore it must be the solution to the

following subgradient equations:

2XT (y −Xβ ′)− 2λβ ′ − ρ1g
′ − ρ2

√
q∗∗u∗∗ − ρ2(

√
q∗u∗ −√

q∗∗u∗∗) = 0, (B.3)
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where

(g′)j =
h′j

[τ log(1 + τ−1)](1 + τ−1|β ′
j |)
,

with h′j = sign(β ′
j) if β

′
j 6= 0 and −1 ≤ h′j ≤ 1 if β ′

j = 0, and

(u∗)j =
v∗j

[τ log(1 + τ−1)](1 + τ−1||β ′
G∗

kj

||2)

with v∗j = β ′
j/||β ′

G∗

kj

||2 if ||β ′
G∗

kj

||2 > 0 and
∑

j∈G∗

kj

(v∗j )
2 ≤ 1 if ||β ′

G∗

kj

||2 = 0, where

kj is the index for the group that j belongs to, i.e. if j ∈ G∗
k′, then kj = k′. The

quantity (u∗∗)j follows a similar definition. In addition, (q∗)j = q∗kj and (q∗∗)j = q∗∗lj .

Note that the derivation of the subgradient equations (B.3) has explicitly used
representation (B.2), and after some simple arrangement, (B.3) becomes

2XT (y −Xβ)− 2λβ − ρ1g
′ − ρ2

√
q∗∗u∗∗ = ρ2(

√
q∗u∗ −√

q∗∗u∗∗), (B.4)

where

(
√
q∗u∗ −√

q∗∗u∗∗)j =
1

log(1 + τ−1)

[
(τ + ||β ′

G∗∗

lj

||2)
√
q∗kjv

∗
j

(τ + ||β ′
G∗

kj

||2)(τ + ||β ′
G∗∗

lj

||2)

−
(τ + ||β ′

G∗

kj

||2)
√
q∗∗lj v

∗∗
j

(τ + ||β ′
G∗

kj

||2)(τ + ||β ′
G∗∗

lj

||2)

]
. (B.5)

For each j, one of the following four cases will occur: (i) ||β ′
G∗

kj

||2 = 0 and ||β ′
G∗∗

lj

||2 = 0;

(ii) ||β ′
G∗

kj

||2 > 0 and ||β ′
G∗∗

lj

||2 = 0; (iii) ||β ′
G∗

kj

||2 = 0 and ||β ′
G∗∗

lj

||2 > 0; and (iv)

||β ′
G∗

kj

||2 > 0 and ||β ′
G∗∗

lj

||2 > 0. In the following discussion, we will evaluate (B.5)

under the four cases.
We consider case (i) first. If (i) occurs, then all regression coefficients with indices

in G∗
kj

or G∗∗
lj

will be zero. It implies that β ′
j = 0 and by definitions, v∗j is an arbitrary

quantity such that 0 ≤ (v∗j )
2 ≤∑j∈G∗

kj

(v∗j )
2 ≤ 1. The same property applies to v∗∗j .

For practical purposes, we choose v∗j = τ and v∗∗j = τ . Then under case (i),

(
√
q∗u∗ −√

q∗∗u∗∗)j =
1

τ log(1 + τ−1)

[
τ
√
q∗kjv

∗
j

τ
−
τ
√
q∗∗lj v

∗∗
j

τ

]

=

(√
q∗kj −

√
q∗∗lj
)

log(1 + τ−1)
. (B.6)

Now consider case (ii). If (ii) holds, then by definition, v∗j = β ′
j/||βG∗

kj
||2. In

addition, since ||β ′
G∗∗

lj

||2 = 0, therefore v∗∗j is an arbitrary quantity such that 0 ≤
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(v∗∗j )2 ≤ ∑
j∈G∗

lj

(v∗∗j )2 ≤ 1. For practical purposes, we choose v∗∗j = τ . Moreover,

||β ′
G∗∗

lj

||2 = 0 implies that all coefficients with indices in G∗∗
lj

are zero. Therefore

β ′
j = 0 and v∗j = β ′

j/||β ′
G∗

kj

||2 = 0. Then under case (ii),

(
√
q∗u∗ −√

q∗∗u∗∗)j =
1

τ log(1 + τ−1)

[
τ
√
q∗kjv

∗
j

τ + ||β ′
G∗

kj

||2
−

(τ + ||β ′
G∗

kj

||2)
√
q∗∗lj v

∗∗
j

τ + ||β ′
G∗

kj

||2

]

= −

√
q∗∗lj

log(1 + τ−1)
. (B.7)

Now consider case (iii). Under case (iii), since ||β ′
G∗∗

lj

||2 > 0, therefore v∗∗j = β ′
j/||β ′

G∗∗

lj

||2.
In addition, ||β ′

G∗

kj

||2 = 0 implies that all coefficients with indices in G∗
kj

are zero.

Therefore β ′
j = 0 and v∗∗j = β ′

j/||β ′
G∗∗

lj

||2 = 0. In addition, v∗j is an arbitrary quantity

such that 0 ≤ (v∗j )
2 ≤ ∑

j∈G∗

kj

(v∗j )
2 ≤ 1. Here we let v∗j = τ . Therefore under case

(iii),

(
√
q∗u∗ −√

q∗∗u∗∗)j =
1

τ log(1 + τ−1)

[
(τ + ||β ′

G∗∗

lj

||2)
√
q∗kjv

∗
j

τ + ||β ′
G∗∗

lj

||2
−

τ
√
q∗∗lj v

∗∗
j

τ + ||β ′
G∗∗

lj

||2

]

=

√
q∗kj

log(1 + τ−1)
. (B.8)

Finally we consider case (iv). Under case (iv), v∗j = β ′
j/||β ′

G∗

kj

||2 and v∗∗j =

β ′
j/||β ′

G∗∗

lj

||2. Further by direct calculation, we have

(
√
q∗u∗ −√

q∗∗u∗∗)j =
1

log(1 + τ−1)

[ √
q∗kjv

∗
j

(τ + ||β ′
G∗

kj

||2)
−

√
q∗∗lj v

∗∗
j

(τ + ||β ′
G∗∗

lj

||2)

]

=
1

log(1 + τ−1)

[ √
q∗kjβ

′
j

(τ + ||β ′
G∗

kj

||2)||β ′
G∗

kj

||2

−

√
q∗∗lj β

′
j

(τ + ||β ′
G∗∗

lj

||2)||β ′
G∗∗

lj

||2

]
.

(B.9)

Now with τ = n−1 and the results from (B.6), (B.7), (B.8), and (B.9), we can
see that |Uτ (β

′, G∗, G∗∗)| = O(ρ2maxk
√
qk[log(n)]

−1). Therefore if ρ2maxk
√
qk =

o(log(n)), Uτ (β
′, G∗, G∗∗) will approach to zero when n→ ∞. It further implies that

the right hand side of (B.4) will become zero when n → ∞. On the other hand,
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the left hand side of (B.4) is just the subgradient vector of the objective function
Vτ (0, β

′, G∗∗). Therefore when τ → 0, (B.4) becomes the subgradient equations of

limτ→0 Vτ (0, β
′, G∗∗). Since β̂∗

gvsnss is the solution of the subgradient equations (B.3)

when τ → 0 and (B.4) is just a rearrangement of (B.3), therefore β̂∗
gvsnss is also

the solution to (B.4) when τ → 0. Since (B.4) becomes the subgraident equations
of limτ→0 Vτ (0, β

′, G∗∗) when τ → 0, and the solution of (B.4) at τ → 0 is the

minimizer of limτ→0 Vτ (0, β
′, G∗∗), there we conclude that β̂∗

gvsnss is the minimizer of
limτ→0 Vτ (0, β

′, G∗∗), which completes the proof.

C Proof of Theorem 5.4

Proof of Theorem 5.4. Define w = β̂τ − β. It can be shown that given β and G
are fixed, w is the minimizer of Vτ (w

∗, β, G), therefore w is also the solution to the
following subgradient equations:

2XTXw − 2XT ǫ+ 2λ(β + w) + ρ1g + ρ2
√
qu = 0, (C.1)

where

(g)j =
hj

[τ log(1 + τ−1)](1 + τ−1|wj + βj|)
,

with hj = sign(wj + βj) if wj + βj 6= 0 and −1 ≤ hj ≤ 1 if wj + βj = 0, and

(u)j =
vj

[τ log(1 + τ−1)](1 + τ−1||wGkj
+ βGkj

||2)

with vj = (wj + βj)/||wGkj
+ βGkj

||2 if ||wGkj
+ βGkj

||2 > 0 and
∑

j∈Gkj

(vj)
2 ≤ 1 if

||wGkj
+ βGkj

||2 = 0, where kj is the index for the group that j belongs to.

Let Sc
1 = Sc ∩GR and Sc

2 = Sc ∩GRc . Here Sc is the set of indices for redundant
covariates, i.e. the covariates with zero coefficients. In addition, Sc

1 is the set of
indices for the redundant covariates covered by GR, and Sc

2 is the set of indices
for the redundant covariates covered by GRc . By definition, GRc ⊆ Sc, therefore
we have Sc

2 = GRc . In addition, S, Sc
1 and GRc are three disjoint index sets and

S ∪ Sc
1 ∪GRc = {1, 2, · · · , p}. With the results given above, we can re-express (C.1)

as

2



XT

SXS XT
SXSc

1
XSXGRc

XT
Sc
1
XS XT

Sc
1
XSc

1
XT

Sc
1
XGRc

XT
GRc

XS XT
GRc

XSc
1
XT

GRc
XGRc






wS

wSc
1

wGRc


− 2



XT

S ǫ
XT

Sc
1
ǫ

XT
GRc

ǫ




+2λ




wS + βS
wSc

1
+ βSc

1

wGRc + βGRc


+ ρ1




gS
gSc

1

gGRc


+ ρ2




√
qSuS√
qSc

1
uSc

1√
qGRcuGRc


 = 0. (C.2)

For practical purposes, we define ϑSj as the position of index j in the set S. It is
equivalent to say that index j is the ϑSj th element in S. If j /∈ S, then we just leave

ϑSj undefined. Similar definitions are applied to ϑ
Sc
1

j and ϑGRc

j .
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To make the sign consistency hold, we must have wj = β̂τ
j − βj = 0 for all

j ∈ Sc
1 ∪GRc , and sign(β̂j) = sign(βj) for all j ∈ S. Given that w is the solution to

(C.2), then with the arguments given above, we obtain the following conditions:

(
XT

SXSwS −XT
S ǫ+ λ(wS + βS) +

ρ2
2

√
qSuS

)
ϑS
j

=

(
− ρ1

2
gS

)

ϑS
j

, (C.3)

for j ∈ S, and

− ρ1
2τ log(1 + τ−1)

<

(
XT

Sc
1
XSwS −XT

Sc
1
ǫ+

ρ2
2

√
qSc

1
uSc

1

)

ϑ
Sc
1

j

<
ρ1

2τ log(1 + τ−1)
(C.4)

for j ∈ Sc
1, and

||2XT
Gk
XSwS − 2XT

Gk
ǫ+ ρ1gGk

||2 <
ρ2
√
qk

τ log(1 + τ−1)
(C.5)

for k ∈ Rc.
The subgradient equations (C.3) are a result from the KKT conditions and the

inequalities (C.4) and (C.5) are used to ensure that estimated coefficients with indices
in Sc

1 and GRc are zero.
Now by solving equations in (C.3) for wS, we have

wS = (XT
SXS + λIs×s)

−1XT
S ǫ

−(XT
SXS + λIs×s)

−1

(
ρ1
2
gS +

ρ2
2

√
qSuS + λβS

)
. (C.6)

Note that the ϑSj th element in the last term on the right hand side of (C.6) can
be expressed as
(
ρ1
2
gS +

ρ2
2

√
qSuS + λβS

)

ϑS
j

=
1

2[τ log(1 + τ−1)]

[
τρ1hj

(τ + |wj + βj |)

+
τρ2

√
qkjvj

(τ + ||wGkj
+ βGkj

||2)
+ 2λτ log(1 + τ−1)βj

]
.

(C.7)

Here we define BS,τ by

(BS,τ )ϑS
j
=

τρ1hj
(τ + |wj + βj |)

+
τρ2

√
qkjvj

(τ + ||wGkj
+ βGkj

||2)
+ 2λτ log(1 + τ−1)βj . (C.8)

By Assumption 2, CSS = n−1(XT
SXS + λI). Practically we can express wS as

wS = n−1C−1
SSX

T
S ǫ−

1

2nτ log(1 + τ−1)
C−1

SSBS,τ . (C.9)

31



Sign consistency for estimated coefficients with indices in S. Now in
order to ensure the sign consistency for estimated coefficients with indices in S, we
impose some constraint on each entry of wS. We focus on the following inequality:

|wj| < |βj |. (C.10)

Inequality (C.10) implies that for j ∈ S, sign(β̂τ
j ) = sign(βj). To see why it is, let

us consider the case when βj > 0. If βj > 0, then |wj| < |βj| means that either

−βj < wj = β̂τ
j − βj < βj or −βj < −wj = βj − β̂τ

j < βj , which jointly imply that

0 < β̂τ
j < 2βj. A similar argument can be applied to the case when βj < 0. Therefore

given that (C.10) holds, sign consistency holds for estimated coefficients with indices
in S.

With representation (C.9), for j ∈ S, we can bound |wj| in a way such that

|wj| ≤ n−1
∣∣∣
(
C−1

SSX
T
S ǫ
)
ϑS
j

∣∣∣+ 1

2nτ log(1 + τ−1)

∣∣∣
(
C−1

SSBS,τ

)
ϑS
j

∣∣∣. (C.11)

By plugging the right hand side of (C.11) into the left hand side of (C.10) and doing
some rearrangements, we obtain the following inequality:

n−1
∣∣∣
(
C−1

SSX
T
S ǫ
)
ϑS
j

∣∣∣ ≤ |βj| −
1

2nτ log(1 + τ−1)

∣∣∣
(
C−1

SSBS,τ

)
ϑS
j

∣∣∣. (C.12)

Further note that for any j ∈ S, |(C−1
SSX

T
S ǫ)ϑS

j
| ≤ ||C−1

SSX
T
S ǫ||∞ ≤ κ−1

min||XT
S ǫ||∞,

where κmin is the minimum eigenvalue of CSS. Now with the results given above, we
construct the following event:

E1 =

{
ǫ : n−1κ−1

min||XT
S ǫ||∞ < min

j∈S
|βj | −

1

2nτ log(1 + τ−1)
||C−1

SSBS,τ ||∞
}
. (C.13)

Since the left hand side of the inequality stated in E1 is larger than the left hand side
of (C.12), and the right hand side of the inequality stated in E1 is smaller than the
right hand side of (C.12), therefore if the inequality stated in E1 hold, then (C.12)
will hold. In turn, (C.3) and (C.10) will hold, and the sign consistency for estimated
coefficients with indices in S can be established.

We go on to derive an estimate for the tail probability of E1. Define ψ1,n by

ψ1,n = min
j∈S

|βj| −
1

2nτ log(1 + τ−1)
||C−1

SSBS,τ ||∞. (C.14)

Note that E1 is equivalent to the event ∩j∈S{n−1|∑n
i=1 xijǫi| < ψ1,nκmin}. On the

other hand, by the assumptions on ǫi’s and
∑n

i=1 x
2
ij , one can show that

∑n
i=1 xijǫi is

a normal variable with mean zero and variance σ2
∑

i x
2
ij = nσ2. Therefore, we can

bound the probability of Ec
1 in a way such that

P(Ec
1) ≤

∑

j∈S
P

(
1

n

∣∣∣∣
n∑

i=1

xijǫi

∣∣∣∣ ≥ ψ1,nκmin

)
≤ sP

(
|Z| ≥

√
nψ1,nκmin

σ

)
, (C.15)
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where Z is a standard normal variable. By applying a Chernoff bound argument to
the right hand side of (C.15), we further obtain

P(Ec
1) ≤ exp

(
− nψ2

1,nκ
2
min

2σ2
+ log s

)
= exp

{
− n

(
ψ2
1,nκ

2
min

2σ2
− log s

n

)}
.

(C.16)

Sign consistency for estimated coefficients with indices in Sc
1. Now by

plugging (C.9) in the middle term of (C.4) and then taking absolute value on the
quantity, for j ∈ Sc

1, we have
∣∣∣∣∣

(
n−1XT

Sc
1
XSC

−1
SSX

T
S ǫ−

1

2nτ log(1 + τ−1)
XT

Sc
1
XSC

−1
SSBS,τ

−XT
Sc
1
ǫ+

ρ2
2

√
qSc

1
uSc

1

)

ϑ
Sc
1

j

∣∣∣∣∣

≤ n−1
∣∣∣(XT

Sc
1
XSC

−1
SSX

T
S ǫ)ϑSc

1
j

∣∣∣+
∣∣∣(XT

Sc
1
ǫ)

ϑ
Sc
1

j

∣∣∣

+
1

2τ log(1 + τ−1)

∣∣∣∣
ρ2
√
qkjvj

(1 + τ−1||wGkj
+ βGkj

||2)

∣∣∣∣

+
1

2nτ log(1 + τ−1)

∣∣∣
(
XT

Sc
1
XSC

−1
SSBS,τ

)
ϑ
Sc
1

j

∣∣∣ (C.17)

By plugging the right hand side of (C.17) into the left hand side of (C.4) and doing
some rearrangements, we obtain the following inequality:

n−1
∣∣∣(XT

Sc
1
XSC

−1
SSX

T
S ǫ)ϑSc

1
j

∣∣∣ +
∣∣∣(XT

Sc
1
ǫ)

ϑ
Sc
1

j

∣∣∣

<
1

2τ log(1 + τ−1)

(
ρ1 − n−1

∣∣∣
(
XT

Sc
1
XSC

−1
SSBS,τ

)
ϑ
Sc
1

j

∣∣∣−
∣∣∣∣

ρ2
√
qkjvj

(1 + τ−1||wGkj
+ βGkj

||2)

∣∣∣∣
)

(C.18)

Note that by Assumption 3, the maximum eigenvalue value of the matrix XSX
T
S is

nςmax. Therefore,

|(XT
Sc
1
XSC

−1
SSX

T
S ǫ)ϑSc

1
j

| ≤ ||XT
Sc
1
XSC

−1
SSX

T
S ǫ||∞ ≤ nςmaxκ

−1
min||XT

Sc
1
ǫ||∞. (C.19)

Further define

(BSc
1,τ
)
ϑ
Sc
1

j

=
ρ2
√
qkjvj

(1 + τ−1||wGkj
+ βGkj

||2)
. (C.20)

With (C.19) and (C.20), we construct the following event:

E2 =

{
ǫ : 2

(
ςmax

κmin
+ 1

)
||XT

Sc
1
ǫ||∞

<
1

τ log(1 + τ−1)

(
ρ1 − n−1||XT

Sc
1
XSC

−1
SSBS,τ ||∞ − ||BSc

1,τ
||∞
)}

.

(C.21)
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Since the left hand side of the inequality stated in E2 is larger than the left hand
side of (C.18), and the right hand side of the inequality stated in E2 is smaller than
the right hand side of (C.18), therefore if the inequality stated in E2 holds, then
(C.18) will hold. In turn both (C.3) and (C.4) will hold, and the sign consistency
for estimated coefficients with indices in Sc

1 can be established.
Now define ψ2,n by

ψ2,n =
1

τ log(1 + τ−1)

(
ρ1 − n−1||XT

Sc
1
XSC

−1
SSBS,τ ||∞ − ||BSc

1,τ
||∞
)
. (C.22)

Then following the technique similar to the one used in deriving (C.15) and (C.16),
We can bound the probability of Ec

2 in a way such that

P(Ec
2) ≤ exp

(
− ψ2

2,nκ
2
min

8(ςmax + κmin)2σ2
+ log sc1

)

= exp

{
− n

[
ψ2
2,nκ

2
min

8n(ςmax + κmin)2σ2
− log sc1

n

]}
. (C.23)

Sign consistency for estimated coefficients with indices in GRc. Now by
plugging (C.9) into the left hand side of (C.5), we have
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∣∣∣∣
2

(C.24)

for k ∈ Rc. Further by plugging the right hand side of (C.24) into the left hand side
of (C.5) and doing some rearrangements, we can obtain the following inequality:
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. (C.25)

By Assumption 3, the maximum eigenvalue of the matrixXGk
XT

Gk
is nνk,max. Further

note that

||XT
Gk
XSC

−1
SSX

T
S ǫ||2 ≤ nςmaxκ

−1
min||XT

Gk
ǫ||2 ≤ nςmaxκ

−1
min

√
nνk,max||ǫ||2. (C.26)
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With (C.26), we construct the following event:

E3 =

{
ǫ : 2
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ςmax
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+ 1

)
√
nνk,max||ǫ||2

<
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τ log(1 + τ−1)

(
ρ2 − n−1max

k∈Rc
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2

)
, for all k ∈ Rc

}
. (C.27)

Since the left hand side of the inequality stated in E3 is larger than the left hand side
of (C.25), and the right hand side of the inequality stated in E3 is smaller than the
right hand side of (C.25), therefore if the inequality stated in E3 holds, then (C.25)
will also hold. In turn, if (C.25) holds for all k ∈ Rc, then both (C.3) and (C.5) will
hold, and the sign consistency for estimated coefficients with indices in GRc can be
established.

We follow a strategy similar to those given above to derive an estimate for the
tail probability of E3. Define ψ3,n by

ψ3,n =
1

τ log(1 + τ−1)

(
ρ2 − n−1max

k∈Rc
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Gk
XSC

−1
SSBS,τ
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2
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k∈Rc
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2

)
. (C.28)

Note that E3 is equivalent to the event ∩k∈Rc{4nνk,maxκ
−2
min(ςmax+κmin)

2||ǫ||22 < ψ2
3,n}.

Therefore the probability of Ec
3 can be bounded in a way such that

P(Ec
3) ≤

∑

k∈Rc

P

{ ||ǫ||22
σ2

≥
κ2minψ

2
3,n

4nνk,max(ςmax + κmin)2σ2

}

≤ rcP

{ ||ǫ||22
σ2

≥ κ2minψ
2
3,n

4nνmax(ςmax + κmin)2σ2

}
. (C.29)

In addition, since ǫ’s are i.i.d. normal variables with mean zero and variance σ2,
therefore ||ǫ||22/σ2 is a Chi-square variable with n degrees of freedom. It can be
shown that E[exp(a||ǫ||22/σ2)] = (1 − 2a)−n/2 for a < 1/2. We let a = 1/4, then
E[exp(4−1||ǫ||22/σ2)] = 2n/2. Wit the arguments given above, the probability of Ec

3

can be further bounded in a way such that

P(Ec
3) ≤ exp

(
− κ2minψ

2
3,n

16nνmax(ςmax + κmin)2σ2
+
n

2
log 2 + log rc

)

≤ exp

{
− n

[
κ2minψ

2
3,n

16n2νmax(ςmax + κmin)2σ2
− 0.35− log rc

n

]}
. (C.30)

Since E1, E2 and E3 jointly implies conditions (C.3), (C.10), (C.4) and (C.5), which

further implies the sign consistency sign(β̂τ ) = sign(β), therefore

P
{
sign(β̂τ) = sign(β)

}
≥ P(E1 ∩ E2 ∩ E3) = 1− P{(E1 ∩ E2 ∩ E3)

c}.

35



Further note that P{(E1 ∩ E2 ∩ E3)
c} = P(Ec

1 ∪Ec
2 ∪Ec

3) ≤ P(Ec
1) + P(Ec

2) + P(Ec
3).

Therefore we have

P{sign(β̂τ ) = sign(β)} ≥ 1− P(Ec
1)− P(Ec

2)− P(Ec
3). (C.31)

Then by applying the tail probability results (C.16), (C.23) and (C.30) to construct
a lower bound for the quantity on the right hand side of (C.31), we recover the
inequality (5.10).

Asymptotic behavior of ψ1,n, ψ2,n and ψ3,n. Now we go on to show that as
n → ∞, ψ1,n, ψ2,n and ψ3,n, defined in (C.14), (C.22) and (C.28), respectively, can
satisfy the requirements stated in Theorem 5.4. We first consider the asymptotic
behavior of (BS,τ)ϑS

j
, which is defined in (C.8). Note that by assumptions, if |wj +

βj | 6= 0, then hj = 1 or hj = −1. Therefore given that τ = n−1 and ρ1 = O(n1/2),
the first term on the right hand side of (C.8) will be O(n−1/2). In addition, if
|wj +βj| = 0, then hj is an arbitrary quantity in [−1, 1]. In this situation we may let
hj be proportional to n

−1, then the first term on the right hand side of (C.8) will be
O(n−1/2). An argument similar to the one given above can be applied to the second
term on the right hand side of (C.8). Further note that given λ = O(n1/2), the third
term on the right hand side of (C.8) will be O(n−1/2 log(1+n)). With the arguments
given above, we conclude that

(BS,τ )ϑS
j
= O(n−1/2 log(1 + n)) (C.32)

for all j ∈ S. An argument similar to the one given above can be applied to (BSc
1,τ
)
ϑ
Sc
1

j

in (C.20) and the term ρ1||hGk
(1 + τ−1|wGk

+ βGk
|)−1||2 in E3, which leads to

(BSc
1,τ
)
ϑ
Sc
1

j

= O(q
1/2
kj
n−1/2) (C.33)

for all j ∈ Sc
1 and

ρ1

∣∣∣∣
∣∣∣∣

hGk

1 + τ−1|wGk
+ βGk

|

∣∣∣∣
∣∣∣∣
2

= O(q
1/2
k n−1/2) (C.34)

for all k ∈ Rc.
Next we go on to deal with the l∞-norm terms involved in ψ1,n, ψ2,n and ψ3,n.

First note that for a p dimensional vector b, we can bound ||b||∞ in a way such that

||b||∞ =
√

maxj |bj |2 ≤
√∑p

j=1 b
2
j =

√
bT b. Therefore for ψ1,n defined in (C.14), we

can bound the term ||C−1
SSBS,τ ||∞ in a way such that

||C−1
SSBS,τ ||∞ ≤

√
BT

S,τBS,τ

κmin
= O

(
s1/2 log(n + 1)

n1/2κmin

)
. (C.35)

Now consider ψ2,n defined in (C.22). First note that since Sc
1 ⊆ GRc , therefore we

can bound the term n−1||XT
Sc
1
XSC

−1
SSBS,τ ||∞ in a way such that

n−1||XT
Sc
1
XSC

−1
SSBS,τ ||∞ ≤ n−1||XT

GRc
XSC

−1
SSBS,τ ||∞

≤ max
k∈Rc

n−1||XT
Gk
XSC

−1
SSBS,τ ||∞. (C.36)
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The right hand side of (C.36) can be further bounded in a way such that

max
k∈Rc

n−1||XT
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XSC

−1
SSBS,τ ||∞ ≤ max
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)
. (C.37)

A similar argument can be applied to the term maxk∈Rc n−1||XT
Gk
XSC

−1
SSBS,τ ||2 in

ψ3,n defined in (C.28), which leads to

max
k∈Rc

n−1||XT
Gk
XSC

−1
SSBS,τ ||2 = O

(
s1/2

√
νmaxςmax log(1 + n)

n1/2κmin

)
. (C.38)

Note that we have assumed p = o(n(log(n + 1))−2) and since s ≤ p and qk ≤ p

for k = 1, 2, · · · , m, therefore we have s1/2 = o(n1/2(log(n + 1))−1) and q
1/2
k =

o(n1/2(log(1 + n))−1) for k = 1, 2, · · · , m. Then with (C.35), the second term on
the right hand side of (C.14) will approach to zero as n → ∞, therefore we have
ψ1,n = O(1) as n → ∞. In addition, with results in (C.33), (C.36) and (C.37),
the second and third terms on the right hand side of (C.22) will approach to zero
as n → ∞, therefore we have ψ2,n = O(n3/2(log n)−1) as n → ∞. Moreover, with
results in (C.34) and (C.38), the second and third terms on the right hand side of
(C.28) will approach to zero as n → ∞, therefore we have ψ3,n = O(n3/2(log n)−1)
as n→ ∞, which completes the proof.
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Table 1: Out-of-sample mean squared error. Each value is an average over the 415
time blocks. The value in the bracket is the standard error.

Method Model 1 Model 2
gvsnss 16.99 (1.83) 16.67 (1.81)

lasso 21.87 (1.74) 22.48 (1.81)

gvsnss-PC 17.50 (1.90) 17.03 (1.86)

lasso-PC 17.66 (1.83) 18.39 (1.88)

PC 16.75 (1.88) 17.61 (1.92)

AR - 18.68 (2.03)

Table 2: Estimation results based on 100 sub-sampling simulations. Each value is
an average over 100 sub-sampling simulations and the value in the bracket is the
standard error. PMSE: Predictive mean squared error; ŝ: The number of covariates
with non-zero estimated coefficients; ŝ+SSE: The number of covariates with positive
estimated coefficients in the Susan Shepard Effect group.

gvsnss 5CV gvsnss BF lasso 10CV
PMSEtest 0.43 (0.01) 0.38 (0.01) 0.41 (0.01)
ŝ 2.81 (0.25) 1.03 (0.02) 3.89 (0.22)
ŝ+SSE 0.35 (0.13) 0.00 (0.00) 1.33 (0.09)
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Figure 1: Left: The index function and its log approximations; Right: The mean
absolute difference between the index function and its log approximation as a function
of − log τ . Each point is an average over absolute differences with input values from
[−10, 10].
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Figure 2: Estimation results from simulated data. Each point is an average over 100
replicates. For all data sets, we set mis-labeled = 0, p = 200, m = 10 and r = 2.
Left: spr = 0; Center: spr = 0.3; Right: spr = 0.6. Top: SFPR; Middle: l2 distance
between the estimates and the true values; Bottom: Logarithm of the PMSE with
respect to base 10.
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Figure 3: Estimation results from simulated data. Each point is an average over 100
replicates. For all data sets, we set mis-labeled = 0.1, p = 200, m = 10 and r = 2.
Left: spr = 0; Center: spr = 0.3; Right: spr = 0.6. Top: SFPR; Middle: l2 distance
between the estimates and the true values; Bottom: Logarithm of the PMSE with
respect to base 10.
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Figure 4: Estimation results from simulated data. Each point is an average over 100
replicates. For all data sets, we set mis-labeled = 0.5, p = 200, m = 10 and r = 2.
Left: spr = 0; Center: spr = 0.3; Right: spr = 0.6. Top: SFPR; Middle: l2 distance
between the estimates and the true values; Bottom: Logarithm of the PMSE with
respect to base 10.
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Figure 5: Top Left: Percentage change of the U.S. industrial production index. The
change is defined as 100[log(IPt) − log(IPt−12)]. Top Left: The number of selected
variables for the 415 time blocks. Bottom Left: Frequencies of variables being se-
lected under the gvsnss. Bottom Right: Frequencies of variables being selected under
the lasso. OI: output and income; LM: labor market; H: housing; COI: consumption,
orders and inventories; MC: money and credits; BE: bond and exchange rates; P:
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Figure 6: Left: The out-of-sample squared error of Model 1 for the 415 time blocks.
Right: The out-of-sample squared error of Model 2 for the 415 time blocks.
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Figure 7: Estimation results from the retirement plan data. Left: The gvsnss esti-
mation with five fold cross validation. Middle: The gvsnss estimation with the Bayes
factor. Right: The lasso estimation with ten fold cross validation.
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[19] L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regres-
sion. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70:53–71, 2008.

[20] N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for
high-dimensional data. The Annals of Statistics, 37:246–270, 2009.

[21] T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regres-
sion. Journal of the American Statistical Association, 83:1023–1032, 1988.

[22] G. Obozinski, M. J. Wainright, and M. I. Jordan. Support union recovery
in high-dimensional multivariate regression. The Annals of Statistics, 39:1–47,
2011.

[23] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
71:1009–1030, 2009.

[24] D. Ruppert, M. Wand, and R. J. Carroll. Semiparametric Regression. Cambridge
University Press, Cambridge, 2003.

[25] F. Scheipl, L. Fahrmeir, and T. Kneib. Spike-and-slab priors for function selec-
tion in structured additive regression models. http://arxiv.org/abs/1105.5250v1,
2011.

[26] B. K. Sriperumbudur, D. A. Torres, and G. R. G. Lanckriet. A
D.C. programming approach to the sparse generalized eigenvalue problem.
http://arxiv.org/abs/0901.1504, 2009.

[27] J. H. Stock and M. W. Watson. Forecasting using principal components from
a large number of predictors. Journal of the American Statistical Association,
97:1167–1179, 2002.

[28] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1:211–244, 2001.

[29] T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized
regression. The Annals of Applied Statistics, 2:224–244, 2008.

46



[30] T. T. Wu and K. Lange. The MM alternative to EM. Statistical Science,
25:492–505, 2010.

[31] T. J. Yen. A majorization-minimization approach to variable selection using
spike and slab priors. Accepted by The Annals of Statistics, 2011.

[32] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 68:49–67, 2006.

[33] P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine
Learning Research, 7:2541–2564, 2006.

[34] H. Zou and H. H. Zhang. On the adaptive elastic-net with a diverging number
of parameters. The Annals of Statistics, 37:1733–1751, 2009.

47


	1 Introduction
	2 Notation
	3 Nested spike and slab prior
	3.1 Model
	3.2 Parameter estimation
	3.2.1 Majorization-minimization algorithms
	3.2.2 Blockwise coordinate descent algorithms

	3.3 Determining tuning parameter values
	3.4 Connection with other approaches

	4 Simulation study
	4.1 Methods for comparisons
	4.2 Results

	5 Asymptotic analysis
	5.1 l2 estimation error
	5.2 Label-invariance property
	5.3 Variable selection and sign consistency

	6 Real data examples
	6.1 The U.S. industrial product index
	6.2 Retirement plan data

	7 Discussion
	A Proof of Theorems ?? and ??
	B Proof of Theorem ??
	C Proof of Theorem ??

