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Essentially ML ASN-Minimax double
sampling plans

Eno Vangjeli

Abstract: Subject of this paper is ASN-Minimax (AM) double sampling plans

by variables for a normally distributed quality characteristic with unknown stan-

dard deviation and two-sided specification limits. Based on the estimator p∗ of the

fraction defective p, which is essentially the Maximum-Likelihood (ML) estimator,

AM-double sampling plans are calculated by using the random variables p∗1 and p∗p

relating to the first and pooled samples, respectively. Given p1, p2, α, and β, no

other AM-double sampling plans based on the same estimator feature a lower max-

imum of the average sample number (ASN) while fulfilling the classical two-point

condition on the corresponding operation characteristic (OC).

Keywords: Acceptance sampling by variables, ASN-Minimax double sampling plan,

essentially Maximum-Likelihood estimator

1. Introduction

When carrying out sampling inspection for a normally distributed character-

istic X ∼ N(µ, σ), σ > 0 the following four cases arise:

(i) One-sided specification limit, σ known

(ii) Two-sided specification limits, σ known

(iii) One-sided specification limit, σ unknown

(iv) Two-sided specification limits, σ unknown.

In this paper, we deal with ASN-Minimax (AM) double sampling plans for

case (iv). Let L be a lower and U an upper specification limit to X . The

fraction defective function p(µ, σ) is defined as:

p(µ, σ) := P (X < L) + P (X > U) = Φ

(
L− µ

σ

)
+ Φ

(
µ− U

σ

)
, (1)
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where Φ denotes the standard normal distribution function. Note, p(µ, σ) is a

three-dimensional function. For different levels of p, corresponding iso-p-lines

arise symmetrically to µ0 =
L+ U

2
on the µ-σ-plane. A figure containing

different iso-p-lines can be found in Bruhn-Suhr and Krumbholz (1990).

Given a large-sized lot, a single sample X1, ..., Xn, (n > 3) with

X =
1

n

n∑

i=1

Xi, S2 =
1

n− 1

n∑

i=1

(Xi −X)2,

an acceptable quality level p1, a rejectable quality level p2 and levels α and β of

Type-I and Type-II error, respectively, Bruhn-Suhr andKrumbholz (1990)

develop single sampling plans based on the essentially Maximum Likelihood

(ML) estimator

p∗ = p(X,S) = Φ

(
L−X

S

)
+ Φ

(
X − U

S

)
. (2)

The lot is accepted within the single plan (n, k), if p∗ ≤ k.

With the help of the operation characteristic (OC) of single sampling plans,

Vangjeli (2011) develops AM-double sampling plans λ∗
1 based on the indepen-

dent random variables p∗1 and p∗2, which relate to the first and second samples,

respectively. Given p1, p2, α, and β, the AM-double sampling plan fulfills the

classical two-points-condition on the OC and features the lowest maximum

of the average sample number (ASN). λ∗
1 is computed in a similar fashion to

the corresponding single sampling plan (n, k) by using its one-sided approxi-

mation AM-double sampling plan λ̃1, which is based on information obtained

only from the second sample in the second stage. A double sampling plan

consisting of two independent consecutive samples needs a larger sample size

to fulfill the classical two-points-condition on its OC than the corresponding

double sampling plan defined by taking into account information from both

samples in the second stage.

In this paper, we introduce the AM-double sampling plan λ∗
2 based on the

random variables p∗1 and p∗p. Using the random variable p∗p, which contains in-

formation from both samples in the second stage, the OC of an arbitrary double
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sampling plan λ2 becomes more complex than the OC of the corresponding

double sampling plan λ1. The probability for accepting the lot after the inspec-

tion of the first sample is analogously to λ1 a single-sampling-plan-OC. Thus,

in the next section some preliminaries regarding the single-sampling-plan-OC,

as well as notation and definitions concerning the double sampling plan λ2 are

introduced. The increased complexity of λ2-OC compared to λ1-OC is found in

the probability for accepting the lot after the inspection of the second sample.

The derivation of this probability is described in Section 3. The AM-double

sampling plan λ∗
2 is computed analogously to λ∗

1 by using the corresponding

one-sided approximation AM-double sampling plan λ̃2. A comparison between

λ∗
1 and λ∗

2 is presented in Section 4.

2. Preliminaries

Before introducing the notation and definitions for deriving the double-sampling-

plan-OC, we first note a well-known issue from single sampling. Let

L(n, k)(µ, σ) = P (p∗ ≤ k) (3)

denote the OC for the single plan (n, k) and let gr be the density function of

the χ2 distribution with r degrees of freedom.

Theorem 1: It holds that:

L(n, k)(µ, σ) =

∫ B

0

{
Φ

(√
n

σ

(
µ

(
σ

√
t

n− 1
, k

)
− µ

))

−Φ

(√
n

σ

(
µ̇

(
σ

√
t

n− 1
, k

)
− µ

))}
gn−1(t)dt (4)

with

B =
(n− 1)(L− U)2

4σ2

(
Φ−1

(
k

2

))2 and µ̇(σ, p) = L+ U − µ(σ, p).

For the proof of Theorem 1, Bruhn-Suhr and Krumbholz (1990) use the
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fact that for a given
◦

p (0 <
◦

p < 1) and
◦

σ > 0,

M(
◦

σ,
◦

p) := {µ ∈ R | p( ◦

σ, µ) ≤ ◦

p} (5)

is equivalent to

M(
◦

σ,
◦

p) =




[µ̇(

◦

σ,
◦

p), µ(
◦

σ,
◦

p)] if
◦

σ ≤ σ0(
◦

p)

∅ otherwise,
(6)

with

σ0(
◦

p) =
L− U

2Φ−1

(
◦

p

2

) . (See Figure 1) (7)
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Figure 1: Iso-p-line for
◦

p = 0.1 with µ0 = 5, σ0 = 2.431827 and M(
◦

σ,
◦

p) for
◦

σ = 1.560192

Now, we turn our attention to the double sampling plan λ2. Let X1, ..., Xn1

be the first and Xn1+1, ..., Xn1+n2
the second sample on X . Then, define the
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following notation:

X1 =
1

n1

n1∑

i=1

Xi, (8)

S2
1 =

1

n1 − 1

n1∑

i=1

(Xi −X1)
2 =

1

n1 − 1

(
n1∑

i=1

X2
i − n1X

2

1

)
, (9)

X2 =
1

n2

n1+n2∑

i=n1+1

Xi, (10)

=

X=
1

n1 + n2

n1+n2∑

i=1

Xi =
n1 X1 + n2 X2

n1 + n2

, (11)

S2 =
1

n1 + n2 − 1

n1+n2∑

i=1

(Xi−
=

X)2. (12)

Definition 1: The double sampling plan by variables λ2 =

(
n1 k1 k2

n2 k3

)

with n1, n2 ∈ N; n1, n2 ≥ 2; k1, k2, k3 ∈ R
+; k1 ≤ k2, is defined as follows:

(i) Observe a first sample of size n1 and compute p∗1 = p(X1, S1).

If p∗1 ≤ k1, accept the lot.

If p∗1 > k2, reject the lot.

If k1 < p∗1 ≤ k2, go to (ii).

(ii) Observe a second sample of size n2 and compute p∗p = p(
=

X,S).

If p∗p ≤ k3, accept the lot.

If p∗p > k3, reject the lot.

The λ2-OC is given by

Lλ2
(µ, σ) = P(µ,σ)(A1) + P(µ,σ)(A2) (13)

with

A1 = {p∗1 ≤ k1}, A2 = {p∗p ≤ k3, k1 < p∗1 ≤ k2}. (14)
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From (3), (4) and (14) it follows that

P(µ,σ)(A1) = L(n1, k1)(µ, σ). (15)

Since P (A2) := P(µ,σ)(A2) is more complex, we describe how to determine it

in the next section. The λ2-ASN is given by

Nλ2
(µ, σ) = n1 + n2P(µ,σ)(k1 < p∗1 ≤ k2) (16)

with

P(µ,σ)(k1 < p∗1 ≤ k2) = L(n1,k2)(µ, σ)− L(n1,k1)(µ, σ).

Remark 1: The following analogies between λ1 and λ2 hold:

(i) Lλ2
(µ, σ) and Nλ2

(µ, σ) are not unique functions in p, but bands.

(ii) Let the symbol ∗ indicate the AM-double sampling plan. Denoting φ∗
1

as the one-sided AM-approximation for λ∗
1, Vangjeli (2011) shows that

there are nonessential differences between Nmax(λ
∗
1) and Nmax(φ

∗
1)

1.

3. The P (A2)

Let

P (Au
2) := P(µ,σ)(A

u
2) = P(µ,σ)(p

∗
p ≤ k3, p

∗
1 ≤ k2) (17)

and

P (Al
2) := P(µ,σ)(A

l
2) = P(µ,σ)(p

∗
p ≤ k3, p

∗
1 ≤ k1). (18)

The probability

P (A2) := P(µ,σ)(A2) = P(µ,σ)(p
∗
p ≤ k3, k1 < p∗1 ≤ k2) (19)

can be written as

P (A2) = P (Au
2)− P (Al

2). (20)

1The examples given in the fourth section confirm this fact for Nmax(λ
∗

2
) and Nmax(φ

∗

2
)
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For i = 1, 2, let

Yi :=
√
ni

X i − µ

σ
∼ N(0, 1) (21)

and

Wi :=
ni − 1

σ2
S2
i ∼ χ2

ni−1. (22)

Krumbholz and Rohr (2006) have shown that the following holds:

S =
σ
√

(n1 + n2) (W1 +W2) + (
√
n2 Y1 −

√
n1 Y2)2√

(n1 + n2 − 1)(n1 + n2)
. (23)

Along with (21), it can be shown that

=

X=

√
n1 σ(Y1 +

√
n1

µ

σ
) +

√
n2 σ(Y2 +

√
n2

µ

σ
)

n1 + n2
. (24)

Due to total probability decomposition and the independence of
=

X and S2,

P (Au
2) can be written as:

P (Au
2) =

∞∫

0

( ∞∫

−∞

( ∞∫

−∞

( ∞∫

0

P (Au
2 |W1 = w1, Y1 = y1, Y2 = y2, W2 = w2)×

× gn2−1(w2) dw2

)
Φ′ (y2) dy2

)
Φ′ (y1) dy1

)
gn1−1(w1) dw1. (25)

It holds that:

P (Au
2 |W1 = w1, Y1 = y1, Y2 = y2, W2 = w2) =

= P (p(
=

X,S) ≤ k3, p(X1, S1) ≤ k2). (26)

From (6) and (24), for S < σ0(k3), we get:

p(
=

X,S) ≤ k3 ⇔ µ̇(S, k3) ≤
=

X ≤ µ(S, k3) ⇔ C1 ≤ Y2 ≤ C2, (27)

where

C1 =
(n1 + n2) µ̇(S, k3)− (σ

√
n1 Y1 + (n1 + n2) µ)

σ
√
n2

(28)
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and

C2 =
(n1 + n2) µ(S, k3)− (σ

√
n1 Y1 + (n1 + n2) µ)

σ
√
n2

. (29)

From (23) and S < σ0(k3), it follows that

W2 ≤ D, (30)

where

D =

(n1 + n2)(n1 + n2 − 1)

(
σ0(k3)

σ

)2

− (
√
n2 Y1 −

√
n1 Y2)

2

n1 + n2

−W1.

Similarly, from p(X1, S1) ≤ k2, we get:

E1 ≤ Y1 ≤ E2 (31)

with

E1 =

√
n1

σ

(
µ̇

(
σ

√
W1

n1 − 1
, k2

)
− µ

)
,

E2 =

√
n1

σ

(
µ

(
σ

√
W1

n1 − 1
, k2

)
− µ

)

and

W1 ≤ F =

(
σ0(k2)

σ

)2

(n1 − 1). (32)

Setting W1 = w1, Y1 = y1, Y2 = y2, W2 = w2, S = S(w1, y1, y2, w2), C1 =

C1(w1, y1, y2, w2), C2 = C2(w1, y1, y2, w2), D = D(w1, y1, y2), E1 = E1(w1)

and E2 = E2(w1), P (Au
2) can be written as:

P (Au
2) =

F∫

0

( E2(w1)∫

E1(w1)

( ∞∫

−∞

( D(w1,y1,y2)∫

0

H(w1, y1, y2, w2)×

× gn2−1(w2) dw2

)
Φ′ (y2) dy2

)
Φ′ (y1) dy1

)
gn1−1(w1) dw1, (33)

with
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H(w1, y1, y2, w2) = Φ(C2(w1, y1, y2, w2))− Φ(C1(w1, y1, y2, w2)).

P (Al
2) is obtained by substituting k1 for k2 in P (Au

2). Thus, we can state:

Theorem 2: It holds that:

Lλ∗

2
(µ, σ) = L(n1, k1)(µ, σ) + P (Au

2)− P (Al
2). (34)

4. The computation of the AM-double sampling plans

For a given p1, p2, α and β, the plan λ∗
2 is computed in a similar way as λ∗

1.

We use the one-sided approximation λ̃2 =

(
n1 k̃1 k̃2

n2 k̃3

)
with

k̃1 = Φ

(
l1√
n1

)
, k̃2 = Φ

(
l2√
n1

)
, k̃3 = Φ

(
l3√

n1 + n2

)
,

where φ∗
2 =

(
n1 l1 l2

n2 l3

)
denotes the AM-double sampling plan in case of an

upper tolerance limit U (cf. Krumbholz and Rohr (2009)). φ∗
2 is determined

by

(i) Lφ2
(p1) ≥ 1− α

(ii) Lφ2
(p2) ≤ β (35)

(iii) Nmax(φ
∗
2) = min

φ2∈Z
Nmax(φ2),

where Z is the set of all double sampling plans φ2 fulfilling (35)(i) and (ii).

The AM-double sampling plan λ∗
2 is given

(i) min
0<σ≤σ0(p)

Lλ∗

2
(σ; p1) ≥ 1− α

(ii) max
0<σ≤σ0(p)

Lλ∗

2
(σ; p2) ≤ β (36)

(iii) Nmax(φ
∗
2) = min

φ2∈Z
Nmax(φ2).
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Example 1

For L = 1, U = 9, p1 = 0.01, p2 = 0.06, α = β = 0.1, we get:

(i) (n, k) = (36, 0.02645943143) and α∗ = 0.082, β∗ = 0.1,

(ii) λ∗
1 =

(
26 0.017577 0.035291

20 0.029275

)
and Nmax(λ

∗
1) = 32.75439.

α∗∗ β∗∗ λ̃2 Nmax(φ
∗

2
) min

σ
L
λ̃2

(σ; p1) max
σ

L
λ̃2

(σ; p2)

0.082 0.1
23 0.013909 0.038143

17 0.026289
30.45689 0.8930783818 0.0970618822

0.080 0.1
23 0.013597 0.038833

17 0.026400
30.72159 0.8955304122 0.0969993958

0.078 0.1
23 0.013993 0.038763

18 0.026496
30.99066 0.8978607677 0.0971362848

0.077 0.1
23 0.013838 0.039100

18 0.026558
31.12727 0.8990880486 0.0971046378

0.076 0.1
23 0.013681 0.039455

18 0.026617
31.26779 0.9003201617 0.0970742118

where λ∗
2 =

(
23 0.013681 0.039455

18 0.026617

)
with Nmax(λ

∗
2) = 31.26778533.

Example 2

For L = 1, U = 9, p1 = 0.01, p2 = 0.03, α = β = 0.1, we get:

(i) (n, k) = (115, 0.0178762881) and α∗ = 0.085, β∗ = 0.1,

(ii) λ∗
1 =

(
81 0.014029 0.021742

66 0.018537

)
and Nmax(λ

∗
1) = 103.5432.
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α∗∗ β∗∗ λ̃2 Nmax(φ
∗

2
) min

σ
L
λ̃2

(σ; p1) max
σ

L
λ̃2

(σ; p2)

0.085 0.1
72 0.012337 0.023495

58 0.017830
98.51959 0.8979623972 0.0991345737

0.084 0.1
72 0.012364 0.023535

59 0.017851
98.97047 0.8990715849 0.0991520345

0.083 0.1
72 0.012385 0.023569

60 0.017875
99.43030 0.9001786758 0.0991672779

where λ∗
2 =

(
72 0.012385 0.023569

60 0.017875

)
with Nmax(λ

∗
2) = 99.43020285.

Remark 2: Numerical investigations indicate:

(i) The AM-double sampling plan λ∗
2 is more powerful than the AM-double

sampling plan λ∗
1 as it appears that

Nmax(λ
∗
2) < Nmax(λ

∗
1).

(ii) Let λ̂1 denote the AM-double sampling plan based on the MVU esti-

mators p̂1 and p̂2 of p(µ, σ). p̂1 and p̂2 are superior over p∗1 and p∗2,

respectively, so that

Nmax(λ̂1) < Nmax(λ
∗
1).

For some constellations, it could further be shown that

Nmax(λ
∗
2) < Nmax(λ̂1) < Nmax(λ

∗
1) (See Figure 2).

(iii) The lowest Nmax among the AM-double sampling plans for a normally

distributed quality characteristic with two-sided specification limits and

unknown σ would feature the plan λ̂2 based on the MVU estimators p̂1

and p̂p of p(µ, σ), provided that a formula for determining the λ̂2-OC

would be found.
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Figure 2: ASN bands for λ∗
1, λ̂1 and λ∗

2 defined by p1 = 0.01, p2 = 0.03 and

α = β = 0.1
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