Essentially ML ASN-Minimax double sampling plans

Eno Vangueli

Abstract

Subject of this paper is ASN-Minimax (AM) double sampling plans by variables for a normally distributed quality characteristic with unknown standard deviation and two-sided specification limits. Based on the estimator p^{*} of the fraction defective p, which is essentially the Maximum-Likelihood (ML) estimator, AM-double sampling plans are calculated by using the random variables p_{1}^{*} and p_{p}^{*} relating to the first and pooled samples, respectively. Given p_{1}, p_{2}, α, and β, no other AM-double sampling plans based on the same estimator feature a lower maximum of the average sample number (ASN) while fulfilling the classical two-point condition on the corresponding operation characteristic (OC).

Keywords: Acceptance sampling by variables, ASN-Minimax double sampling plan, essentially Maximum-Likelihood estimator

1. Introduction

When carrying out sampling inspection for a normally distributed characteristic $X \sim N(\mu, \sigma), \sigma>0$ the following four cases arise:
(i) One-sided specification limit, σ known
(ii) Two-sided specification limits, σ known
(iii) One-sided specification limit, σ unknown
(iv) Two-sided specification limits, σ unknown.

In this paper, we deal with ASN-Minimax (AM) double sampling plans for case (iv). Let L be a lower and U an upper specification limit to X. The fraction defective function $p(\mu, \sigma)$ is defined as:

$$
\begin{equation*}
p(\mu, \sigma):=P(X<L)+P(X>U)=\Phi\left(\frac{L-\mu}{\sigma}\right)+\Phi\left(\frac{\mu-U}{\sigma}\right) \tag{1}
\end{equation*}
$$

where Φ denotes the standard normal distribution function. Note, $p(\mu, \sigma)$ is a three-dimensional function. For different levels of p, corresponding iso-p-lines arise symmetrically to $\mu_{0}=\frac{L+U}{2}$ on the μ - σ-plane. A figure containing different iso-p-lines can be found in Bruhn-Suhr and Krumbholz (1990). Given a large-sized lot, a single sample $X_{1}, \ldots, X_{n},(n>3)$ with

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2},
$$

an acceptable quality level p_{1}, a rejectable quality level p_{2} and levels α and β of Type-I and Type-II error, respectively, Bruhn-Suhr and Krumbholz (1990) develop single sampling plans based on the essentially Maximum Likelihood (ML) estimator

$$
\begin{equation*}
p^{*}=p(\bar{X}, S)=\Phi\left(\frac{L-\bar{X}}{S}\right)+\Phi\left(\frac{\bar{X}-U}{S}\right) . \tag{2}
\end{equation*}
$$

The lot is accepted within the single plan (n, k), if $p^{*} \leq k$.
With the help of the operation characteristic (OC) of single sampling plans, VangJeli (2011) develops AM-double sampling plans λ_{1}^{*} based on the independent random variables p_{1}^{*} and p_{2}^{*}, which relate to the first and second samples, respectively. Given p_{1}, p_{2}, α, and β, the AM-double sampling plan fulfills the classical two-points-condition on the OC and features the lowest maximum of the average sample number (ASN). λ_{1}^{*} is computed in a similar fashion to the corresponding single sampling plan (n, k) by using its one-sided approximation AM-double sampling plan $\widetilde{\lambda}_{1}$, which is based on information obtained only from the second sample in the second stage. A double sampling plan consisting of two independent consecutive samples needs a larger sample size to fulfill the classical two-points-condition on its OC than the corresponding double sampling plan defined by taking into account information from both samples in the second stage.
In this paper, we introduce the AM-double sampling plan λ_{2}^{*} based on the random variables p_{1}^{*} and p_{p}^{*}. Using the random variable p_{p}^{*}, which contains information from both samples in the second stage, the OC of an arbitrary double
sampling plan λ_{2} becomes more complex than the OC of the corresponding double sampling plan λ_{1}. The probability for accepting the lot after the inspection of the first sample is analogously to λ_{1} a single-sampling-plan-OC. Thus, in the next section some preliminaries regarding the single-sampling-plan-OC, as well as notation and definitions concerning the double sampling plan λ_{2} are introduced. The increased complexity of λ_{2} - OC compared to λ_{1} - OC is found in the probability for accepting the lot after the inspection of the second sample. The derivation of this probability is described in Section 3. The AM-double sampling plan λ_{2}^{*} is computed analogously to λ_{1}^{*} by using the corresponding one-sided approximation AM-double sampling plan $\widetilde{\lambda}_{2}$. A comparison between λ_{1}^{*} and λ_{2}^{*} is presented in Section 4.

2. Preliminaries

Before introducing the notation and definitions for deriving the double-sampling-plan-OC, we first note a well-known issue from single sampling. Let

$$
\begin{equation*}
L_{(n, k)}(\mu, \sigma)=P\left(p^{*} \leq k\right) \tag{3}
\end{equation*}
$$

denote the OC for the single plan (n, k) and let g_{r} be the density function of the χ^{2} distribution with r degrees of freedom.

Theorem 1: It holds that:

$$
\begin{align*}
& L_{(n, k)}(\mu, \sigma)=\int_{0}^{B}\left\{\Phi\left(\frac{\sqrt{n}}{\sigma}\left(\mu\left(\sigma \sqrt{\frac{t}{n-1}}, k\right)-\mu\right)\right)\right. \\
& \left.-\Phi\left(\frac{\sqrt{n}}{\sigma}\left(\dot{\mu}\left(\sigma \sqrt{\frac{t}{n-1}}, k\right)-\mu\right)\right)\right\} g_{n-1}(t) d t \tag{4}
\end{align*}
$$

with

$$
B=\frac{(n-1)(L-U)^{2}}{4 \sigma^{2}\left(\Phi^{-1}\left(\frac{k}{2}\right)\right)^{2}} \quad \text { and } \quad \dot{\mu}(\sigma, p)=L+U-\mu(\sigma, p) .
$$

For the proof of Theorem 1, Bruhn-Suhr and Krumbholz (1990) use the
fact that for a given $\stackrel{\circ}{p}(0<\stackrel{\circ}{p}<1)$ and $\stackrel{\circ}{\sigma}>0$,

$$
\begin{equation*}
M(\stackrel{\circ}{\sigma}, \stackrel{\circ}{p}):=\{\mu \in \mathbb{R} \mid p(\stackrel{\circ}{\sigma}, \mu) \leq \stackrel{\circ}{p}\} \tag{5}
\end{equation*}
$$

is equivalent to

$$
M(\stackrel{\circ}{\sigma}, \stackrel{\circ}{p})=\left\{\begin{array}{cl}
{[\dot{\mu}(\stackrel{\circ}{\sigma}, \stackrel{\circ}{p}), \mu(\stackrel{\circ}{\sigma}, \stackrel{\circ}{p})]} & \text { if } \quad \stackrel{\circ}{\sigma} \leq \sigma_{0}(\stackrel{\circ}{p}) \tag{6}\\
\emptyset & \text { otherwise },
\end{array}\right.
$$

with

$$
\begin{equation*}
\sigma_{0}(\stackrel{\circ}{p})=\frac{L-U}{2 \Phi^{-1}\left(\frac{\stackrel{\circ}{p}}{2}\right)} . \quad \text { (See Figure 1) } \tag{7}
\end{equation*}
$$

Figure 1: Iso-p-line for $\stackrel{\circ}{p}=0.1$ with $\mu_{0}=5, \sigma_{0}=2.431827$ and $M\left(\stackrel{\circ}{\sigma}, \frac{\circ}{p}\right)$ for $\stackrel{\circ}{\sigma}=1.560192$

Now, we turn our attention to the double sampling plan λ_{2}. Let $X_{1}, \ldots, X_{n_{1}}$ be the first and $X_{n_{1}+1}, \ldots, X_{n_{1}+n_{2}}$ the second sample on X. Then, define the
following notation:

$$
\begin{gather*}
\bar{X}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} X_{i}, \tag{8}\\
S_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}_{1}\right)^{2}=\frac{1}{n_{1}-1}\left(\sum_{i=1}^{n_{1}} X_{i}^{2}-n_{1} \bar{X}_{1}^{2}\right), \tag{9}\\
\bar{X}_{2}=\frac{1}{n_{2}} \sum_{i=n_{1}+1}^{n_{1}+n_{2}} X_{i}, \tag{10}\\
\overline{\bar{X}}=\frac{1}{n_{1}+n_{2}} \sum_{i=1}^{n_{1}+n_{2}} X_{i}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}}, \tag{11}\\
S^{2}=\frac{1}{n_{1}+n_{2}-1} \sum_{i=1}^{n_{1}+n_{2}}\left(X_{i}-\overline{\bar{X}}\right)^{2} . \tag{12}
\end{gather*}
$$

Definition 1: The double sampling plan by variables $\lambda_{2}=\left(\begin{array}{lll}n_{1} & k_{1} & k_{2} \\ n_{2} & k_{3}\end{array}\right)$ with $n_{1}, n_{2} \in \mathbb{N} ; n_{1}, n_{2} \geq 2 ; k_{1}, k_{2}, k_{3} \in \mathbb{R}^{+} ; k_{1} \leq k_{2}$, is defined as follows:
(i) Observe a first sample of size n_{1} and compute $p_{1}^{*}=p\left(\bar{X}_{1}, S_{1}\right)$.

If $p_{1}^{*} \leq k_{1}$, accept the lot.
If $p_{1}^{*}>k_{2}$, reject the lot.
If $k_{1}<p_{1}^{*} \leq k_{2}$, go to (ii).
(ii) Observe a second sample of size n_{2} and compute $p_{p}^{*}=p(\overline{\bar{X}}, S)$.

If $p_{p}^{*} \leq k_{3}$, accept the lot.
If $p_{p}^{*}>k_{3}$, reject the lot.

The λ_{2}-OC is given by

$$
\begin{equation*}
L_{\lambda_{2}}(\mu, \sigma)=P_{(\mu, \sigma)}\left(A_{1}\right)+P_{(\mu, \sigma)}\left(A_{2}\right) \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{1}=\left\{p_{1}^{*} \leq k_{1}\right\}, A_{2}=\left\{p_{p}^{*} \leq k_{3}, k_{1}<p_{1}^{*} \leq k_{2}\right\} \tag{14}
\end{equation*}
$$

From (3), (4) and (14) it follows that

$$
\begin{equation*}
P_{(\mu, \sigma)}\left(A_{1}\right)=L_{\left(n_{1}, k_{1}\right)}(\mu, \sigma) . \tag{15}
\end{equation*}
$$

Since $P\left(A_{2}\right):=P_{(\mu, \sigma)}\left(A_{2}\right)$ is more complex, we describe how to determine it in the next section. The λ_{2} - ASN is given by

$$
\begin{equation*}
N_{\lambda_{2}}(\mu, \sigma)=n_{1}+n_{2} P_{(\mu, \sigma)}\left(k_{1}<p_{1}^{*} \leq k_{2}\right) \tag{16}
\end{equation*}
$$

with

$$
P_{(\mu, \sigma)}\left(k_{1}<p_{1}^{*} \leq k_{2}\right)=L_{\left(n_{1}, k_{2}\right)}(\mu, \sigma)-L_{\left(n_{1}, k_{1}\right)}(\mu, \sigma) .
$$

Remark 1: The following analogies between λ_{1} and λ_{2} hold:
(i) $L_{\lambda_{2}}(\mu, \sigma)$ and $N_{\lambda_{2}}(\mu, \sigma)$ are not unique functions in p, but bands.
(ii) Let the symbol * indicate the AM-double sampling plan. Denoting ϕ_{1}^{*} as the one-sided AM-approximation for λ_{1}^{*}, VangJeli (2011) shows that there are nonessential differences between $N_{\max }\left(\lambda_{1}^{*}\right)$ and $N_{\max }\left(\phi_{1}^{*}\right)^{1}$.

3. The $P\left(A_{2}\right)$

Let

$$
\begin{equation*}
P\left(A_{2}^{u}\right):=P_{(\mu, \sigma)}\left(A_{2}^{u}\right)=P_{(\mu, \sigma)}\left(p_{p}^{*} \leq k_{3}, p_{1}^{*} \leq k_{2}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(A_{2}^{l}\right):=P_{(\mu, \sigma)}\left(A_{2}^{l}\right)=P_{(\mu, \sigma)}\left(p_{p}^{*} \leq k_{3}, p_{1}^{*} \leq k_{1}\right) . \tag{18}
\end{equation*}
$$

The probability

$$
\begin{equation*}
P\left(A_{2}\right):=P_{(\mu, \sigma)}\left(A_{2}\right)=P_{(\mu, \sigma)}\left(p_{p}^{*} \leq k_{3}, k_{1}<p_{1}^{*} \leq k_{2}\right) \tag{19}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
P\left(A_{2}\right)=P\left(A_{2}^{u}\right)-P\left(A_{2}^{l}\right) . \tag{20}
\end{equation*}
$$

[^0]For $i=1,2$, let

$$
\begin{equation*}
Y_{i}:=\sqrt{n_{i}} \frac{\bar{X}_{i}-\mu}{\sigma} \sim N(0,1) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{i}:=\frac{n_{i}-1}{\sigma^{2}} S_{i}^{2} \sim \chi_{n_{i}-1}^{2} . \tag{22}
\end{equation*}
$$

Krumbholz and Rohr (2006) have shown that the following holds:

$$
\begin{equation*}
S=\frac{\sigma \sqrt{\left(n_{1}+n_{2}\right)\left(W_{1}+W_{2}\right)+\left(\sqrt{n_{2}} Y_{1}-\sqrt{n_{1}} Y_{2}\right)^{2}}}{\sqrt{\left(n_{1}+n_{2}-1\right)\left(n_{1}+n_{2}\right)}} . \tag{23}
\end{equation*}
$$

Along with (21), it can be shown that

$$
\begin{equation*}
\overline{\bar{X}}=\frac{\sqrt{n_{1}} \sigma\left(Y_{1}+\sqrt{n_{1}} \frac{\mu}{\sigma}\right)+\sqrt{n_{2}} \sigma\left(Y_{2}+\sqrt{n_{2}} \frac{\mu}{\sigma}\right)}{n_{1}+n_{2}} \tag{24}
\end{equation*}
$$

Due to total probability decomposition and the independence of $\overline{\bar{X}}$ and S^{2}, $P\left(A_{2}^{u}\right)$ can be written as:

$$
\begin{align*}
P\left(A_{2}^{u}\right) & =\int_{0}^{\infty}\left(\int _ { - \infty } ^ { \infty } \left(\int _ { - \infty } ^ { \infty } \left(\int_{0}^{\infty} P\left(A_{2}^{u} \mid W_{1}=w_{1}, Y_{1}=y_{1}, Y_{2}=y_{2}, W_{2}=w_{2}\right) \times\right.\right.\right. \\
& \left.\left.\left.\times g_{n_{2}-1}\left(w_{2}\right) d w_{2}\right) \Phi^{\prime}\left(y_{2}\right) d y_{2}\right) \Phi^{\prime}\left(y_{1}\right) d y_{1}\right) g_{n_{1}-1}\left(w_{1}\right) d w_{1} . \tag{25}
\end{align*}
$$

It holds that:

$$
\begin{align*}
P\left(A_{2}^{u} \mid W_{1}=w_{1}, Y_{1}=y_{1}, Y_{2}=\right. & \left.y_{2}, W_{2}=w_{2}\right)= \\
& =P\left(p(\overline{\bar{X}}, S) \leq k_{3}, p\left(\bar{X}_{1}, S_{1}\right) \leq k_{2}\right) \tag{26}
\end{align*}
$$

From (6) and (24), for $S<\sigma_{0}\left(k_{3}\right)$, we get:

$$
\begin{equation*}
p(\overline{\bar{X}}, S) \leq k_{3} \quad \Leftrightarrow \quad \dot{\mu}\left(S, k_{3}\right) \leq \overline{\bar{X}} \leq \mu\left(S, k_{3}\right) \quad \Leftrightarrow \quad C_{1} \leq Y_{2} \leq C_{2}, \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}=\frac{\left(n_{1}+n_{2}\right) \dot{\mu}\left(S, k_{3}\right)-\left(\sigma \sqrt{n_{1}} Y_{1}+\left(n_{1}+n_{2}\right) \mu\right)}{\sigma \sqrt{n_{2}}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}=\frac{\left(n_{1}+n_{2}\right) \mu\left(S, k_{3}\right)-\left(\sigma \sqrt{n_{1}} Y_{1}+\left(n_{1}+n_{2}\right) \mu\right)}{\sigma \sqrt{n_{2}}} . \tag{29}
\end{equation*}
$$

From (23) and $S<\sigma_{0}\left(k_{3}\right)$, it follows that

$$
\begin{equation*}
W_{2} \leq D \tag{30}
\end{equation*}
$$

where

$$
D=\frac{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right)\left(\frac{\sigma_{0}\left(k_{3}\right)}{\sigma}\right)^{2}-\left(\sqrt{n_{2}} Y_{1}-\sqrt{n_{1}} Y_{2}\right)^{2}}{n_{1}+n_{2}}-W_{1} .
$$

Similarly, from $p\left(\bar{X}_{1}, S_{1}\right) \leq k_{2}$, we get:

$$
\begin{equation*}
E_{1} \leq Y_{1} \leq E_{2} \tag{31}
\end{equation*}
$$

with

$$
\begin{aligned}
& E_{1}=\frac{\sqrt{n_{1}}}{\sigma}\left(\dot{\mu}\left(\sigma \sqrt{\frac{W_{1}}{n_{1}-1}}, k_{2}\right)-\mu\right), \\
& E_{2}=\frac{\sqrt{n_{1}}}{\sigma}\left(\mu\left(\sigma \sqrt{\frac{W_{1}}{n_{1}-1}}, k_{2}\right)-\mu\right)
\end{aligned}
$$

and

$$
\begin{equation*}
W_{1} \leq F=\left(\frac{\sigma_{0}\left(k_{2}\right)}{\sigma}\right)^{2}\left(n_{1}-1\right) . \tag{32}
\end{equation*}
$$

Setting $W_{1}=w_{1}, Y_{1}=y_{1}, Y_{2}=y_{2}, W_{2}=w_{2}, S=S\left(w_{1}, y_{1}, y_{2}, w_{2}\right), C_{1}=$ $C_{1}\left(w_{1}, y_{1}, y_{2}, w_{2}\right), C_{2}=C_{2}\left(w_{1}, y_{1}, y_{2}, w_{2}\right), D=D\left(w_{1}, y_{1}, y_{2}\right), E_{1}=E_{1}\left(w_{1}\right)$ and $E_{2}=E_{2}\left(w_{1}\right), P\left(A_{2}^{u}\right)$ can be written as:

$$
\begin{align*}
P\left(A_{2}^{u}\right)=\int_{0}^{F} & \left(\int _ { E _ { 1 } (w _ { 1 }) } ^ { E _ { 2 } (w _ { 1 }) } \left(\int _ { - \infty } ^ { \infty } \left(\int_{0}^{D\left(w_{1}, y_{1}, y_{2}\right)} H\left(w_{1}, y_{1}, y_{2}, w_{2}\right) \times\right.\right.\right. \\
& \left.\left.\left.\times g_{n_{2}-1}\left(w_{2}\right) d w_{2}\right) \Phi^{\prime}\left(y_{2}\right) d y_{2}\right) \Phi^{\prime}\left(y_{1}\right) d y_{1}\right) g_{n_{1}-1}\left(w_{1}\right) d w_{1} \tag{33}
\end{align*}
$$

with

$$
H\left(w_{1}, y_{1}, y_{2}, w_{2}\right)=\Phi\left(C_{2}\left(w_{1}, y_{1}, y_{2}, w_{2}\right)\right)-\Phi\left(C_{1}\left(w_{1}, y_{1}, y_{2}, w_{2}\right)\right) .
$$

$P\left(A_{2}^{l}\right)$ is obtained by substituting k_{1} for k_{2} in $P\left(A_{2}^{u}\right)$. Thus, we can state:

Theorem 2: It holds that:

$$
\begin{equation*}
L_{\lambda_{2}^{*}}(\mu, \sigma)=L_{\left(n_{1}, k_{1}\right)}(\mu, \sigma)+P\left(A_{2}^{u}\right)-P\left(A_{2}^{l}\right) \tag{34}
\end{equation*}
$$

4. The computation of the AM-double sampling plans

For a given p_{1}, p_{2}, α and β, the plan λ_{2}^{*} is computed in a similar way as λ_{1}^{*}. We use the one-sided approximation $\widetilde{\lambda}_{2}=\left(\begin{array}{ccc}n_{1} & \tilde{k}_{1} & \tilde{k}_{2} \\ n_{2} & \tilde{k}_{3} & \end{array}\right)$ with

$$
\tilde{k}_{1}=\Phi\left(\frac{l_{1}}{\sqrt{n_{1}}}\right), \tilde{k}_{2}=\Phi\left(\frac{l_{2}}{\sqrt{n_{1}}}\right), \tilde{k}_{3}=\Phi\left(\frac{l_{3}}{\sqrt{n_{1}+n_{2}}}\right)
$$

where $\phi_{2}^{*}=\left(\begin{array}{lll}n_{1} & l_{1} & l_{2} \\ n_{2} & l_{3} & \end{array}\right)$ denotes the AM-double sampling plan in case of an upper tolerance limit U (cf. Krumbholz and Rohr (2009)). ϕ_{2}^{*} is determined by
(i) $\quad L_{\phi_{2}}\left(p_{1}\right) \geq 1-\alpha$
(ii) $\quad L_{\phi_{2}}\left(p_{2}\right) \leq \beta$
(iii) $N_{\max }\left(\phi_{2}^{*}\right)=\min _{\phi_{2} \in Z} N_{\max }\left(\phi_{2}\right)$,
where Z is the set of all double sampling plans ϕ_{2} fulfilling (35)(i) and (ii). The AM-double sampling plan λ_{2}^{*} is given
(i) $\min _{0<\sigma \leq \sigma_{0}(p)} L_{\lambda_{2}^{*}}\left(\sigma ; p_{1}\right) \geq 1-\alpha$
(ii) $\max _{0<\sigma \leq \sigma_{0}(p)} L_{\lambda_{2}^{*}}\left(\sigma ; p_{2}\right) \leq \beta$
(iii) $N_{\max }\left(\phi_{2}^{*}\right)=\min _{\phi_{2} \in Z} N_{\max }\left(\phi_{2}\right)$.

Example 1

For $L=1, U=9, p_{1}=0.01, p_{2}=0.06, \alpha=\beta=0.1$, we get:
(i) $\quad(n, k)=(36,0.02645943143) \quad$ and $\alpha^{*}=0.082, \beta^{*}=0.1$,
(ii) $\quad \lambda_{1}^{*}=\left(\begin{array}{lll}26 & 0.017577 & 0.035291 \\ 20 & 0.029275 & \end{array}\right)$ and $N_{\max }\left(\lambda_{1}^{*}\right)=32.75439$.

$\alpha^{* *}$	$\beta^{* *}$	$\widetilde{\lambda}_{2}$			$N_{\text {max }}\left(\phi_{2}^{*}\right)$	$\min _{\sigma} L_{\widetilde{\lambda}_{2}}\left(\sigma ; p_{1}\right)$	$\max _{\sigma} L_{\widetilde{\lambda}_{2}}\left(\sigma ; p_{2}\right)$
0.082	0.1	23 17	$\begin{aligned} & \hline 0.013909 \\ & 0.026289 \end{aligned}$	0.038143	30.45689	0.8930783818	0.0970618822
0.080	0.1	23 17	$\begin{aligned} & 0.013597 \\ & 0.026400 \end{aligned}$	0.038833	30.72159	0.8955304122	0.0969993958
0.078	0.1	23 18	$\begin{aligned} & 0.013993 \\ & 0.026496 \end{aligned}$	0.038763	30.99066	0.8978607677	0.0971362848
0.077	0.1	23 18	$\begin{aligned} & 0.013838 \\ & 0.026558 \end{aligned}$	0.039100	31.12727	0.8990880486	0.0971046378
0.076	0.1	23	$\begin{aligned} & 0.013681 \\ & 0.026617 \end{aligned}$	0.039455	31.26779	0.9003201617	0.0970742118

where $\lambda_{2}^{*}=\left(\begin{array}{lll}23 & 0.013681 & 0.039455 \\ 18 & 0.026617 & \end{array}\right)$ with $N_{\max }\left(\lambda_{2}^{*}\right)=31.26778533$.

Example 2

For $L=1, U=9, p_{1}=0.01, p_{2}=0.03, \alpha=\beta=0.1$, we get:
(i) $\quad(n, k)=(115,0.0178762881) \quad$ and $\alpha^{*}=0.085, \beta^{*}=0.1$,
(ii) $\quad \lambda_{1}^{*}=\left(\begin{array}{lll}81 & 0.014029 & 0.021742 \\ 66 & 0.018537 & \end{array}\right)$ and $N_{\max }\left(\lambda_{1}^{*}\right)=103.5432$.

$\alpha^{* *}$	$\beta^{* *}$	$\widetilde{\lambda}_{2}$			$N_{\max }\left(\phi_{2}^{*}\right)$	$\min _{\sigma} L_{\widetilde{\lambda}_{2}}\left(\sigma ; p_{1}\right)$	$\max _{\sigma} L_{\widetilde{\lambda}_{2}}\left(\sigma ; p_{2}\right)$
0.085	0.1	72	$\begin{aligned} & 0.012337 \\ & 0.017830 \end{aligned}$	0.023495	98.51959	0.8979623972	0.0991345737
0.084	0.1	72 59	$\begin{aligned} & 0.012364 \\ & 0.017851 \end{aligned}$	0.023535	98.97047	0.8990715849	0.0991520345
0.083	0.1	72 60	$\begin{aligned} & 0.012385 \\ & 0.017875 \end{aligned}$	0.023569	99.43030	0.9001786758	0.0991672779

where $\lambda_{2}^{*}=\left(\begin{array}{lll}72 & 0.012385 & 0.023569 \\ 60 & 0.017875 & \end{array}\right)$ with $N_{\max }\left(\lambda_{2}^{*}\right)=99.43020285$.

Remark 2: Numerical investigations indicate:
(i) The AM-double sampling plan λ_{2}^{*} is more powerful than the AM-double sampling plan λ_{1}^{*} as it appears that

$$
N_{\max }\left(\lambda_{2}^{*}\right)<N_{\max }\left(\lambda_{1}^{*}\right)
$$

(ii) Let $\widehat{\lambda}_{1}$ denote the AM-double sampling plan based on the MVU estimators \hat{p}_{1} and \hat{p}_{2} of $p(\mu, \sigma) . \quad \hat{p}_{1}$ and \hat{p}_{2} are superior over p_{1}^{*} and p_{2}^{*}, respectively, so that

$$
N_{\max }\left(\widehat{\lambda}_{1}\right)<N_{\max }\left(\lambda_{1}^{*}\right)
$$

For some constellations, it could further be shown that

$$
N_{\max }\left(\lambda_{2}^{*}\right)<N_{\max }\left(\widehat{\lambda}_{1}\right)<N_{\max }\left(\lambda_{1}^{*}\right) \quad \text { (See Figure 2). }
$$

(iii) The lowest $N_{\max }$ among the AM-double sampling plans for a normally distributed quality characteristic with two-sided specification limits and unknown σ would feature the plan $\widehat{\lambda}_{2}$ based on the MVU estimators \hat{p}_{1} and \hat{p}_{p} of $p(\mu, \sigma)$, provided that a formula for determining the $\widehat{\lambda}_{2}$-OC would be found.

Figure 2: ASN bands for $\lambda_{1}^{*}, \widehat{\lambda}_{1}$ and λ_{2}^{*} defined by $p_{1}=0.01, p_{2}=0.03$ and $\alpha=\beta=0.1$

References

Bruhn-Suhr, M., Krumbholz, W. (1990). A new variables sampling plan for normally distributed lots with unknown standard deviation and double specification limits. Statistical Papers 31, 195-207.

Krumbholz, W., Rohr, A. (2006). The operating characteristic of double sampling plans by variables when the standard deviation is unknown. Allgemeines Statistisches Archiv 90, 233-251.

Krumbholz, W., Rohr, A. (2009). Double ASN Minimax sampling plans by variables when the standard deviation is unknown. Advances in Statistical Analysis 93, 281-294.

Vangueli, E. (2011). ASN-Minimax double sampling plans by variables for two-sided specification limits when σ is unknown.
http://arxiv.org/PS_cache/arxiv/pdf/1103/1103.4801v4.pdf.

[^0]: ${ }^{1}$ The examples given in the fourth section confirm this fact for $N_{\max }\left(\lambda_{2}^{*}\right)$ and $N_{\max }\left(\phi_{2}^{*}\right)$

