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Abstract

1-D scalar conservation laws with convex flux and Markov initial data

are now known to yield a completely integrable Hamiltonian system. In

this article, we rederive the analogue of Loitsiansky’s invariant in hy-

drodynamic turbulence from the perspective of integrable systems. Other

relevant physical notions such as energy dissipation and spectrum are also

discussed.
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1 Introduction

The inviscid Burgers equation

∂tu+ ∂x

(

u2

2

)

= 0, x ∈ R, t > 0, u(0, x) = u0(x) (1)

with random initial data u0 has been extensively studied over the course of
several decades. As a caricature of hydrodynamic turbulence, the earliest fun-
damental results are due to Burgers himself, who studied (1) for u0 a white noise
process in space [7]. When considered with an added random forcing term, the
equation becomes a model of random growth with deposition. Taken together,
these form the basis of Burgers-KPZ turbulence. A broad overview these areas
can be found in [25] and the review article [1].

Many essential features of Burgers turbulence are preserved in the more
general context of 1-D scalar conservation laws with strictly convex flux and
random initial data. In recent work [21], we have shown the class of Markov
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processes in space with only downward jumps is preserved by the deterministic
dynamics. Although it is one of the simplest examples of a nontrivial flow on the
space of probability measures, this model has surprisingly rich behavior. The
evolution is given in terms of a Lax equation, and it has deep connections to
kinetic theory, random matrices, and statistics. Moreover, it has been shown to
be a completely integrable Hamiltonian system [19]. As an integrable system,
its evolution is constrained by conserved quantities. In this article we examine
how one particular conserved quantity of physical interest, well-known in the
turbulence literature, arises in our setting.

1.1 Entropy solutions to scalar conservation laws

To begin, let us review some basic facts about the 1-D scalar conservation law

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0 (2)

with strictly convex flux f ∈ C1 and initial data u(x, 0) = u0(x). Classical
solutions found using the method of characteristics typically cease to exist after
a finite time due to the formation of shocks. Instead, a suitable global-in-time
solution to (2) is the entropy solution, derived via a variational principle for the
action functional

I(s;x, t) = U0(s) + tf∗

(

x− s

t

)

. (3)

Here, U0(s) =
∫ s

0 u0(r)dr is the initial potential and f∗(s) = supu∈R
{us− f(u)}

the Legendre transform of the flux. We assume that U0 has no upward jumps
and that lim|x|→∞ I(s;x, t) = +∞ always holds, ensuring that the infimum of
I is achieved. The inverse Lagrangian function a(x, t) is then defined by the
Hopf-Lax formula:

a(x, t) = arg+ min
s∈R

I(s;x, t). (4)

The + denotes that we choose a(x, t) to be the largest value where I achieves
its minimum. In terms of infinitesimal particles, a gives the (rightmost) initial
location of the particle at location x at time t. For fixed t > 0, a(x, t) is an
increasing in x. At points of continuity of a(·, t) the entropy solution is

u(x, t) = (f ′)−1

(

x− a(x, t)

t

)

. (5)

Downward jumps in u correspond to shocks, and the velocity of a shock at x with
left- and right-limits u± = u(x±, t) satisfies the Rankine-Hugoniot condition

u(x, t) =
f(u−)− f(u+)

u− − u+
=: [f ]u

−
,u+

. (6)
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1.2 Loitsiansky’s invariant

Now suppose that u0(x) is a mean-zero velocity field which is statistically sta-
tionary and ergodic in x. Then for each t > 0, the entropy solution u(x, t)
remains stationary ergodic and ensemble averages are equivalent to spatial av-
erages (which we denote by brackets). It has long been known that (1) admits a
conserved quantity analogous to Loitsiansky’s invariant in hydrodynamic tur-
bulence [17]:

J0(t) =

∫ ∞

0

〈u(x, t)u(x + h, t)〉dh. (7)

J0 is simply the integral of the two-point correlation function, and is essentially
the value of the energy spectrum in the limit of low wavenumbers. In a series of
articles [3, 4, 5, 6], Burgers provided three distinct derivations of the invariance
of J0. Upon doing so he investigated its implications on the evolution of a
variety of shock statistics. Intriguingly, many of Burgers’ calculations involve
(unclosed) kinetic equations describing shock coalescence as in [11], and are
quite prescient in that respect.

It is easily seen that J0 is preserved for any 1-D scalar conservation law. A
formal derivation is as follows. Denoting u(x) = u(x, t), one has that for any
h > 0,

∂t〈u(x)u(x+ h)〉 = 〈u(x)∂tu(x+ h) + ∂tu(x)u(x+ h)〉

= −〈u(x)∂xf(u(x+ h)) + ∂xf(u(x))u(x+ h)〉 .

Therefore, the two-point correlation function θ(h) = 〈u(x)u(x+h)〉 itself satisfies
a conservation law with flux τ(h) = 〈u(x) (f(u(x+ h))− f(u(x− h)))〉:

∂tθ(h) + ∂hτ(h) = 0. (8)

For Burgers’ flux f(u) = u2/2, this is the analogue of the Kármán-Howarth
equation for three-dimensional isotropic turbulence in the vanishing viscosity
limit. Assuming that the correlation length of the initial velocity field decays
sufficiently fast, one has that τ(h) → 0 as h→ ∞ and

∂tJ0(t) = ∂t

∫ ∞

0

θ(h)dh = 0.

If, in addition, u(x) is statistically invariant under the transformation x 7→ −x,
u 7→ −u, the correlation flux takes the form

τ(h) = −2 〈f(u(x))u(x + h)〉 . (9)

When f(u) = u2/2, this implies that τ = − 1
6S3 with third-order structure func-

tion S3(h) =
〈

(u(x+ h)− u(x))3
〉

. This is particular to Burgers equation since
τ typically cannot be expressed in a simple manner using structure functions.

Finally, we briefly remark on the physical relevance of the conserved quantity
(7) for isotropic Navier-Stokes turbulence in the infinite domain. In this context,
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it is widely believed that certain universal scaling laws, such a law of energy
decay, should hold for the statistics of the velocity field. Dimensional analy-
sis dictates that the mean energy dissipation should be proportional to U3/L,
where U(t) is the root-mean square velocity and L(t) is the integral length scale.
A self-similarity ansatz for the velocity correlation function [24] relates the scal-
ing of U(t) and L(t)—however, an additional relation is needed to obtain the
scaling exponents themselves. The invariance of J0, commonly referred to as
the “permanence of large eddies,” was utilized by Kolmogorov [16] to obtain a
power law for the energy decay. While this was later shown to hold only under
particular assumptions on the initial spectrum, it remains a fundamental result
in the theory. In the simpler setting of Burgers turbulence, many of the same
issues have been throughly investigated and settled. We direct the interested
reader to [1, 14, 15] for a comprehensive discussion.

1.3 Lax equation and integrability of shock clustering

To start, we take u0(x) to be a stationary Markov process with only downward
jumps. In [21], it was proven that the entropy solution to (2) then satisfies a
closure property: for each fixed t > 0, u(x, t) is a stationary Markov process in
x with only downward jumps. This was also shown to hold if the initial data
is the derivative of a stationary Lévy process in x with only downward jumps
(e.g., white noise). A formal derivation of this closure for Burgers equation was
obtained in [10].

Denote by p(dy, t) and {qh(y, dz, t)}h>0 the stationary and transition mea-
sures in x of the process u(x, t). The evolution of the statistics can be stated in
terms of the generator of the solution process. First, define the 1- and 2-point
operators through their action on appropriate test functions ϕ:

P(t)ϕ(y) =

∫

R

p(dy, t)ϕ(y), Qh(t)ϕ(y) =

∫

R

qh(y, dz, t)ϕ(z). (10)

Consider the generatorA(t)ϕ = limh↓0
1
h
(Qh(t)ϕ − ϕ) of the Markov semigroup

in x (assuming the Feller property holds). For each fixed t > 0, it has the form

A(t)ϕ(y) = b(y, t)ϕ′(y) +

∫

R

n(y, dz, t)(ϕ(z)− ϕ(y)), (11)

where b(y, t) is the drift coefficient of the process and n(y, dz, t) is the jump
measure. Now we define an operator B(t) which, for each fixed x, serves as a
‘generator’ of the solution in t:

B(t)ϕ(y) = −b(y, t)f ′(y)ϕ′(y)−

∫

R

n(y, dz, t)[f ]y,z(ϕ(z)− ϕ(u)). (12)

B(t) truly is the generator of a Markov semigroup if f is decreasing. As shown
in [21], the evolution of the 1- and 2-point operators then takes the form

∂tP = PB, ∂tQh = [Qh,B] (13)
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where square brackets denote the commutator. In terms of generators, this is
the Lax equation

∂tA = [A,B]. (14)

We have shown that (14) is equivalent to a kinetic equation for the shock statis-
tics. These equations (remarkably!) admit explicit solutions when u0 is a Brow-
nian motion [2, 8, 9, 22] or a white noise [7, 12, 13]. In addition, there are many
intriguing links to random matrices and integrable systems. This is discussed
at length in [21].

2 The Manakov relation and an invariant of the

Lax equation

While the Lax equation yields some conserved quantities, these are not sufficient
to fully describe the evolution of the system. One can, in addition, verify that
the operators A and B satisfy the Manakov relation

[A,N ]− [M,B] = 0. (15)

with multiplication operators

Mϕ(y) = yϕ(y), Nϕ(y) = f(y)ϕ(y). (16)

Equation (15) is rigid in that it only holds with multiplication operators M and
N : if we let Mψϕ(y) = ψ(y)ϕ(y) for any ψ, then [A,MψA

] − [MψB
,B] = 0 if

and only if ψA(y) = f(y) and ψB(y) = y.
The Manakov relation yields the necessary additional integrals by allowing

a spectral parameter to be introduced as in [18]. That is, by (14) and (15),

∂t(A− µM) = [A− µM,B + µN ], µ ∈ C. (17)

If one considers discretizations of A and B by N ×N matrices, this implies that
the spectral curve

Γ =
{

(λ, µ) ∈ C
2| det(A− λId− µM) = 0

}

. (18)

remains unchanged in time. The conserved quantities are then given by the co-
efficients of the characteristic polynomial. It has recently been shown by Menon
[19] that this discretized system, the Markov N -wave model, is a completely
integrable Hamiltonian system. While the argument above shows that the spec-
trum is invariant in the discrete setting, this does not remain true as N → ∞
since the continuous spectrum may evolve. Therefore, it is an interesting and
open problem to find conserved quantities that survive in the continuum limit,
and to determine which of these are finite. Since the discrete model does not
allow for nontrivial statistically stationary solutions unless one takes N → ∞,
we note that the invariant J0 can only appear in this limit.
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Let us now state our main result. In what follows we will assume that p(dy, t)
and qh(y, dz, t) decay fast enough for the appropriate integrals to converge. For
stationary Markov solutions to (2), we find that the invariance of

J0 =

∫ ∞

0

E[u(x, t)u(x + h, t)]dh =

∫ ∞

0

(
∫

R

p(dy, t)y

∫

R

qh(y, dz, t)z

)

dh (19)

is equivalent to the identity

PA (f(y)Qhy) = 0. (20)

Since u is stationary in x, this is the weak form of the forward equation 0 = A†p
with test function f(y)Qhy. More generally, fix n ∈ N, denote hi = xi − xi−1

and Qi = Qhi
for i = 1, . . . , n − 1, and let h = (h1, . . . , hn−1). We demon-

strate that the Manakov relation (15) implies the n-point function θ(h, t) =
PyQ1y · · ·Qn−1y satisfies the conservation law

∂tθ(h) +∇ ·T(h) = 0 (21)

with flux Ti(h, t) = PyQ1y · · · Qi−1(f(y)Qiy− yQif(y))Qi+1y · · · Qn−1y. Inte-
gration with respect to h shows that

J
(n)
0 =

∫

x0<x1<···<xn−1

E[u(x0, t)u(x1, t) · · ·u(xn−1, t)]dx1 · · · dxn−1 (22)

is conserved by the evolution.
We note that these invariants can also be arrived at by the formal argument

in the introduction, as the essential properties are the stationarity of the velocity
field and sufficient decay in the correlation length scale. The purpose of this
article, however, is not to prove a new result but to provide a novel perspective
on the matter from the viewpoint of integrable systems.

2.1 Derivation of main result

For simplicity we will suppress t in the notation whenever possible. We begin by
showing the equivalence of (19) and (20). To do this, we need only demonstrate
that the conservation law for the one-point function

∂t (PyQhy) = −∂h (P {−f(y)Qhy + yQhf(y)}) (23)

holds. Recall that ∂hQh = AQh = QhA. Then (23) is equivalent to

P {f(y)AQhy − yQhAf(y)− ByQhy + y[Qh,B]y} = 0. (24)

A short computation gives that

f(y)AQhy − yQhAf(y) =b(y)f(y)(∂yQhy)− yQh(b(y)f
′(y))

+ f(y)

∫

R

n(y, dz)(Qhz −Qhy)

− yQh

(
∫

R

n(y, dz)(f(z)− f(y))

)

.
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Similarly,

ByQhy + y[Qh,B]y =− b(y)f ′(y)Qhy − yQh(b(y)f
′(y))

−

∫

R

n(y, dz)(f(z)− f(y))Qhz

− yQh

(
∫

R

n(y, dz)(f(z)− f(y))

)

.

Substituting these into (24) and collecting terms yields (20).
Similar calculations hold for the n-point function and become clearer upon

explicit use of the Manakov relation (15). Using that constants are in the
nullspace of A and B, equations (14) and (16) imply that

∂t(PyQ1y · · · Qn−1y)

= PByQ1y · · · Qn−1y +

n−1
∑

i=1

PyQ1y · · · Qi−1y[Qi,B]yQi+1y · · · Qn−1y

= P [B,M]Q1y · · · Qn−1y +

n−1
∑

i=1

PyQ1y · · · Qi[B,M]Qi+1y · · · Qn−1y.

Substituting (15), the previous expression becomes

P [N ,A]Q1y · · · Qn−1y +

n−1
∑

i=1

PyQ1y · · · Qi−1yQi[N ,A]Qi+1y · · ·Qn−1y

=

n−1
∑

i=1

∂hi
{PyQ1y · · · Qi−1(f(y)Qiy − yQif(y))Qi+1y · · · Qn−1y},

which is equivalent to (21).
We remark that the above argument clarifies why quantities not of the form

(22), such as
∫

E[u2(x0)u(x2)]dh2, are typically not conserved in time:

∂t

∫ ∞

0

Py2Q2ydh2 = ∂t

∫ ∞

0

PyQ1yQ2y|h1=0 dh2

=

∫ ∞

0

P(f(y)Ay − yAf(y))Q2ydh2 6= 0

except when y and f(y) are in the nullspace of A.

3 Exact solutions, energy, and spectra

3.1 White-noise initial data

The invariant J0 is expressed in terms of the 1- and 2-point functions for solu-
tions which retain the Markov property in space. In certain special cases, its
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value can be explicitly obtained. For example, it is straightforward to compute
J0 when u0(x) is a stationary Ornstein-Uhlenbeck (mean-reverting) process:

du0(x) = −βu0(x)dx + γdBx, β, γ > 0, (25)

where Bx is Brownian motion. Since u0 has zero mean,

E[u0(x)u0(x+ h)] = Cov(u0(x), u0(x+ h)) =
γ2

2β
e−βh. (26)

Therefore, J0 = γ2/(2β2).
By taking appropriate limits we obtain J0 in the case of a white noise initial

velocity field for any flux f . That is, suppose the initial potential is U0(x) = σBx
with σ > 0 the strength of the noise and Bx a two-sided Brownian motion pinned
at the origin. This corresponds to letting γ = σβ and taking β → ∞ in (25), so
that J0 = σ2/2. The solution to Burgers equation with white noise initial data
was obtained explicitly in terms of a Painlevé transcendent by Groeneboom [13],
and later rediscovered by Frachebourg and Martin [12]. The above computation
thus determines the value of an integral of the form (19) with stationary and
transition measures as in [12, 13]. For a more through examination of physically
relevant quantities we refer the reader to [23].

3.2 Energy dissipation and power spectrum

J0 is closely related to other quantities of physical interest, including mean
energy dissipation per unit interval and power spectrum. We now discuss some
basic facts regarding these quantities for stationary Markov solutions to (2).

The mean dissipation in an interval I is computed as follows. By Fubini’s
theorem and equation (13),

∂tE

[

1

|I|

∫

I

1

2
u(x, t)2dx

]

=
1

2
∂tPy

2 =
1

2
PBy2. (27)

Let h(y) =
∫ y

y0
wf ′(w)dw be the entropy flux associated to y2/2. Then

1

2
By2 = −b(y)yf ′(y)−

∫

R

n(y, dz)[f ]y,z

(

z2

2
−
y2

2

)

= −Ah(y)−

∫

R

n(y, dz)

{

[f ]y,z

(

z2

2
−
y2

2

)

− (h(z)− h(y))

}

. (28)

Applying P and using that PAh = 0, we obtain

∂tE

[

1

|I|

∫

I

1

2
u(x, t)2dx

]

= −

∫

R

p(dy)

∫

R

n(y, dz)

{

1

2
(z + y)(f(z)− f(y)) +

∫ y

z

wf ′(w)dw

}

. (29)
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This can also be arrived at by considering traveling wave solutions to (2) as in
[20]. In particular, the energy dissipated at any instant by a shock connecting
the states u− > u+ is

1

2
(u+ + u−)(f(u+)− f(u−)) +

∫ u
−

u+

wf ′(w)dw

=
1

2
(u− − u+)(f(u−)− f(u+))−

∫ u
−

u+

f(w)dw > 0.

Summing up over the expected number of shocks from u− to u+ per unit interval
implies (29).

Next, consider the power spectral density of the velocity field u(x, t):

E(k, t) =
1

2π

∫

R

e−ikhE[u(x, t)u(x + h, t)]dh, k ∈ R, t ≥ 0. (30)

Again, we drop t from the notation. For stationary Markov solutions, the power
spectrum is well-defined and can be given in terms of the λ-resolvent of the
transition semigroup (Qh)h≥0. With ϕ a test function, let

Rλϕ(y) =

∫ ∞

0

e−λhQhϕ(y)dh, Re λ > 0. (31)

Extending Rλ to λ = ik with 0 6= k ∈ R, we have that

E(k, t) =
1

π
Re (P(t)yRik(t)y) . (32)

The Laplace transform of (23) with respect to h is therefore seen to be equivalent
to an evolution equation for the power spectrum:

∂tE = −
k

π
Re (P{f(y)Riky − yRikf(y)}) . (33)

To obtain Rik in (32), one first needs to solve the Lax equation (14). Finally,
we note that J0 = limk→0 πE(k, t) is simply a constant multiple of the spectral
density in the low-wavenumber limit.

Let us contrast the situation considered here with that of Burgers equation
with one-sided Lévy initial data as in [20]. In the latter case, it was shown
that there exist solutions with finite energy and infinite dissipation per unit
interval due to an influx of energy through the boundaries. Here, the stationarity
of the solution forbids such energy fluxes. It was also demonstrated in [20]
that the traditional notion of power spectrum is irrelevant when considering
solutions with independent increments, as processes with the same energy have
indistinguishable spectra. A useful notion of spectrum was instead given by the
Fourier-Laplace transform of process paths without averaging. In contrast, here
we have that the power spectrum is nontrivial and can be computed via the
resolvent of the solution process.
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