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Re-calibration of sample means.
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Abstract

We consider the problem of calibration and the GREG method as
suggested and studied in Deville and Sarndal (1992). We show that
a GREG type estimator is typically not minimal variance unbiased
estimator even asymptotically. We suggest a similar estimator which
is unbiased but is asymptotically with a minimal variance.

1 Introduction

The purpose of this note is to examine the popular calibration techniques,
suggested, e.g., in Deville and Sarndal (1992), or Sarndal et.al. (1992) Chap-
ter 6.4, those calibrated estimators are also known as GREG (the general
regression estimator). Our development and criterion are elementary. We
are interested in finding a minimum variance linear estimator.This leads
lead to a very similar to the GREG estimator in form estimator, but with
different constants. The difference between these two approaches as demon-
strated in what follows. This demonstration is the main purpose of this
note.

First we review the above mentioned calibration GREG approach, follow-
ing Deville and Sarndal (1992). Consider a finite population U = {1, ..., N},
and a sample S, S ⊂ U . Denote πi = P (S ∋ i), πij = P (S ⊇ {i, j}). Let
(yi,xi), be quantities associtaed with item i, i ∈ U , here yi is a scalar and xi

is a vector. The quantity of interest is tY =
∑

U yi, while xi are considered
as covariates. Suppose the total tX =

∑

U xi is known, w.l.o.g., tX = 0.
Then, it is suggested to utilize that information about the totals through
the following reasoning.
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Define t̂X =
∑

i∈S xi/πi ≡
∑

i∈S dixi and t̂Y =
∑

i∈S yi/πi ≡
∑

i∈S diyi,
where di = 1/πi. The above are the Horowitz-Thompson estimators, hence
we have Et̂y = tY and Et̂X = tX = 0. However, the value of t̂X is typically
different than 0, which is unfortunate.

It is suggested to find “better” or “improved” weights wi, i ∈ S (”better”
than di) and estimate ty by

∑

i∈S wiyi. The heuristic derivation of the
improved (random) weights wi, i ∈ S is the following. Given S denote by
w the vector of improved weights. Then w is defined as the solution of the
program:

min
ω

∑

i∈S

(ωi − di)
2/diqi

s.t.
∑

i∈S

ωixi = 0;
(1)

here, the qi are selected parameters, which, as a default, suggested to be
set to 1. The resulting estimator denoted t̂y|x, may be written as: t̂y|x =
∑

wkyk.
The solution of (2) is simple. Using a vector of Lagrange multipliers λ

we can find that

wi = (1 + λTqixi)di.

where λ is such that the constraint is satisfied, namely

λ = −
(

∑

i∈S

qidixix
T

i)
)−1∑

i∈S

dixi

≡ −H−1
q t̂X ,

where Hq =
∑

i∈S qidixixi. Hence

t̂y|x = t̂Y − β̂
T

t̂X ,

where β̂ = H−1
q

∑

i∈S diqiyixi.
In the following we consider weights qi ≡ 1, and denote then Hq simply

by H.
Note that for any (pre-determined) β, t̂Y −βTt̂X is an unbiased estimator

of tY . Hence we may look for the minimal variance estimator of this type.
One may restrict himself to a linear estimator (linear in Yi, i ∈ S). That
is, an estimator of the form

∑

wiyi, with a sequence of weight that could
simultaneously be used for getting an estimator for any functional. Still
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one may look for such weights that would ensure that the estimator has a
minimal variance. We will argue that the weights given by (2) are generally
speaking, far from being optimal.

Similar problem were discussed in Bickel, Klaassen, Ritov, and Wellenr
(1998) in the context of i.i.d. observations and semiparametric models. The
question there, was defined as the semiparametric efficient estimation of
parameter, when other parameters are known (e.g., estimation of the joint
distribution, when the marginal distributions are known). Our solution is
similar to the examples analyzed in that literature.

2 Minimum variance linear unbiased estimator

Consider estimators of tY which are linear in t̂Y and t̂X , i.e., of the form

T (β) = t̂Y − βTt̂X ,

where β is non-random. The above class is unbiased since Et̂X = 0. Con-
sider the estimator T (βo) in the above class with minimal variance. Clearly,

βo = Σ−1

t̂X
Σ
t̂X ,t̂Y

, (2)

where Σ
t̂X

and Σ
t̂X ,t̂Y

are the variance-covariance matrix of t̂X , and the

covariance vector of t̂X and t̂Y , respectively.
First we argue that β̂ is not a consistent estimator of β0. The following

example, while being extreme, is enlightening.

Example 2.1 Consider a population divided into two stratas of equal sizes.
For each i ∈ U there is a corresponding yi and xi, i.e., we have one dimen-
sional covariates. Suppose we randomly sample n units from each strata,
i.e., a total of M = 2n where πi ≡ M/N .

Assume the mean of xi in stratum 1 is -1 and their mean in stratum 2
is 1. The variance of xi within each stratum is σ2. Now assume in stratum
1, yi ≡ −1, while in stratum 2, yi ≡ 1. Therefore, Var(t̂Y ) = 0, and hence
βo = 0. In fact, the optimal estimator in this case is simply t̂Y ≡ 0, on

the other hand, β̂ = H−1
∑

i∈S diyixi
p

−→ (1 + σ2)−1. Asymptotically (as

n → ∞ ) the GREG estimator T (β̂) ≈ −(1+σ2)−1t̂X has therefor variance
of order N2/n, while the optimal estimator for this case is exact with zero
variance.

The difference between βo and β̂ would be large, when there is more
than a scale difference between the second moments of t̂Y , t̂X and of those
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of Y,X. This precludes the simple random sample, but is typical for other
sampling scheme. The following example is less extreme than the first one,
but describes a practical situation.

Example 2.2 Suppose we sample clusters, the units in the sample are in-
dexed by j and k, where all units in cluster j, refer to the same central value
sj, and satisfy xjk = sj + εjk and yjk = sj + γνjk, where the correlation
between εjk and νjk is 0. Suppose that K units are sampled in each cluster.
It is clear that if the number of clusters is large, then with obvious notation:
βo = Σs/(Σs +Σε/K) while β̂

p
−→ Σs/(Σs +Σε). In the simple case where

Σs = Σε = Σν , if K = 5 then the estimator with β0 would have a variance
smaller by approximately 25% than the variance of the estimator using β̂.
The difference is approximately 50% when K = 10.

In order to estimate the Σ
t̂X

and Σt̂Y ,̂tX
, we may use the classical vari-

ance estimators for Horovitz-Thompson estimator, see, e.g., Cochran (1977)
or Sharon (1999). Those estimators are typically given in the literature for
one dimensional variance rather than to a covariance matrix, however the
same reasoning applies. Since tX = 0,

Σt̂Y ,̂tX
= E

∑

i,j∈S

1

πiπj
yixj

=
∑

i,j∈U

πij
πiπj

yixj

=
∑

i,j∈U

( πij
πiπj

− c
)

yixj , ∀c.

Similarly,

Σt̂X
=

∑

i,j∈U

( πij
πiπj

− c
)

xix
T

j, ∀c.

Hence, the following are unbiased estimators:

Σ̂t̂X ,t̂Y
=

∑

i,j∈S

1

πij

( πij
πiπj

− c
)

yixj , ∀c.

Σ̂t̂X
=

∑

i,j∈S

1

πij

( πij
πiπj

− c
)

xix
T

j, ∀c.
(3)

We assume that we consider a sequence of populations and designs such
that the estimators in (3) are consistent. Typically, taking c = 1 in (3),
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would suffice to make most of the terms of lower order than the diagonal.
In a simple random sample without replacement, c = (n − 1)N/n(N − 1)
leaves only the diagonal.

Theorem 2.1 Let β̂o = Σ̂−1

t̂X
Σ̂t̂Y ,t̂X

, where the terms in the RHS are given

by (3) with a given c. Then

T (β̂o) =
∑

i∈S

wiyi,

where

wi =
1

πi
− t̂TXΣ̂

−1

t̂X

∑

j∈S

1

πij

( πij
πiπj

− c
)

xj, i ∈ S.

Thus the weights are a function of xi, πi, πij, i, j ∈ S only. In particular
∑

i∈S wixi = 0.

3 Examining β̂ under linear model assumptions.

In this section we will examine the rational in the estimator β̂ under the
convenient and (too) often assumed super-population model under which
Yk = βxk + ǫk, where Eǫk = 0 and for simplicity assume that ǫk, k ∈ U
have equal variance.

Under this model it is easy to check that ΣXY = βΣXX , and ΣtX ,tY =

βΣtX
. Hence β̂ is a possible estimator of βo = β. However, if this model

is assumed, it is still not clear why β̂ should be used. We have here a
standard regression problem. Elementary regression theory (namely the
Gauss-Markov Theorem) implies that the optimal estimator is not β̂, but
the standard un-weighted linear regression of Y1, . . . , Yn on x1, . . . ,xn.

It might be argued that in fact we are taking the linear model super-
population assumption with a grain of salt, and thus we are using the esti-
mator for

β = argmin
b

∑

i∈U

(yi − bTx)2, (4)

which is defined under no linear model assumptions. However, since in this
case we have no interest in that population parameter per se, but just in a
tool for construction a good estimator for tY , than βo should be our target.

To summarize. If we are interested in the super-population parameter,
than β̂ is not efficient, and if we are interested in good estimator of tY , than
β̂ is not consistent under complex sampling schemes.
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4 A partial knowledge of tX

In many cases tX is not really known. However, it might be that there is an
additional independent sample with information about tX but not about tY .
Thus we have three unbiased estimators t̂1Y , t̂

1
X based on one sample, and

t̂2X based on another independent sample. The best estimator of tY would
be based on these three. Following the same argument as before we should
consider estimator of the form

t̂1Y − βT(t̂1X − t̂2X).

Note that this estimator yields an unbiased estimate of tY for any β. The
optimal value, however, is given by

βo2 = −
(

Σ
t̂1
X

+Σ
t2
X

)−1
Σ
t̂1
X
,t̂1

Y

.

Note, that if t̂2X is based on the all universe U , then Σ
t̂2
X

= 0, and βo2 = βo.

Even more generally, we can consider a situation in which x is measured
for all units in the a super sample S2, S1 ⊆ S2 ⊆ U , while the y values
are measured only for units in the smaller sample S1. For example, y is
measured only for one unit in a cluster, while the x is measured for all units.
Let δ̂X = t1X − t2X . It may be natural to assume that δ̂X is correlated with

t̂Y while having a mean 0. We consider the natural extension t̂1Y − βT

o3δ̂X ,
with βo3 = −Σ−1

δ̂X
Σ
δ̂X ,t̂1

Y

.

Example 4.1 Consider the super-population model in which it is assumed
that yj,k = βxj,k + εj,k, j = 1, . . . ,M , k = 1, . . . ,K where εj,k are i.i.d.,
independent of xj,k, while xj′,k′ and xj,k are independent if j 6= j′, and
have correlation ρ if j = j′ and k 6= k′. Let Var(xj,k) = σ2. Consider the
sample C ⊂ {1, . . . ,M} of n clusters. Suppose that for each j ∈ C, xj,k,
k = 1, . . . ,K are obtained, while only yj,1 is measured, assume also that
M ≫ n. The universe size is N = MK. Hence, we assume for simplicity a
simple random sample (with replacement) of clusters. Then

δ̂X =
N

n

∑

j∈C

(

xj,1 −K−1

K
∑

k=1

xj,k
)

It is easy to verify

Var(t̂1Y ) =
N2

n
β2σ2
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Var(δ̂X) =
N2

n

K − 1

K
(1− ρ)σ2

cov(δ̂X , t̂1Y ) =
N2

n

K − 1

K
(1− ρ)βσ2.

Hence

Var(t̂2Y − βo3δ̂X)

Var(t̂2Y )
= 1−

K − 1

K
(1− ρ).

The efficiency of the scheme increases as K increases and ρ decreases. Note
that the case of a simple random sample of units in which the y value is
measured only for a small random sub-sample, corresponds to ρ = 0.
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