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Abstract

Estimation of finite mixture models when the mixing distribution support is
unknown is an important and challenging problem. In this paper, a new approach
is given based on the recently proposed predictive recursion marginal likelihood
(PRML) method. By taking a sufficiently fine grid as a set of candidate support
points, one may treat the support itself as an unknown parameter to be estimated.
The PRML approach asymptotically integrates out the mixing distribution itself,
leaving an approximate marginal likelihood for the support, which can be used for
estimation. We employ a computationally efficient version of simulated anneal-
ing for the large-scale combinatorial optimization problem. Theory is given which
shows that the PRML estimate will asymptotically identify the best mixture model
supported on a subset of the candidate grid, where “best” is measured with respect
to the Kullback–Leibler divergence on the mixture scale. Real and simulated data
examples show that the PRML method compares favorably to existing Bayesian
and non-Bayesian methods in terms of mixture density estimation accuracy and
model parsimony.

Keywords and phrases: Density estimation; Dirichlet distribution; mixture com-
plexity; simulated annealing; stochastic approximation.

1 Introduction

That complicated data sets can be described by a mixture of a few relatively simple mod-
els is an interesting and practically useful phenomenon. The relevant theoretical result is
that any density can be well-approximated by an appropriate finite mixture. The catch,
however, is that this finite mixing distribution is generally difficult to specify. In cluster
analysis, for example, the configuration of the mixing distribution is exactly the quan-
tity of interest. Likewise, for empirical Bayes inference, an estimate of the prior/mixing
distribution is required. For this reason, using the observed data to estimate the fi-
nite mixing distribution is an important problem. Key references include Titterington
et al. (1985), McLachlan and Basford (1988), Richardson and Green (1997), Roeder and
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Wasserman (1997), McLachlan and Peel (2000), and Woo and Sriram (2006). An alterna-
tive approach, related to what we consider here, is in the context of nonparametric Bayes
(Ghosh and Ramamoorthi 2003). A typical strategy is to model the mixing distribution
itself as a random draw from a Dirichlet process distribution (Ferguson 1973). Discrete-
ness properties of the Dirichlet process imply that the distribution of the observables is
almost surely a finite mixture, where the number of mixture components, as well as the
component-specific parameters, are random quantities. This flexible modeling strategy
effectively allows the data to determine the mixture structure. Efficient Markov chain
Monte Carlo algorithms (Escobar and West 1995; MacEachern and Müller 1998; Neal
2000) are now available to fit the Dirichlet process mixture model to data, and numerous
density estimation, regression, and clustering applications have been considered; see, for
example, Müller and Quintana (2004) and the references therein.

For general mixture models, the fast predictive recursion (PR) algorithm (Newton
2002; Newton et al. 1998) has received some recent attention. Martin and Ghosh (2008)
use results from stochastic approximation theory to prove consistency of the PR estimates
in finite mixtures with known support, and present numerical results showing that PR
is competitive with classical methods. Martin (2011) extends the consistency result,
giving a nearly root-n rate of convergence for PR in the finite mixture problem. For the
general case of compact but known support, Tokdar et al. (2009) prove consistency of
PR estimates of the mixing and mixture distributions, and Martin and Tokdar (2009)
extend these results to the case of mis-specified mixtures and obtain a bound on the rate
of convergence. But, for the most part, these convergence theorems do not apply when
the mixing distribution support is unknown; see Martin and Tokdar (2009, Sec. 5) for the
one exception. In fact, the PR algorithm itself is not directly applicable in the unknown
support case. The main goal of this paper to develop a PR-based approach to estimate
mixture models when the finite mixing distribution support is unknown.

Specifically, we assume that data Y1, . . . , Yn are independent observations from a com-
mon distribution with density m(y), modeled as a finite mixture

mf,U(y) =
∑
u∈U

p(y | u)f(u), y ∈ Y , U ⊂ U , (1)

where U is a known compact set and (y, u) 7→ p(y | u) is a known kernel on Y ×U , such
as Gaussian or Poisson, but the finite support set U and the mixing weights f = {f(u) :
u ∈ U} are unknown. A classical approach is nonparametric maximum likelihood, which
estimates (f, U) by maximizing

∏n
i=1mf,U(Yi). The goal of maximum likelihood is to give

an estimate m̂mle that fits the observed data well, so there are no built-in concerns about
the size of the estimated support. In our experiments we find that maximum likelihood
estimates the mixture well, but the support of the estimated mixing distribution tends to
be too large. Moreover, maximum likelihood estimates are known to be sensitive to model
mis-specification. An elegant and robust alternative is proposed by Woo and Sriram
(2006). They use the HMIX algorithm (Cutler and Cordero-Braña 1996) to minimize the
Hellinger distance of a finite mixture with support size S to a nonparametric estimate of
m. This distance, in turn, is used to construct a model selection criterion for choosing S.
The procedure of James et al. (2001), based on minimizing a Kullback–Leibler divergence,
is similar. However, our simulations indicate that the Woo-Sriram procedure can be too
aggressive, often selecting S too small for accurate estimation of m.
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In this paper we employ a version of the PR marginal likelihood (PRML) method of
Martin and Tokdar (2011b) to estimate both U and f in (1) for a generic kernel p(y | u).
The main idea is to chop up U into a finite but arbitrarily fine grid U , and search for the
best approximation to m by mixtures supported on subsets of U . Thus, the essentially
nonparametric problem is transformed to a very high-dimensional parametric one. The
PRML approach, described in Section 3.1, takes advantage of a close connection between
PR and the Bayes procedure with a finite-dimensional Dirichlet distribution on the mix-
ing weights f = {f(u) : u ∈ U}, for a fixed support U , to construct an approximate
marginal likelihood for U with f integrated out. Estimation of the support proceeds by
maximizing this approximate marginal likelihood over 2U , the collection of all subsets
of the candidate support grid U . For this high-dimensional combinatorial optimization
problem, we propose, in Section 3.2, a fast version of the simulated annealing algorithm.
Thus, this novel PRML approach can be viewed as a hybrid stochastic approximation–
simulated annealing alternative to the Bayesian’s Markov chain Monte Carlo.

For flexibility, the finite set U of candidate support points should be large. But
it is often the case that one believes that the true support size, or mixture complexity,
is considerably smaller than |U |. To account for these prior beliefs, we recommend a
regularized version of PRML in Section 3.3 that includes an additional term in the PR
marginal likelihood that penalizes supports U ⊆ U which are too large. In particular,
we suggest a penalty determined by a binomial prior on |U |, with success probability
parameter chosen to reflect the user’s belief about the true mixture complexity.

Asymptotic convergence properties of the PRML estimates are presented in Sec-
tion 3.4. We show that, for given U , the PRML method will asymptotically identify
the best mixture over all those supported on subsets of U . In particular, if the mix-
ture model is correctly specified, and the true mixing distribution support is a subset
of U , then the PRML estimate is consistent. Here “best” is measured in terms of the
Kullback–Leibler divergence on the mixture scale; thus, PRML acts asymptotically like
a minimum distance estimate (Cutler and Cordero-Braña 1996; Woo and Sriram 2006)
albeit for a fixed candidate support grid. But unlike the Woo-Sriram estimates, the
PRML estimate of the support size will always converge to a finite number, and will
be consistent if the true mixing distribution support is a subset of U . Two numerical
examples are considered in Section 3.5 where it is shown that the PRML gives results
comparable to those given elsewhere in the literature. A simulation study is presented
in Section 3.6 in the context of a simple finite Gaussian mixture model. There we show
that PRML outperforms a number of popular alternatives in terms of both accuracy of
mixture density estimation and model parsimony.

In principle, the PRML approach can handle mixtures over any number of parameters,
but the simulated annealing algorithm in Section 3.2 is time-consuming for mixtures over
two or more parameters. In Section 4 we modify the proposed simulated annealing
optimization algorithm to give a fast approximation to the PRML solution general finite
location-scale mixtures. This approximation focuses on a justifiable class of admissible
subsets and this restriction can substantially decrease the complexity of the combinatorial
optimization problem to solve. We reconsider a simulation study in James et al. (2001)
and Woo and Sriram (2006), showing that this approximate PRML procedure estimates
well the mixture complexity in a challenging Gaussian mixture model.

3



2 PR and PRML for general mixtures

Consider the general problem where the common marginal density m(y) for Y1, . . . , Yn is
modeled as a nonparametric mixture

mf (y) =

∫
U

p(y | u)f(u) dµ(u), y ∈ Y , (2)

where U is a known set, not necessarily finite, and f ∈ F is unknown and to be estimated.
Here F = F(U , µ) is the set of all densities with respect to the σ-finite Borel measure µ
on U . Newton (2002) presents the following algorithm, called predictive recursion (PR),
for nonparametric estimation of f .

PR Algorithm. Fix an initial guess f0(u) on U and a sequence of weights {wi : i ≥
1} ⊂ (0, 1). Then, for i = 1, . . . , n, compute

fi(u) = (1− wi)fi−1(u) + wi
p(Yi | u)fi−1(u)∫

U
p(Yi | u′)fi−1(u′) dµ(u′)

(3)

Return fn and mn = mfn as the final estimates of f and m, respectively.

Key properties of PR include its fast computation and its ability to estimate a mixing
density f absolutely continuous with respect to any user-defined dominating measure µ.
That is, unlike the nonparametric maximum likelihood estimate which is almost surely
discrete (Lindsay 1995) regardless of µ, the PR estimate can be discrete, continuous, or
both, depending on the user’s choice of dominating measure. Throughout this paper, we
take µ to be counting measure on a finite set U , but see Martin and Tokdar (2011a) for
an application of PR where µ is Lebesgue measure on R plus a point mass at the origin.

The PR estimates depend on the order in which the data Y1, . . . , Yn enter the recursion.
This order-dependence is irrelevant asymptotically, but for finite samples, the estimates
are mildly sensitive to the choice of ordering. To reduce this dependence in practice, the
estimates are usually averaged over a set of randomly chosen permutations. The speed
of PR for a fixed ordering makes this permutation averaging computationally feasible. In
the numerical examples that follow, we consider averages over 25 data permutations.

Large-sample properties of the PR estimates can be obtained under fairly weak con-
ditions on the kernel p(y|u) and the true data-generating density m(y). Let M denote
the set of all mixtures mf in (2) as f ranges over F, and for two densities m and m′

let K(m,m′) =
∫

log{m(y)/m′(y)}m(y) dy denote the Kullback–Leibler divergence of m′

from m. Then Tokdar et al. (2009) prove consistency of mn and fn when m ∈M. When
m 6∈ M, Martin and Tokdar (2009) show that there exists a mixing density f ? in F, the
weak closure of F, such that K(m,mf?) = inf{K(m,mf ) : f ∈ F}, and mn converges al-
most surely to mf? . As a corollary, if the mixture (2) is identifiable, then fn → f ? almost
surely in the weak topology. Moreover, for a certain choice of weights {wn}, Martin and
Tokdar (2009) obtain a conservative o(n−1/6) bound on the rate of convergence. Martin
(2011) builds on the stochastic approximation representation of PR in Martin and Ghosh
(2008) to prove that, in the case of finite mixtures with known support, mn → mf? almost
surely at nearly a parametric O(n−1/2) rate. The author believes that a nearly root-n
rate can be achieved more generally, but this remains to be confirmed.
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These asymptotic robustness properties of PR lead to an attractive construction of
a new procedure for estimation in semiparametric mixture models. Martin and Tokdar
(2011b) refer to this procedure PR marginal likelihood, or PRML for short. It is often
difficult to fully specify the parametric kernel p(y|u) in the nonparametric mixture (2),
and an alternative is to consider a class of kernels p(y|u, θ), indexed by a parameter θ ∈ Θ,
and allow the data to choose θ. This is a semiparametric mixture model

mf,θ(y) =

∫
U

p(y | u, θ)f(u) dµ(u), y ∈ Y , (4)

where both f and θ are unknown and to be estimated. Martin and Tokdar (2011b) prove,
under certain conditions, that, with probability 1,

`n(θ) :=
n∑
i=1

logmi−1,θ(Yi) = −nK?(θ) +O(n), (5)

where the dominating term K?(θ) = inf{K(m,mf,θ) : f ∈ F} plays the role of a model
selection tool for an oracle who knows that optimal mixing density f for each θ. The result
(5) suggests that maximizing `n(θ) is asymptotically equivalent to minimizing this oracle
model selector. Consistency of the maximizer θ̂n = arg max `n(θ) for general parameter
spaces Θ remains an open question, but Martin and Tokdar (2011b) demonstrate its good
empirical performance in a variety of simulations.

To conclude this section, note that it is not necessary that the parametric part θ of
the semiparametric mixture mf,θ in (4) be an unknown characteristic of the kernel. In
fact, the dependence of mf,θ on θ can be mostly arbitrary. The only restriction is that
the dominating measure µ cannot depend on θ.

3 PRML for finite mixtures

The problem of estimating finite mixture densities with unknown mixing distribution
support is an important and challenging problem, and in this section we present a solution
based on the PRML procedure in Section 2. To the author’s knowledge, this is the first
time the unknown support problem has been treated as a type of semiparametric mixture
model estimation problem.

3.1 Unknown support problem and PRML

Recall the basic setup in Section 1. That is, we have a compact set U over which the
finite mixture is to be considered. A finite lattice U ⊂ U is chosen as a set of candidate
mixture component locations. The motivation is that if U is sufficiently fine, then the
data-generating density m, which is assumed approximable by some finite mixture, can
in fact be well-approximated by a mixture supported on an appropriate subset U of U .

Next we show that the PRML procedure, with the support U ⊂ 2U playing the role
of the structural parameter θ in (4). Choose a fixed support set U and consider the
following hierarchical model:

Yi | (f, U)
iid∼ mf,U , and f | U ∼ PU , (6)
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where PU is a generic prior for the random discrete distribution f supported on U . For
this model, it can be shown, using linearity of the mixture, that the marginal likelihood
for U is of the form

Ln,marg(U) =

∫ { n∏
i=1

mf,U(Yi)
}
dPU(f) =

n∏
i=1

∑
u∈U

p(Yi | u)f̂i−1,U(u), (7)

where f̂i−1,U = EU(f | Y1, . . . , Yi−1) is the posterior mean.
Equation (7) is the jumping off point for the PRML approximation. Towards this,

take PU to be a finite-dimensional Dirichlet distribution on U with precision parameter
α0 > 0 and base measure f0,U , a probability vector indexed by U . Then the Polya urn
representation of the Dirichlet distribution (Ghosh and Ramamoorthi 2003, Sec. 3.1.2)
implies that

f̂1,U(u) =
α0

α0 + 1
f0,U(u) +

1

α0 + 1

p(Y1 | u)f0,U(u)∑
u′∈U p(Y1 | u′)f0,U(u′)

,

a mixture of the prior guess and a predictive distribution given Y1. If α0 = 1/w1 − 1,
then f̂1,U(u) is exactly f1(u) in (3). This correspondence holds exactly only for a single
observation, but Martin and Tokdar (2011b) argue that PR acts as a dynamic, mean-
preserving filter approximation to the Bayes estimate. Therefore, plugging in the PR
estimate fi−1,U(u) for the Bayes estimate f̂i−1,U(u) in (7) gives a PR-based approximation
of the marginal likelihood Ln,marg(U). In this case, the log PR marginal likelihood is

`n(U) =
n∑
i=1

logmi−1,U(Yi) =
n∑
i=1

log
{∑
u∈U

p(Yi | u)fi−1(u)
}
. (8)

Maximizing `n(U) over all possible U is a formidable task. Our simplification is to
consider only those U in 2U for the finite set of candidate support points U defined
above. When |U | is relatively large, this is still a challenging optimization problem. In
the next section, we give a simulated annealing algorithm to solve this combinatorial
optimization problem.

3.2 Computation

As described above, maximizing `n(U) over all subsets U ∈ 2U is a combinatorial opti-
mization problem. The challenge is that the finite set 2U is enormous, even if |U | is only
of moderately large size, so it is not feasible to evaluate `n(U) for each U . The simulated
annealing procedure is a stochastic algorithm where, at each iteration t, a move from
the current state U (t) to a new state U (t+1) is proposed so that `n(U (t+1)) will tend to be
larger than `n(U (t)). Next we describe our specific version of simulated annealing for the
PRML application.

An important feature of simulated annealing is the decreasing temperature sequence
{τt : t ≥ 0}. Following Hajek (1988) and Bélisle (1992), we take the default choice
τt = a/ log(1 + t) for a suitable a, chosen by trial-and-error. For the numerical examples
that follow, a = 1 gives acceptable results.
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To simplify the discussion, to each subset U ⊂ U = {u1, . . . , uS}, associate a binary
S-vector H ∈ {0, 1}S, where S = |U |. Then Hs = 1 if us ∈ U and Hs = 0 otherwise. In
other words, Hs determines whether us is in or out of the mixture. It clearly suffices to
define the optimization of `n(U) over 2U in terms of the H vectors. Then the simulated
annealing algorithm goes as follows.

1. Choose a starting point H(0), and a number of iterations T .

2. Generate a sequence {H(t) : t = 0, 1, . . . , T}:

(a) Simulate Hnew from a probability distribution π(t) on {0, 1}S, possibly depend-
ing on t and the current iterate H(t).

(b) Define the acceptance probability

α(t) = 1 ∧ exp
[{
`n(Hnew)− `n(H(t))

}
/τt
]
,

where `n(H) is the PR marginal likelihood defined in (8), written as a function
of the indicator H that characterizes U , and set

H(t+1) =

{
Hnew with probability α(t)

H(t) with probability 1− α(t)

(c) If t < T , set t← t+ 1 and return to Step 2(a); else, go to Step 3.

3. Return the H(t) visited with largest `n(H(t)).

In our implementation, the initial choice is H
(0)
s = 1 for each s, which corresponds to

the full mixture. Also, in what follows, T = 2000 iterations of the simulated annealing
algorithm above seems sufficient to identify a good clustering. The key to the success
of simulated annealing is that while all uphill moves are taken, some downhill moves, to
“less likely” Unew, are allowed through the flip of a α(t)-coin in Step 2(b). This helps
prevent the algorithm from getting stuck at local modes. But the vanishing temperature
τt makes these downhill moves less likely when t is large.

It remains to specify the proposal distribution π(t) in Step 2(a). In our examples, a
draw Hnew from π(t) differs from H(t) in exactly k ≥ 1 positions. In other words, k of
the S components of H(t) are chosen and then each is flipped from 0 to 1 or from 1 to 0.
The choice of components is not made uniformly, however. To encourage a solution with
a relatively small number of mixture components, we want π(t) to assign greater mass to
those components H

(t)
s in H(t) such that H

(t)
s = 1. The particular choice of weights is

π(t)
s ∝ 1 +

( S∑S
s=1H

(t)
s

)r
·H(t)

s , s = 1, . . . , S, r ≥ 1.

Here we see that when most of the components of H(t) are 1, equivalently, when |U (t)|
is large, the sampling is near uniform, whereas, when H(t) is sparse, those components
with value 1 have a greater chance of being selected. For the examples that follow, we
take k = 1 and r = 1.

Note that the stochastic approximation representation of PR, combined with the
simulated annealing algorithm described above for PRML optimization, gives a hybrid
stochastic approximation–simulated annealing algorithm, call it SASA, for estimating
finite mixture models. This SASA procedure serves as an alternative to the Bayesian’s
MCMC for finite mixtures.
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3.3 Regularization

In the hierarchical model (6), it would not be unnatural to introduce a prior for U to
complete the hierarchy. Martin and Tokdar (2011a) propose an extension of the PRML
framework in which priors for structural parameters are incorporated into the model,
effectively replacing the marginal likelihood with a marginal posterior. They refer to
this procedure as “regularized” PRML and show the advantage of such regularization in
large-scale hypothesis testing applications.

In our context, a prior Π(U) for the support U should be designed to reflect the degree
of sparsity in the mixture representation. Since S = |U | will typically be large—much
larger than the unknown support is likely to be—we want to penalize those U with many
components. To accomplish this, we recommend a prior for U with a binomial prior
for the size |U |. The parameters of the binomial prior are (S, ρ), where ρ denotes the
prior probability that an element of U will be included in U . The parameter ρ can be
adjusted to penalize candidate supports which are too large. For example, one might be
able to guess/elicit an a priori reasonable expected number of components, say 5. In
which case, one should choose ρ = 5/S. In the absence of such information, a crude
choice of ρ follows from estimating m with some standard density estimate m̂ and taking
ρ = (number of modes of m̂)/S.

3.4 Asymptotic theory

Suppose that U is a fixed finite set and U ⊆ U is any subset. Throughout this discussion,
we shall assume that u 7→ p(y | u) is continuous for each y, and that the PR weight
sequence {wi : i ≥ 1} is given by wi = (i + 1)−γ for some γ in (1/2, 1). In this case,
Martin (2011) proves the following theorem.

Theorem 1. Suppose the mapping f 7→ mf,U is one-to-one. Then there exists a unique
minimizer f ? = f ?U of K(m,mf,U), for the given U , and the PR estimate fn converges
almost surely to f ?, as n→∞, at a rate O(n−(1−1/2γ)).

From Theorem 1 it follows that fn and the corresponding mixture mn,U both converge
at a nearly parametric root-n rate when the exponent γ of the PR weights is close to 1.
In the numerical examples in Sections 3.5 and 3.6 we take γ = 1. This rate is a drastic
improvement over the conservative bounds given in Martin and Tokdar (2009).

But our focus here is on the problem of unknown mixing distribution support. Specifi-
cally, we use the PR marginal likelihood to estimate the unknown finite support. Towards
a convergence theorem, consider a normalized version of the PR marginal likelihood,
namely

Kn(U) =
1

n

n∑
i=1

log
m(Yi)

mi−1,U(Yi)
= −`n(U)−

∑n
i=1 logm(Yi)

n
. (9)

It follows from the analysis of Martin and Tokdar (2011b) that Kn(U) converges almost
surely to

K?(U) = inf{K(m,mf,U) : f ∈ F}, (10)

where F is the closed probability simplex in R|U |. But since U ranges over the finite set
2U , this pointwise convergence is actually uniform. Theorem 2 states this asymptotic
result formally. First we give two important assumptions.
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Assumption 1. There exists a finite constant A such that

max
U⊆U

max
u1,u2∈U

∫ {p(y | u1)
p(y | u2)

}2

m(y) dy ≤ A.

Assumption 2. There exists a finite constant B such that

max
U⊆U

∫ {
log

m(y)

mf?,U(y)

}2

m(y) dy ≤ B,

where f ? = f ?U is where the infimum in (10) is attained.

Assumption 1 holds for many common kernels, such as Gaussian or Poisson, provided
that m(y) admits a moment generating function. Assumption 2 is a statement about
the quality of the mixture model for m; it follows from Assumption 1 when the model
is correctly specified. Then the following is an immediate consequence of Theorem 2 in
Martin and Tokdar (2011b).

Theorem 2. Under Assumptions 1–2, Kn(U) converges almost surely to K?(U), uni-

formly in U ⊆ U . Consequently, Ûn = arg max `n(U) converges almost surely to U? =
arg minK?(U).

In words, the maximum PRML estimate Ûn converges to the “best” support U? ⊆ U
in the sense that Ûn and U? will eventually have the same elements. If m is indeed a
mixture with mixing distribution supported on a subset of U , then Ûn is a consistent
estimate of the true support. Regarding estimation of the mixture complexity our results
here differ considerably from those in, say, James et al. (2001) and Woo and Sriram
(2006). In particular, once U is specified, the PRML estimate of the mixture complexity
is bounded by |U |, whether the model is correctly specified or not, and is guaranteed to
converge. The estimates of James et al. (2001) and Woo and Sriram (2006) of the mixture
complexity explode to infinity in the mis-specified case. The author believes that, in
the mis-specified case, PRML’s asymptotic identification of the best finite mixture in a
sufficiently large class is more meaningful.

The initial choice of U and, in particular, |U | is not obvious, however. An interesting
proposition is to let U = Un depend on the sample size n, like a sieve. The idea is
that, if the set U of candidate support points is sufficiently large, then the class of
mixtures supported on subsets of U should be rich enough to closely approximate m.
For example, suppose that m is a finite mixture with support points somewhere in the
compact bounding set U . Then it should be possible to choose Un to saturate the
bounding set U at a suitable rate so that K(m,mn,Ûn

)→ 0 almost surely. To prove such
a result in our context, bounds on the constants associated with the rate in Theorem 1
are needed, since these would most likely depend on |U |. We leave this for future work.

3.5 Illustrative examples

3.5.1 Galactic velocity data

Under the Big Bang model, galaxies should form clusters and the relative velocities of
the galaxies should be similar within clusters. Roeder (1990) considers velocity data for
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Figure 1: Plots of the PRML estimates for the galactic velocity data in Section 3.5.1.

n = 82 galaxies. She models this data as a finite mixture of Gaussian distributions, with
the number and location of mixture components unknown. The assumption is that each
galactic cluster is a single component of the Gaussian mixture. The presence of multiple
mixture components is consistent with the hypothesis of galaxy clustering.

We apply the methodology outlined above to estimate the mixing distribution f . We
will consider a simple Gaussian mixture model in which each component has variance
σ2 = 1. This choice is based on the a priori considerations of Escobar and West (1995):
their common prior for the variance of each Gaussian component has unit mean. From
the observed velocities, it is apparent that the mixture components must be centered
somewhere in the interval U = [5, 40], so we choose a grid of candidate support points
U = {5.0, 5.5, 6.0, . . . , 39.5, 40.0}. Figure 1 shows the PRML estimates of the mixing
and mixture distribution based on the simulated annealing optimization procedure. The
PR marginal likelihood `n(U) in (8) is averaged over 25 random permutations of the
data within the simulated annealing optimization to reduce dependence on the data-
ordering. Despite the permutations and the slow convergence of simulated annealing, the
full estimation procedure here takes only a few seconds to complete. The results here are
based on the regularized PRML with the binomial prior chosen to have expected value
5, but the conclusions seem to be fairly robust to this choice. The PRML estimate of the
mixing distribution clearly identifies six galaxy clusters, closely matching the conclusions
in Roeder (1990), Escobar and West (1995), and Richardson and Green (1997), and the
PRML mixture density also provides a very good fit to the observed velocities.

3.5.2 Thailand illness data

The observed data comes from a cohort study in north-east Thailand where the number
of illness spells for n = 602 pre-school children is monitored between June 1982 and
September 1985. A histogram is given in panel (b) of Figure 2. Böhning (2000) points
out that an ordinary Poisson model is inadequate for this data due to over-dispersion. A
Poisson mixture, therefore, seems more appropriate. Upon investigation of the data, it is
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Figure 2: Plots of the PRML estimates for the Thailand illness data in Section 3.5.2. In
(b) the dots represent the tips of the mixture probability mass function.

apparent that the support of the finite mixture must be within U = [0, 20]. Therefore,
we take our candidate support U to be a grid of |U | = 75 equispaced points from 0 to
20. The PRML estimates are displayed in Figure 2. We use the same regularization and
permutation averaging as in Section 3.5.1. Here we see that the PRML solution provides
a very good fit to the observed counts. Moreover, our mixing density estimate closely
matches the nonparametric maximum likelihood results Wang (2007), both in support
values and in weights. Compared to the maximum likelihood estimation in Wang (2007),
PRML estimation for this example is a bit more time consuming; this is because PRML
does not allow a reduction of the large data set to sufficient statistics, a frequency table
in this case.

3.6 A simulation experiment

Consider the case where the data-generating density m(y) is a finite Gaussian mixture:

m(y) = 0.11N(y | −5.0, 1) + 0.56N(y | 0.0, 1) + 0.33N(y | 3.5, 1), (11)

where N(y | u, σ2) is a Gaussian density with mean u and variance σ2. Here we shall in-
vestigate the performance of several methods of estimating this finite mixture distribution
based on independent data Y1, . . . , Yn sampled from (11). The four methods are:

• The PRML method described above. Specifically, we take U = [−6, 5] and U a
grid of 50 equispaced points in U . Note that the true support {−5.0, 0.0, 3.5} is
not contained in U . We choose a fixed set of 25 data permutations over which
the PRML is averaged in the optimization step. The regularization parameter ρ
is chosen by counting modes of a standard Gaussian kernel density estimate, as
described in Section 3.3.

• A nonparametric Bayes method where f is modeled as a random draw from a
Dirichlet process distribution. Specifically, we take f ∼ DP(α, f0), where the pre-
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cision parameter α is taken to be 1 and base measure f0 is taken to be N(µ, τσ2).
The parameters µ and τ are estimated via standard empirical Bayes methods. We
employ the Gibbs sampling algorithm of Escobar and West (1995) to generate 1000
clustering configurations to estimate the number of mixture components as well as
the mixture density. We shall refer to this as method as DPM.

• Nonparametric maximum likelihood using the algorithm of Wang (2007). Specifi-
cally, we estimate (f, U) by maximizing

∏n
i=1

∑
u∈U N(Yi | u, 1)f(u) over all (f, U).

We shall refer to this method as MLE.

• The method of Woo and Sriram (2006). The main idea is to compare mixtures of
various sizes to a nonparametric kernel density estimate of m via Hellinger distance,
and choose the smallest mixture with satisfactory fit. We shall refer to this method
as WS. Note that, for the model in question, with constant scale parameter, the
adaptive kernel density estimate in Woo and Sriram (2006, Sec. 4) is not needed.

In this experiment, we consider 100 independent samples of size n = 100 taken from
the mixture (11). We are primarily interested in the respective estimates of the mixture
complexity and the mixture densities, and Table 1 summarizes the results. The first panel
tallies |U |, the number of clusters, for each method over the 100 replications. Both DPM
and MLE frequently over-estimate. PRML and WS each hit the right number of clusters
close to 90% of the time, but how they miss the target is also important. WS is aggressive
in choosing the number of clusters, tending to under-estimate, while PRML never misses
an existing cluster. That PRML never misses a cluster pays off in the estimation of m.
The second panel in Table 1 summarizes the values of K(m, m̂), scaled by a factor of
100, for the various estimates m̂’s. Performance is similar across methods in terms of
the median K(m, m̂). However, that WS tends to miss existing clusters, means that
m̂ws nearly vanishes in regions where m does not, which causes the Kullback–Leibler
divergence to be large in such cases; see the large entry for maxK(m, m̂ws). The other
methods do not exhibit this instability and, in particular, PRML turns out to be a hair
better than DPM and MLE, on average, in this experiment.

Regarding computation time, MLE and WS, in that order, are the fastest. PRML,
which takes about 2 seconds on average in this experiment, is still noticeably faster
than DPM, despite the permutation averaging and the need to optimize over a 250-
dimensional space. So, overall, it seems that PRML is a strong competitor among these
powerful existing methods. Similar conclusions are reached when the mixture model is
mis-specified, for example, when m(y) is a mixture of Student-t densities but is modeled
as a mixture of Gaussians.

4 Approximate PRML for finite location-scale mix-

tures

4.1 Setup and algorithm

In principle, the PRML procedure is able to handle finite mixtures of any type of kernel.
However, when U is a lattice in a higher-dimensional space, the computations become
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Number of clusters Summary of 100K(m, m̂)
2 3 4 5 6 7 8 Min Q1 Med Q3 Max

PRML 88 11 1 0.33 1.43 2.69 3.70 10.80
DPM 7 67 25 1 0.56 1.81 2.80 3.79 11.90
MLE 21 54 23 2 0.40 1.71 2.64 3.92 10.70
WS 13 87 0.32 1.49 2.47 4.59 120.70

Table 1: Summary of the 100 estimates of |U | and K(m, m̂) for the four methods in the
simulation experiment in Section 3.6.

somewhat costly. For a two-parameter kernel, for example, the approach outlined above
would be to construct a lattice in the two-dimensional u-space and use the same in/out
simulated annealing algorithm as in Section 3.2 for pairs u = (u1, u2). The collection
2U of all such pairs is, in general, quite large so it is advantageous to introduce a sim-
pler approximation of the two-parameter mixture model. Our approach starts with the
observation that, in general, the full two-parameter model could potentially have pairs
(u1, u2) and (u1, u

′
2) both entering the mixture. Our simplification is to rule out such

cases, allowing at most one instance of, say, u1 in the mixture. This reduces the size of
the search space and, in turn, accelerates the simulated annealing optimization step. Here
we develop this modification for the important special case of location-scale mixtures.

Let Θ and Σ be closed intervals in R and R+, respectively, assumed to contain the
range of values the location θ and scale σ can take. Chop up these intervals into sufficiently
fine grids Θ and Σ of sizes S(θ) = |Θ| and S(σ) = |Σ|, respectively. Define the rectangle
U = Θ×Σ and the two-dimensional lattice U = Θ×Σ. Then the finite mixture model
is just as before

m(y) =
∑

(θ,σ)∈U

p(y | θ, σ)f(θ, σ), U ⊂ U ,

where the kernel p(y | θ, σ) equals σ−1p
(
(y− θ)/σ

)
for some symmetric unimodal density

function p(·). This covers the case of finite location-scale Gaussian mixtures, but also the
robust class of finite Student-t mixtures with a common fixed degrees of freedom. We
will focus on the Gaussian case.

What makes this different from before is that U can contain at most one pair in
each “row” of Θ × Σ. To accommodate this restriction, we shall modify the simulated
annealing algorithm proposed in Section 3.2. The key idea here is to continue to use the
location as the main parameter, but adjust the in/out scheme from before to allow for
various levels of “in.” Recall the indicators Hs in Section 3.2. Here we use the notation
H = (H1, . . . , HS(θ)), where each Hs takes values in {0, 1, 2, . . . , S(σ)} to characterize the
support set U . The interpretation is

Hs =

{
0 if θs is not in the mixture

h if pair (θs, σh) is in the mixture, h = 1, . . . , S(σ).
(12)

In other words, location θs enters the mixture only if Hs > 0, but can enter paired
with any of the scales σh depending on the non-zero value of Hs. Since there is a one-
to-one correspondence between admissible subsets U ⊂ U and vectors H of this form,
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we shall formulate the PRML optimization problem in terms of H. By restricting the
estimates to this collection of admissible subsets, the state space to search goes from
2S(θ)×S(σ) down to [S(σ) + 1]S(θ), which can be a drastic reduction. To maximize the PR
marginal likelihood `n(H) over the set of all admissible H, we propose a modification of
the foregoing simulated annealing algorithm. In particular, the structure of the algorithm
presented in Section 3.2 remains the same; all that changes is the proposal distribution.

At iteration t, define β(t) = S(θ)−1
∑S(θ)

s=1 I{H
(t)
s = 0}, the proportion of zero entries

in H(t). Now sample an entry in H(t) with probabilities

π(t)
s ∝ 1 +

(
1− β(t)

)−r · I{H(t)
s > 0}, s = 1, . . . , S(θ). (13)

When H(t) has many zero entries, 1−β(t) will be small, so the non-zero entries will have

greater chance of being sampled. Let H
(t)
s be the chosen entry. To define Hnew, there are

two cases:

• If H
(t)
s = 0, take Hnew ∼ Unif{1, . . . , S(σ)}.

• If H
(t)
s > 0, take Hnew = 0 with probability β(t) and

Hnew ∼ Unif{H(t)
s − 1, H(t)

s + 1} with probability 1− β(t).

If H
(t)
s = 1 or S(σ), then Hnew would be 2 or S(σ)− 1, respectively.

The idea is to maintain the entry sampling that encourages a sparse mixture. This is
accomplished by, first, encouraging the selection of non-zero H(t) entries. Second, these
selected non-zero entries will likely be set to zero as the algorithm proceeds because β(t)
will tend to increase with t. Thus, only the crucial components of Θ should remain in
the mixture as t increases.

Once Hnew has been sampled, the simulated annealing algorithm decides to take H
(t+1)
s

as Hnew or H
(t)
s depending on the flip of the α(t)-coin as in Step 2(b) in Section 3.2. As

before, if Hnew is a better candidate support than H
(t)
s then the move will be accepted.

But allowing some moves to worse candidates helps prevent the simulated annealing
procedure from getting stuck at local modes.

4.2 Galactic velocity example, revisited

Consider again the galaxy velocity data example described in Section 3.5.1. We produce
the PRML estimate of a location-scale mixture of Gaussians. Here Θ is the same as U
in Section 3.5.1, and Σ = {0.5, 0.6, . . . , 1.4, 1.5}. As before we average the PR marginal
likelihood over 25 randomly chosen permutations. But, in this case, we choose r = 3 in
(13) to further discourage sampling of supports with too many components. The PRML
method estimates five Gaussian components with varying scales, and Figure 3 shows the
resulting estimate of the density. In this case, the overall fit is as good as before, but
only five components are needed. It is interesting and somewhat counter-intuitive that
when the scale parameters are allowed to vary across mixture components, we actually
get fewer components than for fixed σ = 1 as in Section 3.5.1.

14



y

m
(y

)

5 10 15 20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 3: Plot of the PRML estimates of the location-scale mixture density for the
galactic velocity data in Section 4.2, with the estimated support points plotted (•) on
the horizontal axis.

4.3 Another simulation experiment

In this section we present a simulation experiment in which we focus on estimating the
number of components in a challenging Gaussian mixture model considered in James
et al. (2001) and Woo and Sriram (2006). The particular model is

m(y) = 0.25N(y | −0.3, 0.05) + 0.5N(y | 0, 10) + 0.25N(y | 0.3, 0.05). (14)

The two components with variance 0.05 makes for two nearby but dramatic modes. With
small sample sizes especially, it should be relatively difficult to detect these two distinct
components. For this model, accurate estimation of the number of components requires
varying scale parameters, and we investigate the performance of the approximate PRML
procedure outlined in Section 4.1.

Table 2 summarizes the PRML estimates of the mixture complexity based on 100
random samples from the mixture model m(y) in (14) with four different sample sizes:
n = 50, 250, 500, and 1000. In particular, we take Θ = [−2, 2], Σ = [0.1, 4.0] and Θ
and Σ are equispaced grids of length S(θ) = 40 and S(σ) = 25, respectively. Note that
the true location and scale parameters in (14) do not belong to Θ × Σ. The simulated
annealing optimization procedure in Section 4.1 is used to optimize the PR marginal
likelihood over the collection of admissible subsets, which provides an estimate of the
mixture complexity. In this case, there are 240×25 ≈ 10301 subsets of Θ×Σ, compared to
2640 ≈ 4×1056 admissible subsets, so there is a substantial computational savings in using
the approximation in Section 4.1. For comparison, we also include estimates based on
the methods of Woo and Sriram (2006), denoted by MHDE, the estimates of James et al.
(2001), denoted by MKE and NKE, the Bayesian estimates of Roeder and Wasserman
(1997), denoted by RW, the estimates of McLachlan (1987), denoted by Bootstrap, and
finally the estimates of Henna (1985), denoted by Henna. The RW method performs well
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for small n but seems to falter as n increases, while the MKE method does well for large
n. The PRML method does quite well for n = 50 and, although it is not the best, it is
competitive in all other cases. In particular, it seems that only the MHDE method of
Woo and Sriram (2006) is as good or better than PRML at correctly identifying the true
mixture complexity across simulations. But, depending on the application, one might
prefer PRML because it does not have such a strong tendency as the MHDE method to
under-estimate the true mixture complexity.
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