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1 Introduction

Nonstationary time series play an important role in economics and finance. Many statisticians have studied

the asymptotic properties on nonstationary time series model such as the integrated time series. The in-

tegrated stochastic processes would explain some modern econometric phenomena better since the current

observation usually behaves as the cumulation of all past perturbation. Especially, when testing unit roots,

if null hypothesis holds, we have

Yt = Y0 +

t∑

k=1

Xk, (1.1)

where Xk = α + εk, {εk : k = 0, 1, 2, · · ·} is a sequence of i.i.d random variables. Obviously, the sequence

{Yt; t = 0, 1, 2, · · ·} is not stationary. One common method to deal with the nonstationary time series is to

use a differenced model (e.g. ∆Yt = Xt). The difference transformation is practical in research. This model

can be utilized in modern econometric analysis such as logarithmic stock price random walk and annual

capital GDP. For further motivation and study on asymptotic properties, see Park and Phillips (2001).

Recently, some authors have studied the continuous case of model (1.1) since many financial models are

continuous-time. Naturally, model (1.1) can be extended to

Yt = Y0 +

∫ t

0
Xsds. (1.2)

The differenced-data model of (1.2) is dYt = Xtdt. Considering stock price index at some time, Xs represents

stock price index; Yt indicates the cumulation of stock price index. In model (1.2), Xs is usually assumed

as a stationary continuous-time process such as diffusion process. The model accommodates nonstationary

integrated stochastic processes that can be made stationary by differencing.
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Many popular models in financial time series involve continuous-time diffusion processes as solutions to

stochastic differential equations below, such as option prices, interest rates, exchange rates and inter alia,

see Baxter and Rennie (1996). A diffusion process Xt is represented by the following stochastic differential

equation:

dXt = µ(Xt)dt+ σ(Xt)dWt, (1.3)

where Wt is a standard Brownian motion, µ(·) and σ(·) are the infinitesimal conditional drift and variation

respectively. Based on the discret-time observations {Xi∆n ; i = 1, 2, · · ·}, some authors have studied the

statistical inference for the coefficients, e.g., Bandi and Phillips (2003), Fan and Zhang (2003) and Xu

(2009, 2010).

However, all sample functions of a diffusion process driven by a Brownian motion are of unbounded vari-

ation and nowhere differentiable. So it is difficult to model integrated and differentiated diffusion processes

which are useful in empirical finance. According to (1.2) and (1.3), Nicolau (2007) discussed a second-order

diffusion process satisfying the following second-order stochastic differential equation:
{

dYt = Xtdt,

dXt = µ(Xt)dt+ σ(Xt)dWt,
(1.4)

where Wt is a standard Brownian motion and Xt is (by hypothesis) a stationary process. We observe that

the model (1.4) can be written as a second-order stochastic differential equation: d(dYt/dt) = µ(Xt)dt +

σ(Xt)dWt. The second-order diffusion process overcomes the difficulties associated with the nondifferentia-

bility of a Brownian motion.

For model (1.4), the estimators for µ(x) and σ2(x) have been considered based on discrete-time observa-

tions. Nicolau (2007) considered the Nadaraya-Watson estimators for µ(x) and σ2(x); Wang and Lin (2011)

presented local linear estimators for these unknown quantities, Wang; Zhang and Wang (2011) studied the

empirical likelihood inference for them.

In fact, in many economic models the path of Xt is not continuous, so besides µ(x), σ2(x) we need

some coefficients to characterize the jump, for example, jump measure, intensity measure and conditional

impact of a jump. Compared with estimators for model (1.4), we should estimate various coefficients such as

µ(x), σ(x) and c(x, z) for the following second-order jump-diffusion model based on discrete high-frequent

observations, that is, considering the model
{

dYt = Xtdt,

dXt = µ(Xt−)dt+ σ(Xt−)dWt +
∫
E
c(Xt−, z)r(ω, dt, dz),

(1.5)

where E = R \ {0},Wt is a Wiener process, r(ω, dt, dz) = (p − q)(dt, dz), p(dt, dz) is a time-homogeneous

Poisson random measure on R+ × R independent of Wt, and q(dt, dz) is its intensity measure, that is,

E[p(dt, dz)] = q(dt, dz) = f(z)dzdt, f(z) is a Lévy density.

Recently, many literature have been involved in the research on the following popular jump-diffusion

model:

dXt = µ(Xt−)dt+ σ(Xt−)dWt +

∫

E

c(Xt−, z)r(ω, dt, dz), (1.6)

in the sense that this model can accommodate impact of sudden and large shocks to financial markets,

such as macroeconomic announcements and a dramatic interest rate cut by the Federal Reserve, see Bakshi

(1997), Duffie (2000), Eraker, Johannes and Polson (2003) Johannes (2004).

The statistical inferences for the coefficients of the model are based on the following relations:

lim
∆→0

E[
Xt+∆ −Xt

∆
|Xt = x] = µ(x), (1.7)



lim
∆→0

E[
(Xt+∆ −Xt)

2

∆
|Xt = x] = σ2(x) +

∫

E

c(x, z)f(z)dz. (1.8)

Based on these infinitesimal moments of the jump-diffusion model and discrete-time observations {Xi∆n ; i =

1, 2, · · ·}, many literature have been involved in this field to estimate the coefficients from different aspects,

see Bandi and Nguyen (2003), Lin and Wang (2010). Mancini (2004, 2009) with Renò (2010) introduced

threshold estimation for the coefficients of the model (1.6). Parametric estimations of the coefficients for the

model (1.6) have been presented by Shimizu (2006).

Similarly, we should consider model (1.5) to overcome the nondifferentiability of a Brownian motion and

to model integrated and differentiated jump-diffusion processes for stock prices, compounded return or log

return of an asset. Estimation of the coefficients in model (1.5) gives rise to new challenges for two main

reasons. On the one hand, different from model (1.3) or model (1.6), although we usually get observations

{Yi∆n ; i = 1, 2, · · ·}, which are the cumulation of all the past perturbations, we cannot obtain the value of

X at time ti from Yti = Y0 +
∫ ti
0 Xsds in a fixed sample intervals. In addition, estimation of the coefficients

cannot in principle be based on the observations {Yi∆n ; i = 1, 2, · · ·} because conditional distribution of

Y is generally unknown even if that of X is known. On the other hand, for model (1.5) whether we have

the similar relations as (1.7) and (1.8) which are the basic ones to establish Nadaraya-Watson estimators?

Fortunately these are settled satisfactorily.

We usually obtain discrete-time observations {Yi∆n ; i = 1, 2, · · ·} rather than {Xi∆n ; i = 1, 2, · · ·} for

model (1.5). As Nicolau (2007) showed, with discrete-time observations {Yi∆n ; i = 1, 2, · · ·} and given that

Yi∆n − Y(i−1)∆n
=

∫ i∆n

0
Xudu−

∫ (i−1)∆n

0
Xudu =

∫ i∆n

(i−1)∆n

Xudu,

we can get an approximation value of X at instant ti = i∆n by

X̃i∆n =
Yi∆n − Y(i−1)∆n

∆n
, (1.9)

which is close to the value of X at t = i∆n or t = (i−1)∆n with ∆n tends to zero. Our estimation procedures

should be based on the samples {X̃i∆n ; i = 0, 1, 2, · · ·}.
We can also build the similar relations for model (1.5) as (1.7) and (1.8) seen in Remark 3.1, that is

E[
X̃(i+1)∆n

− X̃i∆n

∆n
|F(i−1)∆n

] = µ(X(i−1)∆n
) +Op(∆n), (1.10)

E[
(X̃(i+1)∆n

− X̃i∆n)
2

∆n
|F(i−1)∆n

] =
2

3
σ2(X(i−1)∆n

) +
2

3

∫

E

c2(X(i−1)∆n
, z)f(z)dz +Op(∆n). (1.11)

where Ft = σ{Xs, s ≤ t}. Based on these relations and (1.9), we can establish Nadaraya-Watson estimators

for µ(x) and σ2(x) +
∫
E
c2(x, z)f(z)dz, and further, under appropriate conditions we verify the consistency

and asymptotic normality for these proposed estimators.

The remainder of this paper is organized as follows. In Section 2, ordinary assumptions and N-W es-

timators for model (1.5) are introduced. In Section 3, we present some useful preliminary results. In this

section, consistency and asymptotic normality of the estimators in our paper are given. The proofs will be

collected in Section 4. We give the brief calculation for the main equations (3.3) and (3.4) in Appendix.



2 Nadaraya-Watson Estimators and Assumptions

We briefly discuss the Nadaraya-Watson estimators for the coefficients in model (1.5) based on {X̃i∆n ; i =

0, 1, 2, · · ·}. We firstly construct Nadaraya-Watson estimators for them based on equations (1.10) and (1.11).

The Nadaraya-Watson estimators for µ(x) andM(x) = σ2(x)+
∫
E
c(x, z)f(z)dz are solutions to the following

optimal problem:

argmin
µ(x)

Σn
i=1

(X̃(i+1)∆n
− X̃i∆n

∆n
− µ(x)

)2
K
(x− X̃(i−1)∆n

hn

)
, (2.1)

arg min
M(x)

Σn
i=1

( 3
2(X̃(i+1)∆n

− X̃i∆n)
2

∆n
−M(x)

)2
K
(x− X̃(i−1)∆n

hn

)
. (2.2)

The solutions to (2.1) and (2.2) are

ân(x) =
An(x)

p̂n(x)
, b̂n(x) =

Bn(x)

p̂n(x)
(2.3)

whereAn(x) =
1

nhn

∑n
i=1 K

(
x−X̃(i−1)∆n

hn

)
(X̃(i+1)∆n−X̃i∆n)

∆n
, Bn(x) =

1
nhn

∑n
i=1K

(
x−X̃(i−1)∆n

hn

) 3
2
(X̃(i+1)∆n−X̃i∆n)

2

∆n
,

p̂n(x) =
1

nhn

∑n
i=1 K

(
x−X̃(i−1)∆n

hn

)
.

The paper is devoted to study the following estimators p̂n(x), ân(x), b̂n(x) for p(x), µ(x) and σ2(x) +∫
E
c2(x, z)f(z)dz respectively, where p(x) be the stationary probability measure for Xt. There are some

differences between the estimators given in this paper for model (1.6) and the ones in Bandi and Nguyen

(2003). Take the estimator for µ(x) as an example. In Bandi and Nguyen (2003), if the observations are

based on {X̃i∆n ; i = 0, 1, 2, · · ·}, the Nadaraya-Watson estimator for µ(x) should be â′

n(x) =
A

′

n(x)
p̂n(x)

where

A
′

n(x) = 1
nhn

∑n
i=1 K

(
x−X̃(i−1)∆n

hn

)
(X̃i∆n−X̃(i−1)∆n )

∆n
. We easily see that

(X̃(i+1)∆n−X̃i∆n)

∆n
and

(X̃i∆n−X̃(i−1)∆n )

∆n

in An(x) and A
′

n(x) are different. The model considered in this article is more complex than the one in Bandi

and Nguyen (2003). The consistence and asymptotic normality of the estimators may be not obtained by

the method exploited for stationary case in Bandi and Nguyen (2003), but we can get them by means of the

method introduced by Nicolau (2007). This is due to the sense that we need to compute some meaningful

conditional expect values of the estimator in the proof which may be not obtained if An(x) is the same as

A
′

n(x). In addition, there are some contacts between the estimators here and in Bandi and Nguyen (2003).

X̃i∆n and X̃(i−1)∆n
are close to the value of X(i−1)∆n

, which intuitively to a certain extent guarantees

the desired result in the article reasonably from the result in Bandi and Nguyen (2003) (rigorous proof

theoretically seen in the following Lemmas and Theorems).

We now present some assumptions used in the paper. In what follows, let D = (l, u) with l ≥ −∞ and

u ≤ ∞ denote the admissible range of the process Xt.

Assumption 1.

(i) (Local Lipschitz continuity) For each n ∈ N, there exist a constant Ln and a function ζn : E → R+

with
∫
E
ζ2n(z)f(z)dz < ∞ such that, for any |x| ≤ n, |y| ≤ n,

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ Ln|x− y|, |c(x, z) − c(y, z)| ≤ ζn(z)|x− y|.

(ii) (Linear growthness) For each n ∈ N, there is ζn as above, such that for all x ∈ R,

|c(x, z)| ≤ ζn(z)(1 + |x|).

Remark 2.1. Assumption 1 guarantees the existence and uniqueness of a solution to Xt in Eq.(1.5) on

the probability space (Ω,F , P ), see Jacod and Shiryayev (1987).



Assumption 2. The process Xt is ergodic and stationary with a finite invariant measure φ(x).

Remark 2.2. The finite invariant measure implies that the process Xt is positive Harris recurrent with

the stationary probability measure p(x) = φ(x)
φ(D) , ∀x ∈ D . The hypothesis that Xt is a stationary process

is obviously a plausible assumption because for major integrated time series data, a simple differentiation

generally assures stationarity.

Assumption 3. The process Xt is ρ−mixing with
∑

i≥1 ρ(i∆n) < ∞.

Remark 2.3. We notice that the process {X̃i∆n; i = 1, 2, · · ·} is stationary and ρ−mixing with the

same mixing size. Similarly as Ditlevsen and Sørensen (2004) pointed out, by stationarity, the law of the

process Xt is invariant under time translations, which easily implies that {X̃i∆n; i = 1, 2, · · ·} is a stationary

process. Since the σ-algebra generated by {X̃i∆n , i = 1, · · ·, n} is contained in the σ-algebra generated by

{Xu, 0 ≤ u ≤ n∆n}, and the σ-algebra generated by {X̃i∆n , i = n + 1, · · ·} is contained in the σ-algebra

generated by {Xu, u ≥ n∆n}, the process X̃i∆n is ρ−mixing with the the same mixing size. For instance, the

ρ−mixing process Xt with exponentially decreasing mixing coefficients satisfies the condition, see Hansen

and Scheinkman (1995), Chen, Hansen and Carrasco (2010).

Assumption 4. The kernel K(·) : R → R
+ is a positive, symmetric and continuously differentiable

function satisfying
∫
K(u)du = 1,

∫
uK(u) = 0 and K2 :=

∫
K2(u)du < ∞.

Assumption 5. For any 2 ≤ i ≤ n, limh→0E
[

1
h
|K ′

(ξn,i)|α
]
< ∞ where α = 2, 4 or 8 and ξn,i =

θ(
x−X(i−1)∆n

h
) + (1− θ)(

x−X̃(i−1)∆n

h
), 0 ≤ θ ≤ 1.

Remark 2.4. As Nicolau (2007) pointed out this assumption is generally satisfied under very weak

conditions. For instance, with a Gaussian kernel and a Cauchy stationary density (which has heavy tails)

we still have limh→0E
[
( 1
h
)|K ′

(X
h
)|8

]
< ∞. Notice that the expectation with respect to the distribution ξn,i

depends on the stationary densities of X and X̃ because ξn,i is a convex linear combination of X and X̃.

Assumption 6. For all p ≥ 1, supt≥0 E[|Xt|p] < ∞, and
∫
E
|z|pf(z)dz < ∞.

Remark 2.5. This assumption guarantees that Lemma 3.1 can be used properly throughout the article.

IfXt is a Lévy process with bounded jumps (i.e., supt |∆Xt| ≤ C < ∞ almost surely, where C is a nonrandom

constant), then E{|Xn
t |} < ∞ ∀n, that is, Xt has bounded moments of all orders. This condition is widely

used in the estimation of an ergodic diffusion or jump-diffusion from discrete observations, see Florens-

Zmirou (1989), Kessler (1997), Shimizu and Yoshida (2006).

Assumption 7. ∆n → 0, hn = ∆
2
11
n , (n∆n

hn
)(∆n log(

1
∆n

))
1
2 → 0, hnn∆n → ∞, as n → ∞.

3 Some Technical Lemmas and Asymptotic Results

We lay out some notations. For x = (x1, ···, xd), ∂xj
:= ∂

∂xj
, ∂2

xj
:= ∂2

∂x2
j

, ∂2
xixj

:= ∂2

∂xi∂xj
, ∂x := (∂x1 , ···, ∂xd)∗,

and ∂2
xf(x) =

(
∂2
xixj

)
1≤i,j≤d

, where ∗ stands for the transpose.

Lemma 3.1. (Yasutaka Shimizu, 2006) Let Z be a d-dimensional solution-process to the stochastic

differential equation

Zt = Z0 +

∫ t

0
µ(Zs−)ds+

∫ t

0
σ(Zs−)dWs +

∫ t

0

∫

E

c(Zs−, z)r(ω, dt, dz),

where Z0 is a random variable, E = R
d \ {0}, µ(x), c(x, z) are d-dimensional vectors defined on R

d,Rd × E

respectively, σ(x) is a d×d diagnonal matrix defined on R
d, and Wt is a d-dimensional vector of independent



Brownian motions. Let g be a C2(l+1)-class function whose derivatives up to 2(l + 1)th are of polynomial

growth. Assume that the coefficient µ(x), σ(x), and c(x, z) are C2l-class function whose derivatives with

respective to x up to 2lth are of polynomial growth. Under Assumption 6, the following expansion holds

E[g(Zt)|Fs] =
l∑

j=0

Ljg(Zs)
∆j

n

j!
+R, (3.1)

for t > s and ∆n = t−s, whereR =
∫∆n

0

∫ u1

0 . . .
∫ ul

0 E[Ll+1g(Zs+ul+1
)|Fs]du1 . . . dul+1 is a stochastic function

of order ∆l+1
n , Lg(x) = ∂∗

xg(x)µ(x)+
1
2tr[∂

2
xg(x)σ(x)σ

∗(x)]+
∫
E
{g(x+ c(x, z))− g(x)−∂∗

xg(x)c(x, z)}f(z)dz.

Remark 3.1. Consider a particularly important model:

{
dYt = Xtdt,

dXt = µ(Xt−)dt+ σ(Xt−)dWt +
∫
E
c(Xt−, z)r(w, dt, dz).

As d = 2, we have

Lg(x, y) = x(∂g/∂y) + µ(x)(∂g/∂x) + 1
2σ

2(x)(∂2g/∂x2)

+
∫
E
{g(x+ c(x, z), y) − g(x, y)− ∂g

∂x
· c(x, z)}f(z)dz.

(3.2)

Based on the second-order differential operator (3.2), we can calculate many mathematical expectations

involving X̃i∆n , for instance (see Appendix for details):

E[
X̃(i+1)∆n

− X̃i∆n

∆n
|F(i−1)∆n

] = µ(X(i−1)∆n
) +Op(∆n), (3.3)

E[
(X̃(i+1)∆n

− X̃i∆n)
2

∆n
|F(i−1)∆n

] =
2

3
σ2(X(i−1)∆n

) +
2

3

∫

E

c2(X(i−1)∆n
, z)f(z)dz +Op(∆n). (3.4)

In fact, the above equations provide the basis for estimators (2.2) and (2.3).

Lemma 3.2. (Bandi and Nguyen, 2003) Assume that Assumptions 1, 2, 4, 6, 7 hold, let

p̂0n(x) =
1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)
, â0n(x) =

A0
n(x)

p̂0n(x)
, b̂0n(x) =

B0
n(x)

p̂0n(x)
(3.5)

where

A0
n(x) =

1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)(Xi∆n −X(i−1)∆n
)

∆n
,

B0
n(x) =

1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)(Xi∆n −X(i−1)∆n
)2

∆n
.

We have

p̂0n(x)
p→ p(x), â0n(x)

p→ µ(x), b̂0n(x)
p→ σ2(x) +

∫

E

c2(x, z)f(z)dz,

√
hnn∆n(â

0
n(x)− µ(x))

d→ N
(
0,K2

σ2(x) +
∫
E
c2(x, z)f(z)dz

p(x)

)
,

√
hnn∆n(b̂

0
n(x)− (σ2(x) +

∫

E

c2(x, z)f(z)dz))
d→ N

(
0,K2

∫
E
c4(x, z)f(z)dz

p(x)

)
.



Lemma 3.3. Assumptions 1-3 and 5-7 lead to the following results,

(i) 1
nhn

∑n
i=1K

(
x−X̃(i−1)∆n

hn

)
− 1

nhn

∑n
i=1 K

(
x−X(i−1)∆n

hn

)
p→ 0,

(ii) 1
nhn

∑n
i=1K

(
x−X̃(i−1)∆n

hn

)
(X̃(i+1)∆n−X̃i∆n )

∆n
− 1

nhn

∑n
i=1 K

(
x−X(i−1)∆n

hn

)
(X̃(i+1)∆n−X̃i∆n)

∆n

p→ 0,

(iii) 1
nhn

∑n
i=1K

(
x−X̃(i−1)∆n

hn

) 3
2
(X̃(i+1)∆n−X̃i∆n )

2

∆n
− 1

nhn

∑n
i=1 K

(
x−X(i−1)∆n

hn

) 3
2
(X̃(i+1)∆n−X̃i∆n )

2

∆n

p→ 0.

Theorem 3.1. If Assumptions 1 - 7 hold, then

p̂n(x) :=
1

nhn

n∑

i=1

K
(x− X̃(i−1)∆n

hn

)
p→ p(x).

Theorem 3.2.

(i) Under the Assumptions 1 - 7, we have

ân(x) =
An(x)

p̂n(x)

p→ µ(x).

(ii) Under the Assumptions 1 - 7 and hnn∆
3
n → 0, we have

√
hnn∆n

(
ân(x)− µ(x)

)
d→ N

(
0,K2

σ2(x) +
∫
E
c2(x, z)f(z)dz

p(x)

)
.

Theorem 3.3.

(i) Under the Assumptions 1 - 7, we have

b̂n(x) =
Bn(x)

p̂n(x)

p→ σ2(x) +

∫

E

c2(x, z)f(z)dz.

(ii) Under the assumptions 1 - 7 and hnn∆
3
n → 0, we have

√
hnn∆n

(
b̂n(x)− (σ2(x) +

∫

E

c2(x, z)f(z)dz)
)

d→ N
(
0,K2

∫
E
c4(x, z)f(z)dz

p(x)

)
.

Remark 3.2. Contrary to the second-order diffusion model without jumps (João Nicolau, 2007), the

second infinitesimal moment estimator has a rate of convergence that is the same as the rate of convergence

of the first infinitesimal moment estimator. Apparently, this is due to the presence of discontinuous breaks

that have an equal impact on all the functional estimates.

4 Proofs.

Proof of Lemma 3.3.

Let ε1,n = p̂n(x)− p̂0n(x) =
1

nhn

∑n
i=1 K

(
x−X̃(i−1)∆n

hn

)
− 1

nhn

∑n
i=1K

(
x−X(i−1)∆n

hn

)
.

By the mean-value theorem, stationarity and Hölder’s inequality, we obtain:

E[|ε1,n|] ≤ E[
1

nhn
Σn
i=1|K

′

(ξn,i)
X̃(i−1)∆n

−X(i−1)∆n

hn
|]

= E[
1

hn
|K ′

(ξn,2)
X̃∆n −X∆n

hn
|]



≤
(
E[

1

hn
K

′2
(ξn,2)]

) 1
2
(
E[

(X̃∆n −X∆n)
2

h3n
]
) 1

2
,

where ξn,2 = θ(
x−X∆n

h
) + (1− θ)(

x−X̃∆n

h
) 0 ≤ θ ≤ 1.

Using Lemma 3.1 with d = 2, we get

E[
(X̃∆n −X∆n)

2

h3n
] =

∆n

3h3n

(
E[σ2(X0)] + E[

∫

E

c2(X0, z)f(z)dz] +O(∆n)
)
→ 0

from Assumptions 5 - 7, thus E[|ε1,n|] → 0 . Lemma 3.3 (i) follows from Chebyshev’s inequality.

Now we prove (ii), write

ε2,n = An(x)−A0
n(x) =

1

nhn

n∑

i=1

K
(x− X̃(i−1)∆n

hn

)(X̃(i+1)∆n
− X̃i∆n)

∆n

− 1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

) (X̃(i+1)∆n
− X̃i∆n)

∆n
.

We have

E[ε2,n] = E
[ 1

nhn

n∑

i=1

(
K
(x− X̃(i−1)∆n

hn

)
−K

(x−X(i−1)∆n

hn

))
E
[X̃(i+1)∆n

− X̃i∆n

∆n

∣∣∣F(i−1)∆n
]
]]

= E
[ 1

nhn

n∑

i=1

(
K
(x− X̃(i−1)∆n

hn

)
−K

(x−X(i−1)∆n

hn

))(
µ(X(i−1)∆n

) +Op(∆n)
)]

= E
[ 1

hn
K

′

(ξn,2)
X̃∆n −X∆n

hn

(
µ(X∆n) +Op(∆n)

)]

by (3.3), the mean-value theorem and stationarity. Hence

∣∣∣E[ε2,n]
∣∣∣ ≤ E

[ 1

hn
|K ′

(ξn,2)|
|X̃∆n −X∆n |

hn

∣∣µ(X∆n) +Op(∆n)
∣∣
]

≤ 1

h2n

(
E[K

′4
(ξn,2)]

) 1
4
(
E[

∣∣µ(X∆n) +Op(∆n)
∣∣4]

) 1
4
(
E[(X̃∆n −X∆n)

2]
) 1

2

=
(E[σ2(X0)] +E[

∫
E
c2(X0, z)f(z)dz]

3
+O(∆n)

) 1
2
(∆

1
2
n

h
7
4
n

)

·
(
E[

1

hn
K

′4
(ξn,2)]

) 1
4
(
E[|µ(X0)|4] +O(∆n)

) 1
4 → 0,

by Hölder inequality, Lemma 3.1 and Assumption 5. So E[ε2,n] → 0.

Moreover

V ar[ε2,n] =
1

n∆nhn
V ar[

1√
n

n∑

i=1

1√
hn

K
′

(ξn,i)
X̃(i−1)∆n

−X(i−1)∆n

hn

√
∆n

X̃(i+1)∆n
− X̃i∆n

∆n
]

=:
1

n∆nhn
V ar[

1√
n

n∑

i=1

fi].



We find V ar[ 1√
n

∑n
i=1 fi] = 1

n

∑n
i=1 V ar[fi] + εn where εn represents the sum of 2

n

∑n−1
j=1

∑n
i=j+1 terms

involving the autovariances. Under Assumptions 2 and 3, the series ε∞ is absolutely convergent, and one

easily obtains V ar[ 1√
n

∑n
i=1 fi] < ∞ if E[f2

i ] < ∞.

Using Lemma 3.1 with d = 2, simple but tedious calculations enable us to get

E[(X̃(i−1)∆n
−X(i−1)∆n

)4|F(i−2)∆n
] =

∆n

∫
E
c4(X(i−2)∆n

, z)f(z)dz

3
+O(∆2

n).

Now we calculate E[f2
i ]:

E[f2
i ] = E

[ 1

hn
K

′2
(ξn,i)

(X̃(i−1)∆n
−X(i−1)∆n

)2

h2n

(X̃(i+1)∆n
− X̃i∆n)

2

∆n

]

= E
[ 1

hn
K

′2
(ξn,i)

(X̃(i−1)∆n
−X(i−1)∆n

)2

h2n

(2
3
σ2(X(i−1)∆n

) +Op(∆n)
)]

≤ C

h3n

(
E[K

′8
(ξn,i)]

) 1
4
(
E[(X̃(i−1)∆n

−X(i−1)∆n
)4]

) 1
2
(
E[(σ2(X(i−1)∆n

) +Op(∆n))
4]
) 1

4

= C
∆

1
2
n

h
11
4
n

(
E[

1

hn
K

′8
(ξn,i)]

) 1
4
(
E[σ8(X(i−1)∆n

)] +O(∆n)
) 1

4
< ∞

by (3.4), Hölder inequality and Assumptions 5 and 7.

In conclusion, V ar[ε2,n] =
1

n∆nhn
V ar[ 1√

n

∑n
i=1 fi] → 0 as n → ∞ by Assumption 7.

So Lemma 3.3 (ii) can be deduced from the above considerations.

Finally, write

ε3,n = Bn(x)−B0
n(x) =

1

nhn

n∑

i=1

K
(x− X̃(i−1)∆n

hn

)(X̃(i+1)∆n
− X̃i∆n)

2

∆n

− 1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)(X̃(i+1)∆n
− X̃i∆n)

2

∆n
.

Lemma 3.3 (iii) now follows:

E[|ε3,n|] ≤ E
[ 1

nhn

n∑

i=1

∣∣∣K
(x− X̃(i−1)∆n

hn

)
−K

(x−X(i−1)∆n

hn

)∣∣∣
(X̃(i+1)∆n

− X̃i∆n)
2

∆n

]

≤ CE
[ 1

hn
K

′

(ξn,2)
|X̃∆n −X∆n |

hn

(
σ2(X∆n) +Op(∆n)

)]

≤ C

h2n

(
E[K

′4
(ξn,2)]

) 1
4
(
E[(X̃∆n −X∆n)

2]
) 1

2
(
E[σ8(X∆n)] +O(∆n)

) 1
4

= C
∆

1
2
n

h
7
4
n

(
E[

1

hn
K

′4
(ξn,2)]

) 1
4
(
E[σ8(X∆n)] +O(∆n)

) 1
4 → 0,

which implies Lemma 3.3 (iii).

Proof of Theorem 3.1. One can easily prove Theorem 3.1 by Lemma 3.2 and Lemma 3.3 (i).

Proof of Theorem 3.2.

(i) From Theorem 3.1 we get p̂n(x)
p→ p(x), hence to prove

ân(x) =
An(x)

p̂n(x)

p→ µ(x)



it is sufficient to verify that

An(x)
p→ µ(x)p(x).

From Lemma 3.2. we obtain

A0
n(x)

p→ µ(x)p(x).

Now we prove An(x)−A0
n(x)

p→ 0. By Lemma 3.3 (ii) An(x)−A0
n(x) has the same limit in probability as

δ1,n(x) :=
1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)(X̃(i+1)∆n
− X̃i∆n)

∆n

− 1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)(Xi∆n −X(i−1)∆n
)

∆n

=
1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

)( (X̃(i+1)∆n
− X̃i∆n)

∆n
−

(Xi∆n −X(i−1)∆n
)

∆n

)
.

We now prove that δ1,n(x)
p→ 0. Using Assumptions 1, 2, 4, 6 and Lemma 3.1, we find

E[δ1,n(x)] = E
[ 1

hn
K
(x−X(i−1)∆n

hn

)((X̃(i+1)∆n
− X̃i∆n)

∆n
−

(Xi∆n −X(i−1)∆n
)

∆n

)]

= E
[ 1

hn
K
(x−X(i−1)∆n

hn

)
E
[
E
[((X̃(i+1)∆n

− X̃i∆n)

∆n
−

(Xi∆n −X(i−1)∆n
)

∆n

)∣∣∣Fi∆n

]∣∣∣F(i−1)∆n

]]

=
∆n

2
E
[ 1

hn
K
(x−X(i−1)∆n

hn

)(
µ(X(i−1)∆n

)µ
′

(X(i−1)∆n
) +

1

2
σ2(X(i−1)∆n

)µ
′′

(X(i−1)∆n
)

+

∫

E

{
µ(X(i−1)∆n

+ c(X(i−1)∆n
, z)) − µ(X(i−1)∆n

)− µ
′

(X(i−1)∆n
) · c(X(i−1)∆n

, z)
}
f(z)dz

)]

=
∆n

2

∫
1

hn
K
(x− u

hn

)(
µ(u)µ

′

(u) +
1

2
σ2(u)µ

′′

(u)

+

∫

E

{
µ(u+ c(u, z)) − µ(u)− µ

′

(u) · c(u, z)
}
f(z)dz

)
p(u)du

= O(∆n)

and

V ar[δ1,n(x)]

=
1

n∆nhn
V ar

[ 1√
n

n∑

i=1

1√
hn

K
(x−X(i−1)∆n

hn

)√
∆n

((X̃(i+1)∆n
− X̃i∆n)

∆n
−

(Xi∆n −X(i−1)∆n
)

∆n

)]

=:
1

n∆nhn
V ar

[ 1√
n

n∑

i=1

gi

]
.

We have V ar[ 1√
n

∑n
i=1 gi] =

1
n

∑n
i=1 V ar[gi] + εn where εn represents the sum of 2

n

∑n−1
j=1

∑n
i=j+1 terms

involving the autovariances. Under Assumptions 2 and 3, the series ε∞ is absolutely convergent, and one

easily obtains V ar[ 1√
n

∑n
i=1 gi] < ∞ if E[g2i ] < ∞. In fact

E[g2i ] = E
[ 1

hn
K2

(x−X(i−1)∆n

hn

)
∆n

((X̃(i+1)∆n
− X̃i∆n)

∆n
−

(Xi∆n −X(i−1)∆n
)

∆n

)2]

is finite because

E
[
∆n

((X̃(i+1)∆n
− X̃i∆n)

∆n
−

(Xi∆n −X(i−1)∆n
)

∆n

)2]
=

2

3

(
E[σ2(X0)] + E[

∫

E

c2(X0, z)f(z)dz]
)
+O(∆n)



by Lemma 3.1. In conclusion, V ar[δ1,n] =
1

n∆nhn
V ar[ 1√

n

∑n
i=1 gi] → 0 as n → ∞ by Assumption 7.

(ii) By Lemma 3.2,

U0
n(x) :=

√
hnn∆n(â

0
n(x)− µ(x))

d→ N
(
0,K2

σ2(x) +
∫
E
c2(x, z)f(z)dz

p(x)

)

and by the asymptotic equivalence theorem, it suffices to prove that

Un(x)− U0
n(x)

p→ 0

where Un(x) =
√
hnn∆n(ân(x)−µ(x)). From part (i) we know that Un(x)−U0

n(x) =
√
hnn∆n

(
δ1,n(x)
p̂n(x)

)
and

δ1,n(x)
p̂n(x)

= Op(∆n). Thus the assumption hnn∆
3
n → 0 leads to the result.

Proof of Theorem 3.3.

(i) From Theorem 3.1 we know p̂n(x)
p→ p(x), hence to prove

b̂n(x) =
Bn(x)

p̂n(x)

p→ σ2(x) +

∫

E

c2(x, z)f(z)dz

it is sufficient to verify that

Bn(x)
p→ (σ2(x) +

∫

E

c2(x, z)f(z)dz)p(x).

Following Lemma 3.2 under the conditions of the theorem we obtain

B0
n(x)

p→ (σ2(x) +

∫

E

c2(x, z)f(z)dz)p(x).

So, we only need to prove that

Bn(x)−B0
n(x)

p→ 0.

By Lemma 3.3 (iii) Bn(x)−B0
n(x) has the same limit in probability as

δ2,n(x) :=
1

nhn

n∑

i=1

K
(x−X(i−1)∆n

hn

) 3
2(X̃(i+1)∆n

− X̃i∆n)
2

∆n

− 1

nhn

n∑

i=1

K
(x−X(i−1)∆n
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)(Xi∆n −X(i−1)∆n
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1

nhn

n∑
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K
(x−X(i−1)∆n
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)( 3
2(X̃(i+1)∆n

− X̃i∆n)
2

∆n
−

(Xi∆n −X(i−1)∆n
)2

∆n

)
.

We now prove that δ2,n(x)
p→ 0. Let qi =

3
2
(X̃(i+1)∆n−X̃i∆n )

2

∆n
− (Xi∆n−X(i−1)∆n )

2

∆n
. By Lemma 3.1

E
[
E
[ 3
2(X̃(i+1)∆n

− X̃i∆n)
2

∆n

∣∣∣Fi∆n

]∣∣∣F(i−1)∆n

]
= σ2(X(i−1)∆n

) +

∫

E

c2(X(i−1)∆n
)f(z)dz +O(∆n),

E
[(Xi∆n −X(i−1)∆n

)2

∆n

∣∣∣F(i−1)∆n

]
= σ2(X(i−1)∆n

) +

∫

E

c2(X(i−1)∆n
)f(z)dz +O(∆n).

One has

E[qi] = E
[( 3

2(X̃(i+1)∆n
− X̃i∆n)

2

∆n
−

(Xi∆n −X(i−1)∆n
)2

∆n

)]
= O(∆n).

We easily verifies that E[δ2,n(x)] → 0 by stationarity and the above equations.



On the other hand,

V ar[δ2,n(x)]

=
1

n∆nhn
V ar

[ 1√
n

n∑

i=1

1√
hn

K
(x−X(i−1)∆n

hn

)√
∆n

( 3
2(X̃(i+1)∆n

− X̃i∆n)
2

∆n
−

(Xi∆n −X(i−1)∆n
)2

∆n
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=:
1

n∆nhn
V ar

[ 1√
n

n∑

i=1

si

]
.

Using the same arguments as in the proof of Theorem 3.2 (i), it is easy to conclude that the condition:

E
[
∆n

( 3
2(X̃(i+1)∆n

− X̃i∆n)
2

∆n
−

(Xi∆n −X(i−1)∆n
)2

∆n

)2]
= O(1)

assures V ar[δ2,n(x)] → 0.

(ii) By Lemma 3.2,

U0
n(x) :=

√
hnn∆n

(
b̂0n(x)− (σ2(x) +

∫

E

c2(x, z)f(z)dz)
) d→ N

(
0,K2

∫
E
c4(x, z)f(z)dz

p(x)

)

and by the asymptotic equivalence theorem, it suffices to prove that

Un(x)− U0
n(x)

p→ 0

where Un(x) =
√
hnn∆n(b̂n(x)− (σ2(x) +

∫
E
c2(x, z)f(z)dz)).

From part (i) we know that

Un(x)− U0
n(x) =

√
hnn∆n

(δ2,n(x)
p̂n(x)

)

and
δ2,n(x)

p̂n(x)
= Op(∆n).

Thus the assumption hnn∆
3
n → 0 leads to the result.

5 Appendix.

In this part, we give some details for equations (3.3) and (3.4).

E[
X̃(i+1)∆n

− X̃i∆n

∆n
|F(i−1)∆n

] = E[E[
(Y(i+1)∆n

− 2Yi∆n + Y(i−1)∆n
)

∆2
n

|Fi∆n ]|F(i−1)∆n
]. (5.1)

We firstly deal with the following part by equations (3.1) and (3.2):

E[
(Y(i+1)∆n−2Yi∆n+Y(i−1)∆n)

∆2
n

|Fi∆n ] =
1
∆2

n
(Y(i−1)∆n

− Yi∆n) +
1
∆n

Xi∆n + 1
2µ(Xi∆n) +Op(∆n). (5.2)

By (3.1) and (5.2), (5.1) can be written as:

E[ 1
∆2

n
(Y(i−1)∆n

−Yi∆n)|F(i−1)∆n
]+E[ 1

∆n
Xi∆n |F(i−1)∆n

]+ 1
2µ(X(i−1)∆n

)+Op(∆n). (5.3)

We have: E[ 1
∆2

n
(Y(i−1)∆n

−Yi∆n)|F(i−1)∆n
] = − 1

∆n
X(i−1)∆n

− 1
2µ(X(i−1)∆n

)+Op(∆n), (5.4)

E[ 1
∆n

Xi∆n |F(i−1)∆n
] = 1

∆n
X(i−1)∆n

+µ(X(i−1)∆n
)+Op(∆n). (5.5)

Finally we can deduce (3.3) by the above equations (5.1) - (5.5).

For (3.4), we know the following equations by the tower property of conditional expectation:



E[
(X̃(i+1)∆n

− X̃i∆n)
2

∆n
|F(i−1)∆n

] = E[E[
(Y(i+1)∆n

− 2Yi∆n + Y(i−1)∆n
)2

∆3
n

|Fi∆n ]|F(i−1)∆n
]. (5.6)

We deal with the inner part in (5.6) by equations (3.1) and (3.2):

E[
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− 2Yi∆n + Y(i−1)∆n
)2
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n

|Fi∆n ] =
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2
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(Y(i−1)∆n
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∆n
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i∆n
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E

c2(Xi∆n , z)f(z)dz] +Op(∆n)

:= A1 +A2 +A3 +A4

For E[A1|F(i−1)∆n
], denote g(x, y) = (y − Y(i−1)∆n

)2, we have:

Lg(x, y) = 2(y − Y(i−1)∆n
)x,

L2g(x, y) = 2x2 + 2µ(x)(y − Y(i−1)∆n
),

L3g(x, y) = 2µ(x)x+ µ(x)[4x+ 2µ
′
(x)(y − Y(i−1)∆n

)] + 1
2σ

2(x)[4 + 2µ
′′
(x)(y − Y(i−1)∆n
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+
∫
E

{
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′
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)]c(x, z)
}
f(z)dz.

By Lemma 3.1, we can obtain

E[A1|F(i−1)∆n
] =

X2
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∆n
+µ(X(i−1)∆n

)X(i−1)∆n
+

σ2(X(i−1)∆n )

3 + 1
3

∫
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By constructing functions g2(x, y) = (Y(i−1)∆n
− y)x, g3(x, y) = x2 + µ(x)(Y(i−1)∆n

− y), we can get:
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] = −2X2
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∆n
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E[A3|F(i−1)∆n
] =

X2
(i−1)∆n

∆n
+X(i−1)∆n
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We easily have:
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σ2(X(i−1)∆n )

3 + 1
3

∫
E
c2(X(i−1)∆n

, z)f(z)dz +Op(∆n).

Following the above calculation, we known (3.4) holds, that is:

E[
(X̃(i+1)∆n−X̃i∆n )

2

∆n
|F(i−1)∆n

] = 2
3σ

2(X(i−1)∆n
) + 2

3

∫
E
c2(X(i−1)∆n

, z)f(z)dz +Op(∆n).

Other equations calculated analogue with the above, we omit them here.
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