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A GENERAL FRAMEWORK FOR SEQUENTIAL AND

ADAPTIVE METHODS IN SURVIVAL STUDIES

By Xiaolong Luo, Gongjun Xu and Zhiliang Ying∗

Celgene Corporation, Columbia University and Columbia University

Adaptive treatment allocation schemes based on interim responses
have generated a great deal of recent interest in clinical trials and
other follow-up studies. An important application of such schemes is
in survival studies, where the response variable of interest is time to
the occurrence of a certain event. Due to possible dependency struc-
tures inherited from the enrollment and allocation schemes, existing
approaches to survival models, including those that handle staggered
entry, cannot be applied directly. This paper develops a new general
framework with its theoretical foundation for handling such adap-
tive designs. The new approach is based on marked point processes
and differs from existing approaches in that it considers entry and
calender times rather than survival and calender times. Large sam-
ple properties, which are essential for statistical inference, are es-
tablished. Special attention is given to the Cox model and related
score processes. Applications to adaptive and sequential designs are
discussed.

1. Introduction. Sequential and adaptive methods play important roles
in the design and analysis of long-term clinical studies. Pocock (1977),
O’Brien and Fleming (1979), and Lan and DeMets (1983) proposed various
boundaries that adjust for multiple testing and are motivated by applica-
tions to clinical trials; see also Jennison and Turnbull (2000). Zelen (1969),
Wei and Durham (1978), and Wei (1978) proposed and studied outcome de-
pendent treatment allocation schemes; see also Hu and Rosenberger (2006),
Rosenberger and Sverdlov (2008), and Hu, Zhang and He (2009). Fisher
(1998), Cui, Hung and Wang (1999), and Shen and Fisher (1999), on the
other hand, proposed adaptive schemes under which sample sizes are re-
estimated and adapted to interim analysis. Robins (1986) and Murphy and
Bingham (2008) developed dynamic treatment regimes, in which treatment
allocations are dynamically adapted to interim outcomes.

Many long-term clinical trials and epidemiological cohort studies involve
survival endpoints; see Kalbfleisch and Prentice (2002) and Fleming and
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Harrington (1991) for examples of such kind and standard statistical meth-
ods. For survival data, the log-rank test (Mantel and Haenszel, 1959) and
proportional hazards regression (Cox, 1972) are the methods of choice.
Counting processes and associated martingales may be used to derive desired
theoretical properties; see Andersen, Borgan, Gill and Keiding (1993).

Sequential and adaptive methods for survival data require simultaneous
consideration of both calendar and survival times. Sellke and Siegmund
(1983) and Slud (1984) established Brownian approximation to the score
process calculated over the diagonal line, i.e. when calendar time meets sur-
vival time. A Gaussian random field approximation to the two-dimensional
score process in the case of two-sample comparison was established by Gu
and Lai (1991). More general results about Gaussian random field approx-
imation to the two-dimensional score process under the Cox proportional
hazards regression can be found in Bilias, Gu and Ying (1997), who made
use of modern empirical process theory to derive certain key results, bypass-
ing martingale formulation to handle asymptotic analysis.

To incorporate both group sequential analysis and adaptive outcome-
dependent treatment allocation, one needs to consider a score process, to
which the existing martingale approach or the empirical process theory is
not applicable. That empirical process theory may not be applied is largely
due to the outcome-dependent enrollment allocation, which results in study
units that are not mutually independent.

This paper develops a new theoretic framework and techniques for the
partial likelihood score process with simultaneous consideration of calendar
and survival times and with entry times and treatment allocation possibly
depending on preceding outcomes. The approach is based upon expressing
the score process as a stochastic integral of a suitably defined marked point
process. The use of marked point processes for survival data was introduced
by Arjas and Haara (1984) and Arjas (1989). Related subsequent develop-
ments can be found in Feng (1999) and Martinussen and Scheike (2006).

The paper is organized as follows. Section 2 provides basic notation and an
introduction to the marked point process framework under calender time. It
also gives an illustrative example involving the Cox model. The correspond-
ing functional central limit theorems in a general setting are presented in
Section 3. An application to the Cox proportional hazards model with time-
dependent covariates is given in Section 4, where convergence properties
for the corresponding maximum partial likelihood estimator are also estab-
lished. Some discussion and more applications are given in Section 5. Proofs
for our main results are provided in Section 6.
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2. Notation and marked point process framework for survival

data.

2.1. Marked point process framework. Consider a follow up study with
calendar time period [0,T ), T ≤ ∞. Let Ui be the entry time for individual
i, i ≥ 1. For technical convenience, we assume throughout this paper that
the Ui have no ties. Thus, without loss of generality, we assume U1 < U2 <
· · · < Ui < · · · . Define the associated counting process for entry times

Rt =
∑

i≥1

1(Ui ≤ t).(2.1)

For subject i, let Ti denote survival time (since entry) and Ci censoring time.
Let T̃i = Ti ∧ Ci and ∆i = 1(Ti ≤ Ci), indicating failure (1) or censoring
(0). Thus, if ∆i = 1(0), then individual i experiences failure (censoring)
at calendar time Ui + T̃i. Furthermore, there is a possibly time-dependent,
d-dimensional covariate vector Zi = Zi(·), which may include the i-th in-
dividual’s treatment assignment and certain relevant baseline characteris-
tics. Here, for any w ≥ 0, Zi(w) refers to the covariate value at calendar
time Ui + w. As usual, we assume that Zi, as a random variable, is non-
informative for Ti and Ci (i.e. external time-dependent covariates as dis-
cussed in Kalbfleisch and Prentice, 2002). Informally speaking, the Zi can
be taken as a deterministic prior to information for Ti and Ci, and thus will
be probabilistically independent of future event development and follow up,
though it may depend on the historical information up to time Ui.

With the above notation, the entire underlying collection of random vari-
ables that may be observed with sufficiently long follow up is {Ui, Zi, Ui +
T̃i,∆i, i ≥ 1}. The data may be visualized as a two dimensional plot of entry
time Ui and event time Ui + T̃i, with each point labeled by (Zi,∆i). Since
it is the event, not entry, time that is of interest here, we combine Ui with
(Zi,∆i) to form a point (Ui, Zi,∆i) marking the event time Ui + T̃i in the
mark space X . The structure of X is built as follows. The first component
is a real number in [0,T ). The third component is either 0 or 1. The second
component Zi is a function in Dz, the set of all right continuous functions
on [0,T ) with bounded variation, on which we use the Skorohod topology
to define a measurable space. Thus, the mark space X = [0,T )×Dz ×{0, 1}
has a naturally induced product σ algebra.

For a given t > 0, define a random counting measure on X

pt(I × E) =
∑

i

1
(

Ui + T̃i ≤ t, Ui ∈ I, (Zi,∆i) ∈ E
)

,
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where I ⊂ [0,T ) and E ⊂ Dz×{0, 1} are the corresponding Borel measurable
subsets. Note that pt is random since it depends on random variables Ui, T̃i,
Zi and ∆i, i ≥ 1. From (2.1), we can rewrite

pt(I × E) =

∫

I
1
(

u+ T̃u ≤ t, (Zu,∆u) ∈ E
)

dRu,(2.2)

where, with a slight abuse of notation, T̃u, Zu, and ∆u refer to T̃i, Zi, and
∆i when u = Ui, which is well defined since the Ui are distinct for different
i.

The random measure pt(I ×E) may be viewed as a trivariate function of
t, I, and E. When I and E are fixed, pt(I ×E) is a non-decreasing function
of t, thereby inducing a Lebesgue-Stieltjes measure on [0,T ). Since for fixed
t, pt(I × E) is already a measure on X , we can combine the two measures
together to get a joint measure on [0,T )×X

p(ds du dz dδ) =
∑

i≥1

1(Ui + T̃i ∈ ds, Ui ∈ du,Zi ∈ dz,∆i = δ)(2.3)

= 1(u+ T̃u ∈ ds, Zu ∈ dz,∆u = δ)dRu.

Note that the support of this measure is on {(u, s) : 0 ≤ u ≤ s < T }.
The above random measure also provides a way to define information

accumulation over calendar time t. This is done by introducing the following
internal σ-filtration.

Ft = σ
{

p(A× I ×E), Zu, Ru :

∀u ≤ t, A ⊂ [0, t], I ⊂ [0, t], E ⊂ Dz × {0, 1}
}

.

A sub-σ-algebra of Ft that is of interest is defined by

Ft,ϑ = σ
{

p(A× I × E), Zu, Ru :

∀u ≤ ϑ ∧ t, A× I ⊂ [0, t] × [0, u], E ⊂ Dz × {0, 1}
}

.

Intuitively, Ft,ϑ represents covariate and event history up to time t for indi-
viduals that enrolled before time ϑ, where 0 < ϑ ≤ t.

Without loss of generality, we shall assume throughout that Rt and Zt

are predictable with respect to {Ft, t ≥ 0}, which is standard in survival
analysis. We also need the following condition.

Condition A. An individual’s current survival probability does not depend
on the future information of people who enrolled earlier than him/her in the
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sense that for any s and t > s,

(2.4) P (T̃i ∈ (s, s+ ds],∆i|FUi+t,Ui−) = P (T̃i ∈ (s, s+ ds],∆i|FUi+s,Ui−).

Moreover, assume

(2.5) P (T̃i ∈ (s, s+ ds],∆i|FUi+s) = P (T̃i ∈ (s, s+ ds],∆i|FUi+s,Ui
).

Remark 2.1. Here FUi+s,Ui− represents covariates and event history up
to calendar time Ui+s for subjects 1, · · · , i−1; FUi+s,Ui

represents covariates
and event history up to calendar time Ui + s for subjects 1, · · · , i− 1, i.

As we mentioned earlier, pt(I × E) is non-decreasing in t. Therefore, the
Dood-Meyer decomposition (Jacod and Shiryaev, 2003, page 66) implies the
existence of a compensator. The following lemma provides a general way to
obtain such a compensator and the corresponding martingale properties.

Lemma 2.2. For any Borel set I ⊂ [0,T ) and E ⊂ Dz × {0, 1}, there
exists a predictable compensator q(ds du dz dδ) for p(ds du dz dδ), such that

Mt(I × E) , pt(I × E)−
∫ t

0

∫

I×E
q(ds du dz dδ)(2.6)

is a {Ft, t ≥ 0} martingale, where q(dt du dz dδ) = E(p(dt du dz dδ)|Ft−).
Moreover, under Condition A, for fixed t,

Mt,ϑ(E) , pt([0, ϑ]× E)−
∫ t

0

∫ ϑ∧s

0

∫

E
q(ds du dz dδ),(2.7)

as a process in ϑ, is a {Ft,ϑ, 0 ≤ ϑ ≤ t} martingale.

Remark 2.3. Here we define the basic martingale process in calendar
time, in contrast to the usual approach of defining the basic martingale pro-
cess in survival time. The calendar time-based approach is more natural for
sequential analysis since interim analyses are conducted along calendar time.
In addition, we use the entry time as the second time dimension. This is also
natural since entry time indicates sample accumulation.

From (2.6),Mt(·) defines a combined randommeasure dMs = p(ds du dz dδ)
− q(ds du dz dδ) on the calendar time and mark space [0,T )×X . More for-
mally, by a random measure on [0,T ) × X , we mean a kernel mapping
from the event space Ω to [0,T ) × X (Last and Brandt, 1995). At point
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(s, u, z, δ) ∈ [0,T ) × X , let fs,u,z,δ(t) be an Ft measurable random vari-
able indexed by (s, u, z, δ); see (2.14) for the Cox model as an example. Its
integral with respect to dMs can be expressed as

∫ t

0

∫

I×E
fs,u,z,δ(t)dMs =

∑

i,Ui+T̃i≤t,

Ui∈I,(Zi,∆i)∈E

fUi+T̃i,Ui,Zi,∆i
(t)

−
∫ t

0

∫

I×E
fs,u,z,δ(t)q(ds du dz dδ).(2.8)

When fs,u,z,δ(t) is Fs predictable, results for martingale integration may
be used; see Kallianpur and Xiong (1995, Chapter 3) and Jacod and Shiryaev
(2003, Chapter II). In particular, for Fs predictable fs,u,z,δ(t) with

E

∫ T

0

∫

X
f2s,u,z,δ(t)p(ds du dz dδ) <∞,

the above integral

Mf
t (I × E) ,

∫ t

0

∫

I×E
fs,u,z,δ(t)dMs(2.9)

is a square integrable {Ft, t ≥ 0} martingale with predictable variation pro-
cess

〈Mf (I × E)〉(t) =
∫ t

0

∫

I×E
f2s,u,z,δ(t)q(ds du dz dδ),(2.10)

which is useful for variance estimation.
In general, the predictability assumption may not always be satisfied. In

those cases, we will use dMs as a measure for sample path-wise integration,
which is well defined in (2.8).

2.2. Cox proportional hazards regression model. We illustrate the above
construction through the Cox (1972) proportional hazards regression model
with a dependent/independent enrollment process. For simplicity, we take
Zi to be one-dimensional. For survival time Ti, the Cox model specifies

(2.11) P (Ti > w|FUi+w) = exp

{

−
∫ w

0
exp{βZi(s)}λ0(s)ds

}

, w > 0,

where λ0(.) is the baseline hazard function and β is the regression parameter.
In addition, we use λi,c(.) to denote the hazard function for the censoring
time Ci.
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By Lemma 2.2, we can write the compensator for p(ds du dz dδ) as

q(ds du dz dδ)

=







1(T̃u ≥ s− u,Zu ∈ dz) exp{βZu(s− u)}λ0(s− u)dRuds s ≥ u, δ = 1;

1(T̃u ≥ s− u,Zu ∈ dz)λu,c(s− u)dRuds s ≥ u, δ = 0;
0 otherwise.

For each k = 0, 1, 2 and any ϑ > 0, w > 0, ϑ+ w < T , let

Γk(β;ϑ,w) =
∑

Ui≤ϑ

Zk
i (w) exp(βZi(w))1(T̃i ≥ w).(2.12)

We can express the log partial likelihood l(β; t) for β as

∫ t

0

∫ s

0

∫

Dz×{0,1}

(

βZu(s− u)(2.13)

− log[Γ0(β; t− (s− u), s − u)]
)

1(δ = 1)p(ds du dz dδ);

see equation (1) in Sellke and Siegmund (1983). The score process can then
be written as

U(β; t) =

∫ t

0

∫ s

0

∫

Dz×{0,1}
[Zu(s− u)− Z̄(β; t, s − u)]1(δ = 1)p(dsdudzdδ)

=

∫ t

0

∫ s

0

∫

Dz×{1}
fs,u,z,δ(t)dMs,

where dMs = p(ds du dz dδ) − q(ds du dz dδ) and fs,u,z,δ(t) = z(s − u) −
Z̄(β; t, s − u), in which z(·) is the index function z in fs,u,z,δ(t) and

Z̄(β; t, w) =
Γ1(β; t−w,w)

Γ0(β; t−w,w)
.

More generally, we can define a two-parameter score process with respect to
calendar time t and entry time ϑ as

U(β; t, ϑ) =

∫ t

0

∫ s∧ϑ

0

∫

Dz×{1}
fs,u,z,δ(t)dMs.(2.14)

Note that U(β; t, t) = U(β; t).
As we mentioned in Remark 2.3, U(β; t) is an integral along calendar time

instead of survival time. By Lemma 2.2, we can use the martingale central
limit theorem to obtain convergence properties for U(β; t) in t; see Sections
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3 and 4 for details. Through this framework, enrollment and covariates his-
tory is expressed by the filtration Ft. As a result, martingale structure still
holds under response and covariates dependent allocation scheme, which is
desirable for adaptive methods in clinical trials (cf. Hu and Rosenberger,
2006).

On the other hand, the usual survival time-based approach results in the
following score process

Un(β; t, t) =
∑

Ui≤t

∫ t

0
[Zi(s)− Z̄(β; t, s)]Ni(t, ds),(2.15)

where Ni(t, s) = ∆i1(T̃i ≤ s ∧ (t − Ui)
+); see Bilias, et al., (1997). The

underlying martingale processes are

mi(t, s) = Ni(t, s)−
∫ s

0
1(T̃i ∧ (t− Ui)

+ ≥ w) exp(βZi(w))λ0(w)dw(2.16)

with filtration {Ft(s), s > 0} containing all information up to survival time
s and calendar time t for all subjects enrolled before t.

Under (2.15) and (2.16), if enrollment process follows a response and/or
covariate adaptive randomization procedure, mi(t, s) may no longer be an
Ft(s) martingale since for the i-th subject with s < Ui < t, the enrollment
allocation depends on the information up to its entry time Ui, that is FUi−,
which may not be contained in Ft(s). Similarly, the empirical process theory,
which requires the independent allocation scheme, is also not applicable.

Examples of adaptive design/allocation schemes include the randomized
play-the-winner rule (Wei and Durham, 1978), dynamic treatment regimes
(Pocock and Simon, 1975, Robins, 1986, and Murphy and Bingham, 2008)
with survival endpoints, efficient randomized adaptive designs (Hu, et al.,
2009), and adaptive design with sample size re-estimation (Cui, et al., 1999
and Shen and Fisher, 1999).

3. Main Convergence Results. For simplicity of notation, we assume
T = ∞ below. Following Sellke and Siegmund (1983) and Slud (1984), we
introduce an index n to parameterize the size of the clinical trial. Thus,
notation in Section 2 will include subscript n. Specifically, we have Rn,u for
Ru, Mn,t for Mt, pn(.) for p(.), qn(.) for q(.), and fn;s,u,z,δ(t) for fs,u,z,δ(t).
Additional quantities with the subscript n introduced henceforth are self-
explained.

Let [0,T )×X1 with X1 ⊂ Dz ×{0, 1} be the sub-mark space in which we
are interested. Note that for the Cox model, X1 = Dz×{1} and fn;s,u,z,δ(t) =
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z(s − u)− Z̄n(β; t, s − u). Let

Vn,t,ϑ ,

∫ t

0

∫ s∧ϑ

0

∫

X1

f⊗2
n;s,u,z,δ(t)qn(ds du dz dδ),

where ϑ ≤ t are the entry time and the calendar time, respectively, and
a⊗2 = aa′ for a column vector a. This may be interpreted as the accumulated
information up to time t from all subjects whose entry times are before
ϑ. Note that when fn;s,u,z,δ(t) is Fn,s predictable, Vn,t,ϑ is the predictable
variation process 〈Mf ([0, ϑ]×X1)〉(t) defined in (2.10). A natural estimator
is

V̂n,t,ϑ ,

∫ t

0

∫ s∧ϑ

0

∫

X1

f⊗2
n;s,u,z,δ(t)pn(ds du dz dδ).

For notational simplicity, when ϑ = t, we will use Vn,t and V̂n,t for Vn,t,t and
V̂n,t,t whenever there is no ambiguity.

3.1. Uni-dimensional fn. In this subsection, we consider the case in
which fn is real-valued. It is well-known that in a clinical trial with sur-
vival as the endpoint, the power is associated with sample size through in-
formation accumulated within the study period; see Friedman, Furberg and
DeMets (1998). Let Vn be the total information used in the study design. For
the log-rank score process, Slud (1984) uses the number of enrollments for
Vn, with n being the process index, while Sellke and Siegmund (1983) simply
take Vn = n. In general, as t increases, the actual information Vn,t increases
and may reach a planned portion of the information Vn. However, due to
interim adjustment which is common in adaptive designs, the ratio Vn,t/Vn
may not converge, making standard martingale central limit theorem not
applicable for Mf

t /
√
Vn in time scale t. To circumvent this difficulty, we will

adopt an information-based time rescaling approach (Lai and Siegmund,
1983). Specifically, let

σn,v , inf{t : Vn,t/Vn ≥ v},

an estimator of which is

σ̂n,v , inf{t : V̂n,t/Vn ≥ v}.

We can interpret σn,v as the calendar time at which a v proportion of the
planned information has been accumulated. It is natural to expect that if
σn,v <∞, then

Bn(v) ,
1√
Vn

∫ σn,v

0

∫ s

0

∫

X1

fn;s,u,z,δ(σn,v)dMn,s
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will converge to the Brownian motion process. If σ̂n,v is a consistent estima-
tor, then we expect that

B̂n(v) ,
1√
Vn

∫ σ̂n,v

0

∫ s

0

∫

X1

fn;s,u,z,δ(σ̂n,v)dMn,s

also converges to the Brownian motion. The following conditions are needed
for the above stated Brownian approximation.

Condition B. For enrollment process Rn and information scale Vn, we
require the following to be true:
(i) Total information Vn → ∞ in probability as n→ ∞, and for any t > 0,

(3.1) P (T̃i ∈ [t, t+ dt),∆i|Fn,t−, Vn) = P (T̃i ∈ [t, t+ dt),∆i|Fn,t−).

(ii) For any finite t and v̄, Rn,t/Vn < ∞, a.s. and P (σn,v̄ < ∞)
P−→ 1 as

n→ ∞.
(iii) For any τ < ∞ and 0 < s, u < τ , there exists a constant K̃τ such that
for any Borel sets: A ⊂ [0, τ ], I ⊂ [0, τ ],

lim
n→∞

P

(

sup
A,I

{

∫

A

∫

I

∫

X1

qn(ds du dz dδ)− K̃τ

∫

A

∫

I
ds dRn,u

}

< 0

)

= 1.

Condition C. Score function fn;s,u,z,δ(t) satisfies:
(i) fn;s,u,z,δ(t) = fn;s′,u′,z′,δ(t) if s− u = s′ − u′ and z(s− u) = z′(s′ − u′).
(ii) For any τ <∞, there exists a constant Kτ such that for t ≤ τ

lim
n→∞

P

(

sup
0≤t≤τ
Ui≤t

{

|fn;Ui,Ui,Zi,∆i
(t)|+

∫ t−Ui

0
|fn;Ui+w,Ui,Zi,∆i

(t)|dw
}

< Kτ

)

= 1,

where | · | denotes the L1-norm for a vector when fn is multidimensional.
(iii) There exists an Fn,s predictable function gn;s,u(s) such that for 0 ≤
u, s ≤ t ≤ τ , fn;s,u,Zu,∆u(t)− gn;s,u(s)

P−→ 0 uniformly as n→ ∞.

Remark 3.1 (Condition B). Equation (3.1) is trivially satisfied in com-
monly encountered cases since Vn is usually determined at the beginning of
a trial. Part (ii) means that the sample size up to any time t cannot be more
than a multiple of the planned information Vn, and that the time it takes to
reach v̄Vn is finite. It is easy to see that in the case of the Cox model, this
assumption is implied by Condition 4.1 of Sellke and Siegmund (1983). Part
(iii) means intuitively that qn(ds du)/(ds dRu) < K̃ uniformly in probability.
Again, for the Cox model, it is satisfied when the covariates and the baseline
hazard functions are bounded.
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Remark 3.2 (Condition C). Because s−u corresponds to survival time,
part (i) is natural in that it requires the score and covariate functions to be
on the survival time scale; see (2.14) as an example. Moreover, if (i) is not
satisfied, we can construct a counterexample for Lemma 3.6 below, by letting
fn;s,u,z,δ(t)− gn;s,u(s) = 1 at the jump points of Mn,s and 0 otherwise. Parts
(ii) and (iii) are standard and analogous to Conditions 1-3 in Bilias et al.
(1997).

Remark 3.3. In practice, there might be a planned final analysis time
τn. For instance, τn may be the time at which there are n events observed
or at which a budget cap is reached. In this case, the stopping time σn,v̄ can
be still achieved before τn by taking a weight function wn adaptively and by
defining wn · fn as the new integrand function; see Shen and Cai (2003) for
an example related to sample size reestimation. Therefore, Conditions B and
C may still be satisfied.

We now state the main result for uni-dimensional fn. For any constant v̄,
let D([0, v̄]) be the space of cadlag (right continuous with left limit) func-
tions on [0, v̄] with the Skorokhod topology. Then, we have the following
Brownian approximation of the score process. It extends the results of Sel-
lke and Siegmund (1983) and Slud (1984) to cover the case with dependent
entry times and a more general integrand function fn.

Theorem 3.4. Under Conditions A, B, and C, we have the following
weak convergence on the space D([0, v̄]),

{Bn(v), 0 ≤ v ≤ v̄} D−→ {B(v), 0 ≤ v ≤ v̄},

where B(v) is the Brownian motion process. Moreover, the convergence still
holds with σn,v replaced by σ̂n,v, i.e.,

{B̂n(v), 0 ≤ v ≤ v̄} D−→ {B(v), 0 ≤ v ≤ v̄}.

Our proof of Theorem 3.4 relies on martingale-based techniques by making
use of the martingale central limit theorem and certain maximal inequalities.
It consists of several major steps corresponding to the following lemmas,
whose proofs are given in Section 6.

When fn;s,u,z,δ(t) is Fn,s predictable, results for martingales may be used
and the martingale central limit theorem (Rebolledo, 1980) implies the fol-
lowing weak convergence.
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Lemma 3.5. Suppose that fn;s,u,z,δ(t) is Fn,s predictable and uniformly
bounded in probability. Then under Condition B, we have

(3.2) {Bn(v), 0 ≤ v ≤ v̄} D−→ {B(v), 0 ≤ v ≤ v̄}.

Moreover, the convergence continues to hold with σn,v replaced by σ̂n,v, i.e.,

(3.3) {B̂n(v), 0 ≤ v ≤ v̄} D−→ {B(v), 0 ≤ v ≤ v̄}.

In general, with staggered entry, fn;s,u,z,δ(t) is often not Fn,s predictable.
Consequently, the corresponding integral may no longer be a martingale and
Lemma 3.5 cannot be applied directly. The following lemma shows that it
can be approximated by a martingale under suitable conditions.

Lemma 3.6. Let τ <∞. Under Conditions A, B, and C, we have

sup
ϑ,t∈[0,τ ]

1√
Vn

∣

∣

∣

∫ t

0

∫ s∧ϑ

0

∫

X1

[fn;s,u,z,δ(t)− gn;s,u(s)]dMn,s

∣

∣

∣

P−→ 0,

where gn;s,u(s) is defined as in Condition C(iii).

Remark 3.7. Lemma 3.6 provides a tightness result similar to that of
Lemma 2 in Gu and Lai (1991). Our use of the martingale structure along
the calendar time allows us to apply the martingale central theorem, bypass-
ing empirical process based approximations that may not be applicable under
adaptive design.

Proof of Theorem 3.4. With the preceding lemmas, it is now straight-
forward to prove Theorem 3.4. In view of Condition B, we only need to
consider the case when σn,v̄ < τ a.s. with τ being a big enough constant.
From Lemma 3.6, it suffices to show that for 0 ≤ v ≤ v̄,

1√
Vn

∫ σ̂n,v

0

∫ s

0

∫

X1

gn;s,u(s)dMn,s

converges weakly to the Brownian motion. From an argument similar to
the proof of (3.3) (see Subsection 6.2.2), it is sufficient to show the weak
convergence of

1√
Vn

∫ σ̂′
n,v

0

∫ s

0

∫

X1

gn;s,u(s)dMn,s,

where σ̂′n,v = inf{t :
∫ t
0

∫ s
0

∫

X1
g2n;s,u(s)pn(ds du dz dδ) ≥ vVn}. Since gn;s,u(s)

is Fn,s predictable, we get the desired conclusion from Lemmas 3.5. �
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3.2. Multidimensional fn. For the multidimensional case, the above time
rescaling approach may not be directly applicable since we cannot scale Vn,t,ϑ
with a single growth rate in t. In other words, σn,t,ϑ is not well defined.
Nevertheless, under the usual variance stability condition (see equation 3.4
below), we still have the weak convergence result, which extends Gu and Lai
(1991) and Bilias, et al. (1997). More details in the case of the Cox model
are given in Section 4.

Theorem 3.8. Let τ <∞ and assume there exists a nonrandom matrix
function V (t, ϑ), such that for 0 < ϑ ≤ t ≤ τ ,

Vn,t,ϑ
n

P−→ V (t, ϑ).(3.4)

Then under Conditions A, B(iii), and C, n−1/2
∫ t
0

∫ s∧ϑ
0

∫

X1
fn;s,u,z,δ(t)dMn,s

converges to a zero-mean Gaussian process ξ̃(t, ϑ) on {t, ϑ : 0 < ϑ ≤ t ≤ τ}
with continuous sample path and covariance function

E[ξ̃(t1, ϑ1)ξ̃
′(t2, ϑ2)] = V (t1 ∧ t2, ϑ1 ∧ ϑ2).

Proof of Theorem 3.8. In view of the proof of Theorem 3.4, a key
step for obtaining the desired weak convergence result is to establish the
tightness result analogous to Lemma 3.6. This is shown by the next lemma,
whose proof is given in Subsection 6.3.

Lemma 3.9. Under the same assumptions as those of Theorem 3.8, we
have

sup
ϑ,t∈[0,τ ]

1√
n

∣

∣

∣

∫ t

0

∫ s∧ϑ

0

∫

X1

fn;s,u,z,δ(t)− gn;s,u(s)dMn,s

∣

∣

∣

P−→ 0.

Then, Theorem 3.8 follows from Lemma 3.9 and the functional martingale
central limit theorem. �

4. Cox Model with adaptive entry. In clinical trials with adaptive
allocation rules, patients are accrued sequentially and treatment assignment
may depend on the observed responses, leading to dependent enrollment
processes. In this section, we use the marked point process framework to
formulate the Cox proportional hazards model based score processes under
response and/or covariate adaptive allocation schemes. We also discuss how
the general results and conditions presented in Section 3 may be applied and
verified under the Cox model.
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4.1. Cox model with unidimensional parameter. Following the notation
in Sections 2 and 3, we have the compensator qn(ds du dz dδ) defined on
[0,T )× X satisfying

1(δ = 1)qn(ds du dz dδ) =
{

1(T̃u ≥ s− u,Zu ∈ dz) exp{βZu(s− u)}λ0(s− u)dRn,uds s ≥ u; δ = 1
0 otherwise.

From (2.12), for each k = 0, 1, 2, ϑ > 0, and w > 0, we have

Γn,k(β;ϑ,w) =
∑

Ui≤ϑ

Zk
i (w) exp(βZi(w))1(T̃i ≥ w)

=

∫ ϑ

0
1(T̃u ≥ w)Zk

u(w) exp{βZu(w)}dRn,u.(4.1)

The score processes as defined in Subsection 2.2 become

Un(β; t) =

∫ t

0

∫ s

0

∫

X1

[Zu(s − u)− Z̄n(β; t, s − u)]dMn,s,

Un(β; t, ϑ) =

∫ t

0

∫ s∧ϑ

0

∫

X1

[Zu(s − u)− Z̄n(β; t, s − u)]dMn,s,

where X1 = Dz × {1} and

Z̄n(β; t, w) =
Γn,1(β; t− w,w)

Γn,0(β; t− w,w)
.

The following conditions for the Cox model imply Condition C in Section
3.

C1. For every i, Zi(·) is bounded and of uniformly bounded variation in the
sense that for any constant τ < ∞, there exists a nonrandom constant Kτ

such that for any subject i,

lim
n→∞

P

(

sup
i

{

|Zi(0)| +
∫ τ

0
|Zi(ds)|

}

≤ Kτ

)

= 1

C2. For any w and ϑ, there exists a Fn,w− measurable random variable (or
constant) Ēn,k(ϑ,w) such that

1

Rn,ϑ

∑

Ui≤ϑ

Zk
i (w) exp(β0Zi(w))E

[

1(T̃i ≥ w)|Fn,T ,Ui−
]

− Ēn,k(ϑ,w)
P−→ 0.
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Remark 4.1. Condition C2 states the stability condition. For the special
case of independent enrollment allocation, Rt is non-informative for T̃ and
Condition C2 holds naturally under the new filtration {F ′

n,t, 0 < t ≤ T }
defined by F ′

n,t = Fn,t ∪ σ{Rn,s,∀s > 0}.

Theorem 4.2. Suppose that Vn is chosen to be n and that fn;s,u,z,δ(t) =
z(s − u) − Z̄n(β; t, s − u). Let σ̂n,v be defined as in Subsection 3.1. Then
under Conditions A, B, C1, and C2, for any v̄, n−1/2Un(β0; σ̂n,v) converges
weakly to the Brownian motion process in v ∈ [0, v̄], where β0 is the true
parameter value.

Proof. By Condition B(ii), we only need to consider the case when
σn,v̄ < τ , where τ is a large constant. Since Conditions A, B, and C(i)
in Sections 2 and 3 are satisfied, in order to apply Theorem 3.4, it suffices to
show that Conditions C(ii) and C(iii) hold, i.e., Z̄n(β0; t, w) is of bounded
variation and converges to an Fn,w predictable Zn,p(β0;w) uniformly. This
is equivalent to uniform convergence of Z̄n(β0;ϑ + w,w) with respect to ϑ
and w.

On {w,ϑ : w > 0, ϑ > 0, w + ϑ ≤ τ}, from (4.1), Γn,k(β0;ϑ,w) can be
expressed as an integral with respect to pn(ds du dz dδ):

Γn,k(β0;ϑ,w) =

∫ ϑ

0

∫ ∞

u

∫

X
zk(w) exp(β0z(w))I(s − u ≥ w)pn(du ds dz dδ).

For k=0, 1 and 2, we know that for 0 ≤ ϑ ≤ τ − w,

Mn,k(ϑ) =
1

n

(

Γn,k(β0;ϑ,w)

−
∫ ϑ

0
E
[

1(T̃u ≥ w)Zk
u(w) exp(β0Zu(w))|Fn,T ,u−

]

dRu

)

,

as processes in ϑ are Fn,T ,ϑ martingales. A simple application of Lenglart’s
inequality (Lemma 6.3) gives that for any w,

(4.2) sup
0≤ϑ≤τ

Mn,k(ϑ)
P−→ 0, k = 0, 1, 2.

Let ǫ > 0 and define stopping time a = inf{ϑ : Rn,ϑ/n > ǫ}. Condition
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C1 implies that for any η with 0 < η < ǫ,

sup
a≤ϑ1,ϑ2≤τ

|Rn,ϑ1
−Rn,ϑ2

|≤ηn

∣

∣

∣

∣

1

Rn,ϑ1

∑

Ui≤ϑ1

E
[

1(T̃i ≥ w)Zk
i (w) exp(β0Zi(w))|Fn,T ,Ui−

]

(4.3)

− 1

Rn,ϑ2

∑

Ui≤ϑ2

E
[

1(T̃i ≥ w)Zk
i (w) exp(β0Zi(w))|Fn,T ,Ui−

]

∣

∣

∣

∣

≤ 2Kk
τ exp(β0Kτ )η/ǫ,

which gives the tightness result for

∑

Ui≤ϑ

E[1(T̃i ≥ w)Zk
i (w) exp(β0Zi(w))|Fn,T ,Ui−]/Rn,ϑ

on {ϑ : a ≤ ϑ ≤ τ}. Therefore (4.3) together with Conditions C1 and C2,
implies

sup
a≤ϑ≤τ

∣

∣

∣

∣

1

Rn,ϑ

∑

Ui≤ϑ

E
[

1(T̃i ≥ w)Zk
i (w) exp(β0Zi(w))|Fn,T ,Ui−

]

(4.4)

− Ēn,k(ϑ,w)

∣

∣

∣

∣

P−→ 0.

From (4.2) and (4.4), for any w, as n→ ∞,

sup
a≤ϑ≤τ

∣

∣

∣

∣

Γn,k(β0;ϑ,w)

Rn,ϑ
− Ēn,k(ϑ,w)

∣

∣

∣

∣

P−→ 0.

Since exp(βZu(w)) and Zu(w) exp(βZu(w)) are of bounded variation for
w ∈ [0, τ ], so is supa≤ϑ≤τ Γn,k(β0;ϑ,w)/Rn,ϑ. Therefore

sup
w

sup
a≤ϑ≤τ

∣

∣

∣

∣

Γn,k(β0;ϑ,w)

Rn,ϑ
− Ēn,k(ϑ,w)

∣

∣

∣

∣

P−→ 0,

which indicates the uniform convergence of Z̄n(β0;ϑ + w,w) to an Fn,w

predictable Zn,p(β0;w) on {w,ϑ : w + ϑ ≤ τ, ϑ ≥ a,w > 0}.
For ϑ > 0, to show the bounded variation of Z̄n in w, let 0 = ω1 < · · · <
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wn0 = τ be a partition of [0, τ ]. For 1 ≤ i < n0,
∣

∣

∣

∣

Γn,1(β0;ϑ,wi+1)

Γn,0(β0;ϑ,wi+1)
− Γn,1(β0;ϑ,wi)

Γn,0(β0;ϑ,wi)

∣

∣

∣

∣

≤ |Γn,1(β0;ϑ,wi)− Γn,1(β0;ϑ,wi+1)|
Γn,0(β0;ϑ,wi)

+
|Γn,0(β0;ϑ,wi)− Γn,0(β0;ϑ,wi+1)| · |Γn,1(β0;ϑ,wi+1)|

Γn,0(β0;ϑ,wi)Γn,0(β0;ϑ,wi+1)

≤ |Γn,1(β0;ϑ,wi)− Γn,1(β0;ϑ,wi+1)|
Rn,ϑ

K ′
τ

+
|Γn,0(β0;ϑ,wi)− Γn,0(β0;ϑ,wi+1)|

Rn,ϑ
K ′′

τ ,

where K ′
τ and K ′′

τ are constant depending only on τ . The desired conclusion
then follows from Condition C1.

Let Bn(v) = n−1/2Un(β0, σ̂n,v). Since f
2
n is bounded, say by constant M ,

we have
∫ a
0 f

2
ndpn/n < Mǫ. Take ǫ small enough and let ǫ′ = Mǫ; then

σ̂n,ǫ′ > a. Therefore, in view of Lemmas 3.5 and 3.6, we get

{Bn(v), ǫ
′ ≤ v ≤ v̄} D−→ {B(v), ǫ′ ≤ v ≤ v̄}.

For the convergence property of the tail part {v : 0 < v ≤ ǫ′}, we only
need to show that for any η, η1 > 0 and all big n,

P (sup
v≤ǫ′

|Bn(v) −B(v)| > η1) ≤ η.

Since B(v) can be bounded near 0, it suffices to show

P (sup
v≤ǫ′

|Bn(v)| > η1/2) < η/2.

This can be done using an integration by parts argument similar to that of
the proof of Lemma 3.6. �

4.2. Cox model with multidimensional regression parameter. For a p-
dimensional covariate vector Z and corresponding vector β, the notation
and conditions in Subsection 4.1 generalize naturally to the multidimen-
sional case. Specifically, we use Z⊗k for Zk, where Z⊗0 = 1, Z⊗1 = Z, and
Z⊗2 = ZZ ′, and we take the | · | in Condition C1 as the L1 norm for a
p-dimensional vector. Under these modifications, Γn,k(β;ϑ,w) becomes

∫ ϑ

0
1(T̃u ≥ w)Z⊗k

u (w) exp{β′Zu(w)}dRn,u.(4.5)
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Additional quantities henceforth are self-explained.
To derive the weak convergence result analogous to Theorem 3.8, we need

the following condition; see Conditions 2 and 3 in Bilias et al. (1997).

C3. For each k = 0, 1, and 2, there exists a non-random Ēk(ϑ,w) such
that Ē1(·, w)/Ē0(·, w) is continuous on [0, τ − w] and as n→ ∞,

Rn,ϑ

n
Ēn,k(ϑ,w) − Ēk(ϑ,w)

P−→ 0,

for all positive ϑ,w satisfying ϑ+ w ≤ τ , and

sup
0≤t≤τ

∫ t

0

[

Ēn,1(ϑ, t− ϑ)

Ēn,0(ϑ, t− ϑ)
− Ē1(ϑ, t− ϑ)

Ē0(ϑ, t− ϑ)

]2

dϑ → 0,

Theorem 4.3. Under Conditions A, C1 - C3, n−1/2Un(β0; t) converges
weakly to a vector-valued zero-mean Gaussian process ξ on [0, τ ] with con-
tinuous sample path and covariance function E[ξ(t1)ξ

′(t2)] equal to

∫ t1∧t2

0

[

Ē2(t1 ∧ t2 − w,w) − Ē⊗2
1 (t1 ∧ t2 − w,w)

Ē0(t1 ∧ t2 − w,w)

]

λ0(w)dw.

Moreover, n−1/2Un(β0; t, ϑ) converges weakly to a vector-valued zero-mean
Gaussian process ξ̃(t, ϑ) on {t, ϑ : 0 ≤ ϑ ≤ t ≤ τ} with continuous sample
path and covariance function E[ξ̃(t1, u1)ξ̃

′(t2, u2)] equal to

∫ t1∧t2

0

[

Ē2(ut1∧t2,w, w)−
Ē⊗2

1 (ut1∧t2,w, w)
Ē0(ut1∧t2,w, w)

]

λ0(w)dw,

where ut1∧t2,w = u1 ∧ u2 ∧ (t1 ∧ t2 − w).

Proof. Thanks to Lemma 3.9, it suffices to prove that for every n0 > 0
and partition 0 ≤ u1 < · · · < un0 ≤ τ , {n−1/2Ũn(β0; t, u1),· · · ,n−1/2Ũn

(β0; t, un0), 0 ≤ t ≤ τ} converges weakly to a multivariate normal distribu-
tion {ξ̃(t, u1),· · · , ξ̃(t, un0)}, where

Ũn(β; t, ϑ) =

∫ t

0

∫ ϑ∧s

0

∫

X1

[

Zu(s− u)− Ēn,1(t− (s− u), s − u)

Ēn,0(t− (s− u), s − u)

]

Mn(ds).

From Lemma 2.2, {Ũn(β0; t, uj),Fn,t, 0 ≤ t ≤ τ} are martingales with pre-
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dictable covariation processes

〈n−1/2Ũn(β0; ·, ui), n−1/2Ũn(β0; ·, uj)〉(t)

=
1

n

∫ t

0

∫ ui∧uj∧s

0

∫

X1

[

Zu(s− u)

− Ēn,1(t− (s− u), s − u)

Ēn,0(t− (s− u), s − u)

]⊗2
qn(ds du dz dδ)

P−→
∫ t

0

[

Ē2(ut,w, w)−
Ē⊗2

1 (ut,w, w)

Ē0(ut,w, w)

]

λ0(w)dw,

where ut,w = u1∧u2∧(t−w) and the convergence follows from Condition C3.
Then, we can apply Rebolledo’s (1980) martingale functional central limit
theorem to obtain the desired weak convergence result in the same way as
in the proof of Lemma 3.5. �

4.3. Convergence of the maximum partial likelihood estimator. Let the
Cox partial likelihood estimator β̂(t, ϑ) and β̂(v) be solutions to U(β; t, ϑ) =
0 and U(β; σ̂n,v) = 0, respectively. In this subsection we give uniform consis-
tency and weak convergence for the sequentially computed maximum partial
likelihood estimator β̂ and β̂.

We need the following condition, which ensures the presence of enough
information, to gain the uniform consistency:

C4. There exists τ0 ∈ (0, τ ] such that

lim inf
n→∞

λmin

(

1

n

∫ τ0

0

∫ s

0

∫

X1

[

Zu(s− u)− Ēn,1(τ0 − (s − u), s− u)

Ēn,0(τ0 − (s − u), s− u)

]⊗2

qn(ds du dz dδ)

)

= v0 > 0, a.s.,

where Ēn,k is defined as in Condition C2 and λmin(A) denotes the minimum
eigenvalue of a symmetric matrix A.

Theorem 4.4 (One dimensional Cox model). Under Condition C4 and
the same assumptions as those of Theorem 4.2, for any v̄, β̂(v) is uniformly
consistent in the sense that

lim
n→∞

sup
v0≤v≤v̄

|β̂(v) − β0| = 0, in prob.

Moreover, {√nv(β̂(v) − β0), v0 ≤ v ≤ v̄} converges weakly to the Brownian
motion process B(v).
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Theorem 4.5 (Multidimensional Cox model). Let τ <∞. Under Con-
ditions A, C1, C2, and C4, β̂(t, ϑ) is uniformly consistent in the sense that

lim
n→∞

sup
τ0≤ϑ≤t≤τ

||β̂(t, ϑ)− β0|| = 0, in prob.

Moreover, if C3 is also satisfied, {√n(β̂(t, ϑ)−β0), 0 ≤ ϑ ≤ t ≤ τ} converges
weakly to a vector-valued zero-mean Gaussian random field η with covariance

E[η(t1, u1)η
′(t2, u2)] = E−1[ξ̃⊗2(t1, u1)]E[ξ̃(t1, u1)ξ̃

′(t2, u2)]E−1[ξ̃⊗2(t2, u2)],

where ξ̃ is defined as in Theorem 4.3.

To prove Theorem 4.5, we need the following Lemma, which is a restate-
ment of Lemma A.5 in Bilias, et al. (1997).

Lemma 4.6. Consider a set of functions {fn,α : n ≥ 1, α ∈ A} from Rd

to Rd. Suppose that (i) ∂
∂θfn,α(θ) are nonnegative definite for all n, α, θ;

(ii) supα ||fn,α(θ0)|| → 0 as n → ∞; (iii) there exists a neighborhood of θ0,
denoted by N (θ0), such that

lim inf
n→∞

inf
θ∈N (θ0)

inf
a∈A

λmin

(

∂fn,α(θ)

∂θ

)

> 0,

where λmin is the minimum eigenvalue as defined in C4. Then there exists
n0 such that for every n > n0 and α ∈ A, fn,α has a unique root θn,α and
supα∈A ||θn,α − θ0|| → 0.

Proof of Theorem 4.5. We only need to prove the multidimensional
case. From the same argument as in the proof of Theorem 4.2, as n→ ∞,

sup
ϑ,t

∣

∣

∣

1

n
U(β0; t, ϑ)

∣

∣

∣

P−→ 0,

and

sup
ϑ,t

1

n

∣

∣

∣

∣

∂

∂β
U(β0; t, ϑ)−

∫ t

0

∫ s∧ϑ

0

∫

X1

[

Zu(s− u)(4.6)

− Ēn,1(t− (s− u), s− u)

Ēn,0(t− (s− u), s− u)

]⊗2
qn(ds du dz dδ)

∣

∣

∣

∣

P−→ 0.

Since 1
n

∂
∂βU(β0; t, ϑ) has a uniformly bounded derivative with respect to

β, Condition C4 and (4.6) imply that there exists a neighborhood of β0,
N (β0), such that in probability

lim inf
n→∞

inf
τ0≤ϑ≤t≤τ

inf
β∈N (β0)

λmin

( 1

n

∂

∂β
U(β0; t, ϑ)

)

≥ v0
2
> 0.(4.7)
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Therefore, by Lemma 4.6, we get consistence.
By the Taylor expansion, uniformly on 0 ≤ ϑ ≤ t ≤ τ ,

1√
n
U(β̂(t, ϑ); t, ϑ)

=
1√
n
U(β0; t, ϑ) +

1

n

∂

∂β
U(β0; t, ϑ)

√
n(β̂(t, ϑ)− β0) + op(1),

where op is uniform for τ0 ≤ ϑ ≤ t ≤ τ . From this and Theorem 4.3, the

weak convergence of
√
n(β̂(t, ϑ)− β0) follows. �

5. Discussion. General statistical methods and theory usually assume
observations from different study subjects are independent. In practice, such
an assumption may be violated. This paper deals with survival studies in
which patients’ entry and treatment allocations are adaptive and dependent
on previous outcomes. Through carefully defined marked point processes,
it provides a general framework under which a martingale-based approach
is developed. It is shown that the usual score process for sequential data
monitoring (Jennison and Turnbull, 2000 and Proschan, Lan and Wittes,
2006) can still be approximated by a time rescaled Brownian motion process
that is the theoretical cornerstone for modern group sequential methods for
clinical trials. The results establish a bridge between sequential analysis
for survival endpoints with staggered entry (Sellke and Siegmund, 1983,
Slud, 1984, Gu and Lai 1991 and Bilias, et al. 1997) and covariate/response
adaptive treatment allocation designs (Hu and Rosenberger, 2006). Specific
details are given for the Cox model based score processes.

The theoretical framework and asymptotical results developed in this pa-
per may be extended to other follow-up studies with more general outcome
variables. For studies with longitudinal outcomes, dynamic regression mod-
els have been proposed and studied (see Martinussen and Scheike, 2000).
Consideration of staggered entry and outcomes dependent allocation could
complicate the analysis considerably. It is hoped that the approach of this
paper will provide a basis for developing a new way to handle such study
designs.

6. Proofs of the Main Results.

6.1. Proof of Lemma 2.2. Following Chapter II in Jacod and Shiryaev
(2003), random measure p(·) has a Ft predictable compensator q(·) of form
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E(p(dt du dz dδ)|Ft−), and

Mf
t (X ) =

∫ t

0

∫

X
fs,u,z,δ(s)(p(ds du dz dδ) − q(ds du dz dδ))(6.1)

is a martingale for any Fs predictable and integrable function fs,u,z,δ(s).
Thus, the first part of Lemma 1 follows.

As to the second part, for fixed t and any 0 ≤ u1 < u2 ≤ t,

E(Mt,u2(E)−Mt,u1(E)|Ft,u1)

= E(

∫ t

0

∫

(u1,u2]

∫

E
(p − q)(ds du dz dδ)|Ft,u1)

= 0,

which is due to Condition A and the first conclusion in this Lemma. There-
fore the desired result follows.

6.2. Proof of Lemma 3.5. We separate our proof into two parts. In Sub-
section 6.2.1, we prove (3.2). (3.3) is proved in Subsection 6.2.2.

6.2.1. Proof of (3.2). Since fn;s,u,z,δ(t) is assumed to be Fn,s predictable,
denote fn;s,u,z,δ(t) by fn;s,u,z,δ(s) when there is no ambiguity. Consider the
new filtration

F ′
n,t = σ{Fn,t, Vn}.

Under this filtration, since Ru, Zu are predictable,

E(pn(ds du dz dδ)|F ′
n,t)

= E(1(u+ T̃u ∈ ds, Zu ∈ dz,∆u = δ)dRu|F ′
n,t)

= E(1(u+ T̃u ∈ ds,∆u = δ)|F ′
n,t)1(Zu ∈ dz)dRu,

which equals, by Condition B(i), the compensator for pn(ds du dz dδ) under
Fn,t, i.e.,

qn(ds du dz dδ) = E(1(u+ T̃u ∈ ds,∆u = δ)|Fn,t)1(Zu ∈ dz)dRu.

Then Bn(v) is a martingale with respect to our new filtration by Lemma
2.2.

Note that 〈Bn〉(v) = v. From the central limit theorem for martingales in
Rebolledo (1980), we only need to show that the quadratic variation process
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of any ǫ jump process converges to zero in probability. For any ǫ > 0, the ǫ
jump process

Bn,ǫ(v)

=
∑

w≤v

∆Bn(w)1 (|∆Bn(w)| ≥ ǫ)

=
1√
Vn

∫ σv

0

∫ s

0

∫

X1

fn;s,u,z,δ(s)1

(
∣

∣

∣

∣

fn;s,u,z,δ(s)√
Vn

∣

∣

∣

∣

≥ ǫ

)

pn(ds du dz dδ)

=
1√
Vn

∫ σv

0

∫ s

0

∫

X1

fn;s,u,z,δ(s)1

(∣

∣

∣

∣

fn;s,u,z,δ(s)√
Vn

∣

∣

∣

∣

≥ ǫ

)

dMn,s

+
1√
Vn

∫ σv

0

∫ s

0

∫

X1

fn;s,u,z,δ(s)1

(∣

∣

∣

∣

fn;s,u,z,δ(s)√
Vn

∣

∣

∣

∣

≥ ǫ

)

qn(ds du dz dδ).

Thus, as fn is uniformly bounded in probability

〈Bn,ǫ〉(v)

=
1

Vn

∫ σv

0

∫ s

0

∫

X1

f2n;s,u,z,δ(s)1

(
∣

∣

∣

∣

fn;s,u,z,δ(s)√
Vn

∣

∣

∣

∣

≥ ǫ

)

qn(ds du dz dδ)

P−→ 0, as n→ ∞.

Therefore {Bn(v), 0 ≤ v ≤ v̄} D−→ {B(v), 0 ≤ v ≤ v̄}.

6.2.2. Proof of (3.3). Similarly we denote fn;s,u,z,δ(t) by fn;s,u,z,δ(s),
which is Fn,s predictable. By Condition B (ii), we only need to consider
the case when σn,v̄, σ̂n,v̄ < τ for some constant τ <∞.

Martingale

mn(t) ,
1

Vn

∫ t

0

∫

X
f2n;s,u,z,δ(s)

(

pn(ds du dz dδ) − qn(ds du dz dδ)
)

(6.2)

satisfies 〈mn(τ)〉 P−→ 0 for uniformly bounded fn under Condition B. From
Lenglart’s inequality, we get

sup
0≤t≤τ

mn(t)
P−→ 0.

Therefore for any δ > 0, the definition of σ̂n,v implies that the following
holds uniformly in probability as n→ ∞

(v − δ)Vn <

∫ σ̂n,v

0

∫

X
f2n;s,u,z,δ(s)pn(ds du dz dδ)−mn(σ̂n,v) · Vn,
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(v + δ)Vn >

∫ σ̂n,v

0

∫

X
f2n;s,u,z,δ(s)pn(ds du dz dδ)−mn(σ̂n,v) · Vn,

which indicates
∣

∣

∣
vVn −

∫ σ̂n,v

0

∫

X f
2
n;s,u,z,δ(s)qn(ds du dz dδ)

∣

∣

∣
< δVn. There-

fore,
P (σn,v−δ < σ̂n,v < σn,v+δ,∀v ∈ [0, v̄]) → 0 as n→ ∞,

and the following holds uniformly in probability as n→ ∞

sup
0<v<v̄

∣

∣Bn(v)− B̂n(v)
∣

∣ ≤ sup
0<s,t<v̄
|s−t|<δ

∣

∣Bn(t)−Bn(s)
∣

∣.

Therefore, from Lemma 3.5, for any ǫ, η > η1 > 0, there exists δ > 0 such
that for big enough n,

P
(

sup
0<v<v̄

|Bn(v)− B̂n(v)| > ǫ
)

≤ P

(

sup
0<s,t<v̄
|s−t|<δ

|Bn(t)−Bn(s)| > ǫ

)

+ η1 < η,

which completes our proof.

6.3. Proof of Lemma 3.6 and Lemma 3.9. We only need to prove Lemma
3.6; Lemma 3.9 follows from the same arguments. Since ∆ is discrete, with-
out loss of generality, it suffices to consider the sub-mark space X1 with
δ = 1. For statement convenience, we use fn(t, s, u) for fn;s,u,Zu,∆u(t) and
gn(s, u) for gn;s,u(s).

Note that pn(ds du dz, δ = 1) = 1(u + T̃u ∈ ds, Zu ∈ dz,∆u = 1)dRn,u.
From Condition A and Lemma 2.2,

qn(ds du dz, δ = 1) = E(pn(ds du dz, δ = 1)|Fn,s−)

= E(1(u + T̃u ∈ ds,∆u = 1)|Fn,s−)1(Zu ∈ dz)dRn,u.

From the above, we can define a new counting measure and its compen-
sator on [0, τ ] × [0, τ ] by p∗n(ds du) = 1(u + T̃u ∈ ds,∆u = 1)dRn,u and
q∗n(ds du) = E(1(u + T̃u ∈ ds,∆u = 1)|Fn,s−)dRn,u. Note that p∗n(ds du) =
∫

X1
pn(ds du dz dδ) and q∗n(ds du) =

∫

X1
qn(ds du dz dδ). From Lemma 2.2,

we get the martingale measure dM∗
n,s = p∗n(ds du) − q∗n(ds du), and for any

Fn,t measurable and integrable fn,

∫ t

0

∫ ϑ

0

∫

X1

fn;s,u,z,δ(t)dMn,s =

∫ t

0

∫ ϑ

0
fn(t, s, u)dM

∗
n,s.

When there is no ambiguity, we use the notation, pn(ds du), qn(ds du), and
Mn,s, instead of p∗n(ds du), q

∗
n(ds du), and M

∗
n,s.
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Let pn(ds, u) = I(u+ T̃u ∈ ds) and qn(ds, u) = E(pn(ds, u)|Fn,s−), which
are the counting measure and the corresponding compensator for the subject
who enrolled at time u. Then Lemma 2.2 implies that

Mn(ds, u) = pn(ds, u) − qn(ds, u)

is a martingale measure on [u, τ ], which defines a basic martingale measure
for each subject in the sense that if u = Ui, Mn(ds, u) = I(Ui + T̃i ∈
ds)− qn(ds, Ui); see (2.16) as an example for the Cox model. Let Mn,t(u) =
∫ t
uMn(ds, u), which is the total measure of interval [u, t] under Mn(ds, u).

Let Mn,t(du) = [
∫ t
uMn(ds, u)] · dRn,u, which defines a martingale measure

along entry time for all subjects who enrolled before time t.
Denote Mn,t,ϑ(X1) in Lemma 2.2 by Mn,t,ϑ. It can be taken as a mar-

tingale along both calendar and entry times, i.e., Mn,t,ϑ =
∫ t
0

∫ ϑ∧s
0 dMn,s is

a martingale in t for any ϑ and Mn,t,ϑ =
∫ ϑ
0 Mn,t(du) is a martingale in

ϑ for any t. When ϑ = t, we have Mn,t,t =
∫ t
0

∫ s
0 dMn,s, which is Mn,t(X1).

Similarly, define random integral M̃n,w,ϑ with respect to survival time w and
entry time ϑ by

M̃n,w,ϑ =

∫ ϑ

0
Mn,w+u(du)

(

=

∫ ϑ

0
Mn,w+u(u)dRn,u

)

.

Note that M̃n,w,ϑ is defined on the information observed before entry time
ϑ and survival time w.

We now proceed to prove Lemma 3.6. The following two propositions play
a key role, and we will give their proofs in Sections 6.3.1 and 6.3.2, respec-
tively. Proposition 6.1 shows the tightness for Mn,t,ϑ/

√
Vn along calendar

and entry time.

Proposition 6.1. Under Conditions A and B, for any ǫ > 0, there exist
a constant n0 < ∞ and partitions 0 = un,0 ≤ un,1 ≤ · · · ≤ un,n0 = τ , which
may be random, such that for all large n,

P

(

max
0≤j<n0

sup
ϑ∈[un,j,un,j+1];

0≤t≤τ

|Wn,t,ϑ −Wn,t,un,j
| ≥ ǫ

)

≤ ǫ,

where Wn,t,ϑ =Mn,t,ϑ/
√
Vn.

The following proposition shows the tightness property for M̃n,w,ϑ/
√
Vn

along survival and entry time.
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Proposition 6.2. Under Conditions A and B, for any ǫ > 0, there
exist partitions 0 = w0 < w1 < · · · < wN0 = τ and 0 = un,0 ≤ un,1 ≤ · · · ≤
un,n0 = τ such that for all large n,

P

(

max
0≤j<n0
0≤k<N0

sup
ϑ∈[un,j,un,j+1]

w∈[wk,wk+1]

|W̃n,w,ϑ − W̃n,wk,un,j
| ≥ ǫ

)

≤ ǫ,

where W̃n,w,ϑ = M̃n,w,ϑ/
√
Vn.

Proof of Lemma 3.6. To show the uniform convergence result, note
that for any 0 ≤ ϑ ≤ t ≤ τ ,

1√
Vn

∫ t

0

∫ s∧ϑ

0
(fn(t, s, u)− gn(s, u))(pn(ds du)− qn(ds du))

=
1√
Vn

∫ ϑ

0

∫ t

u
(fn(t, s, u) − gn(s, u))(pn(du ds)− qn(du ds))

=
1√
Vn

∫ ϑ

0

[

∫ t

u
(fn(t, s, u)− gn(s, u))Mn(ds, u)

]

dRn,u.

Since the total variations of fn and gn are bounded and Mn,s,u is a mar-
tingale with jump no bigger than 1, quadratic covariation

[

fn(t, ·, u) −
gn(·, u), V −1/2

n ·Mn,·,u
]

(t) converges to 0 uniformly in probability; then, using
integration by parts, we have

1√
Vn

∫ ϑ

0

[

∫ t

u
(fn(t, s, u)− gn(s, u))Mn(ds, u)

]

dRn,u

=
1√
Vn

∫ ϑ

0

[

Mn,t(u)(fn(t, t, u) − gn(t, u))−Mn,u(u)(fn(t, u, u) − gn(u, u))

−
∫ t

u
Mn,s(u)(fn(t, ds, u)− gn(ds, u))

]

dRn,u + on(1)

=
1√
Vn

∫ ϑ

0
(fn(t, t, u)− gn(t, u))Mn,t(du)

− 1√
Vn

∫ ϑ

0

[

∫ t

u
Mn,s(u)(fn(t, ds, u)− gn(ds, u))

]

dRn,u + on(1)

, (6.3)

where on(1) is a small term converging uniformly to 0 in probability.
Consider the first term in (6.3). For any ǫ > 0, Proposition 6.1 shows that

there exists a partition 0 = u0 ≤ un,1 ≤ · · · ≤ un,n0 = τ such that for all



A FRAMEWORK FOR SEQUENTIAL METHODS 27

large n, with probability bigger than 1− ǫ,

sup
i;u∈(un,i,un,i+1]

|Mn,t,un,i+1 −Mn,t,u|/
√

Vn < ǫ.

Therefore, again by integration by parts, the following result holds uniformly
on 0 ≤ ϑ ≤ t ≤ τ for all large n, with probability bigger than 1− 2ǫ:

∣

∣

∣

∣

1√
Vn

∫ ϑ

0
(fn(t, t, u) − gn(t, u))Mn,t(du)

∣

∣

∣

∣

=

∣

∣

∣

∣

1√
Vn

(fn(t, t, ϑ)− gn(t, ϑ))Mn,t,ϑ − 1√
Vn

(fn(t, t, 0) − gn(t, 0))Mn,t,0

− 1√
Vn

∫ ϑ

0
Mn,t,u(fn(t, t, du)− gn(t, du))

∣

∣

∣

∣

+ on(1)

≤
∣

∣

∣

∣

1√
Vn

(fn(t, t, ϑ)− gn(t, ϑ))Mn,t,ϑ

∣

∣

∣

∣

+
1√
Vn

n0
∑

i=1

∣

∣

∣

∣

∣

∫ un,i

un,i−1

Mn,t,un,i+1(fn(t, t, du) − gn(t, du))

∣

∣

∣

∣

∣

+ 2ǫ ·Kτ

≤ 3ǫ ·Kτ ,

where Kτ is the total variation bound for fn(t, s, u) = fn(t, s − u, 0), and
the last step follows from the Lenglart inequality.

For the second term in (6.3), by Condition C(i),

1√
Vn

∫ ϑ

0

∫ t

u
Mn,s(u)(fn(t, ds, u) − gn(ds, u))dRn,u

=
1√
Vn

∫ ϑ

0

∫ t

u
Mn,s(u)(fn(t, d(s − u), 0) − gn(d(s − u), 0))dRn,u

=
1√
Vn

∫ t

0

[

∫ (t−w)∧ϑ

0
Mn,w+u(u)dRn,u

]

(fn(t, dw, 0) − gn(dw, 0)).

Recall that we let M̃n,w,ϑ =
∫ ϑ
0 Mn,w+u(u)dRn,u; then, from Proposition 6.2,

there exist partitions 0 = w0 < w1 < · · · < wN0 = τ and 0 = un,0 ≤ un,1 ≤
· · · ≤ un,n0 = τ such that

sup
i,j;w∈[wi,wi+1),

u∈[un,j,un,j+1)

1√
Vn

|M̃n,w,u − M̃n,wi,un,j
| < ǫ;

then, similar to the proof for the first term in (6.3), we get that the following
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holds with probability bigger than 1− 2ǫ for all large n:

1√
Vn

∫ t

0

[

∫ (t−w)∧ϑ

0
Mn,w+u(u)dRn,u

]

(fn(t, dw, 0) − gn(dw, 0))

≤ 1√
Vn

N0
∑

i=1

n0
∑

j=1

∣

∣

∣

∣

∣

M̃n,wi,un,j

∫ wi

wi−1

(fn(t, dw, 0) − gn(dw, 0))

∣

∣

∣

∣

∣

+ 2ǫ ·Kτ

≤ 3ǫKτ .

Therefore, combining the above inequalities, we have that for all large n,

P

(

sup
ϑ,t∈[0,τ ]

1√
Vn

∣

∣

∣

∣

∫ t

0

∫ s∧ϑ

0
fn(t, s, u)− gn(s, u)dMn,s

∣

∣

∣

∣

< 6ǫKτ + ǫ

)

> 1− 5ǫ,

which completes our proof. �

6.3.1. Proof of Proposition 6.1. We shall make use of some of the ba-
sic martingale inequalities given in the following lemma, which is due to
Lenglart, Lepingle and Pratelli (1980).

Lemma 6.3. Let {W (s),G(s), s ≥ 0} be a martingale with right continu-
ous paths and left limits. For any q > 1, there exists a constant Cq depending
only on q, such that

E

(

sup
s≤τ

|W (s)|q
)

≤ Cq

(

E[〈W 〉(τ)]q/2 + E(sup
s≤τ

| △W (s)|q)
)

.(6.4)

Moreover, if sups≤τ | △W (s)| ≤ c, then for any a, b > 0

P

(

sup
s≤τ

|W (s)| ≥ a, 〈W 〉(τ) ≤ b

)

≤ 2 exp

(

−a
2

2b
ψ(ac/b)

)

,

where ψ(x) = 2x−2{(1 + x)[log(1 + x)− 1] + 1}.

Proof of Proposition 6.1. Choose positive numbers p, q > 1 such
that pq/2− p− q > 1. Let u0 = 0 and define un,j inductively by

un,j+1 = inf{ϑ : ϑ > un,j, 2τK̃τ (Rn,ϑ −Rn,un,j
) ≥ ǫpVn} ∧ (un,j + ǫp) ∧ τ.

Condition B(ii) implies that there are maximally O(ǫ−p) many, say n0, dis-
tinct points in [0, τ ] for all big n. From Lemma 1, {Wn,t,ϑ, Fn,t, t ≥ 0} is a
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martingale, and we know that un,j, j = 1, · · · , n0, are {Fn,t, 0 < t ≤ τ} pre-
dictable. Thus, {supϑ∈[un,j ,un,j+1] |Wn,t,ϑ−Wn,t,un,j

|,Fn,t, t ≥ 0} is a nonneg-
ative submartingale. By the Morkov inequality and Doob’s (1953) maximal
inequality,

P

(

max
0≤j<n0

sup
ϑ∈[un,j,un,j+1];

0≤t≤τ

|Wn,t,ϑ −Wn,t,un,j
| ≥ ǫ

)

≤ 1

ǫq

n0−1
∑

j=0

E

(

sup
ϑ∈[un,j,un,j+1];

0≤t≤τ

|Wn,t,ϑ −Wn,t,un,j
|q
)

≤ 1

ǫq

n0−1
∑

j=0

(

q

q − 1

)q

E

(

sup
ϑ∈[un,j ,un,j+1]

|Wn,τ,ϑ −Wn,τ,un,j
|q
)

.

Since {Wn,τ,ϑ,Fn,τ,ϑ, ϑ ≥ 0} is a martingale and supϑ∈[un,j ,un,j+1]△|Wn,τ,ϑ−
Wn,τ,un,j

| ≤ 1+K̃τ τ√
Vn

, then following (6.4),

1

ǫq

n0−1
∑

j=0

(

q

q − 1

)q

E

(

sup
ϑ∈[un,j ,un,j+1]

|Wn,τ,ϑ −Wn,τ,un,j
|q
)

≤ 1

ǫq

n0−1
∑

j=0

(

q

q − 1

)q

Cq

(

E[〈Wn,τ,un,j+·〉(un,j+1 − un,j)]
q/2 +

1 + K̃τ τ

V
q/2
n

)

≤ C∗
q (ǫ)

pq/2−p−q ≤ ǫ,

where C∗
q is a constant depending only on q and the last inequality holds

when ǫ is small enough. Then the desired result follows. �

6.3.2. Proof of Proposition 6.2. We need the following lemma (see Lemma
5 in Gu and Lai, 1991).

Lemma 6.4. Let q > 0 and r > 1. Let {Wn, n ≥ 1} be a sequence of
random variables defined in the same probability space and let {gn} be a
sequence of nonnegative integrable functions on a measure space (X ,B, µ).
Suppose that for every fixed x ∈ X , gn(x) is nondecreasing in n ≤ N and
that

E|Zi − Zj |q ≤
(
∫

X
[gi(x)− gj(x)]dµ(x)

)r

for all 1 ≤ j ≤ i ≤ N.
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Then there exists a universal constant Cq,r depending only on q and r such
that

E

(

sup
n≤N

|Zi − Zj |
)q

≤ Cq,r

(
∫

X
[gN (x)− g1(x)]dµ(x)

)r

.

Proof of Proposition 6.2. Choose positive numbers p, q > 1 such
that pq/2 − p − q > 1. Let w0 = 0, and define wj inductively by wj+1 =

jǫp/K̃τ . Denote N0 =
⌊

K̃τ τ/ǫ
p
⌋

+ 1, and redefine wN0 = τ .

Let wn,i = iV −r
n and Nw = {wn,i : i = 0, 1, · · · , ⌊τ · V r

n ⌋ + 1}. For state-
ment simplicity, assume that Vn takes a constant value. Then

P

(

∫ τ

0

∫ u+wn,i+1

u+wn,i

pn(du ds) ≥ 2

)

= O(V 2
n )O(V −2r

n ) = O(V −2r+2
n ).

From Condition B(iii), it follows that

P

(

sup
i,wn,i≤w≤wn,i+1

|W̃n,w,τ − W̃n,wn,i,τ | ≥ 2V −1/2
n + K̃τV

−r+1
n

)

(6.5)

≤ P

(

sup
i

∫ τ

0

∫ u+wn,i+1

u+wn,i

pn(du ds) ≥ 2

)

+P

(

sup
i

∫ τ

0

∫ u+wn,i+1

u+wn,i

qn(du ds) ≥ K̃τV
−r+1+1/2
n

)

≤ O(V −r+2
n ) + P (Rτ ≥ V 1+1/2

n ),

which converges to 0 in probability, according to Condition B(ii), when r >
2.

Therefore, to prove Proposition 6.2, by (6.5) and the martingale property
for {W̃n,w,ϑ,Fn,τ,ϑ, 0 < ϑ ≤ τ} along entry time, we only need to show that
for any ǫ > 0,

P

(

max
0≤j<N0

sup
0≤ϑ≤τ

w∈[wj,wj+1]∩Nw

|W̃n,w,ϑ − W̃n,wj,ϑ| ≥ ǫ

)

→ 0, as n→ ∞.

For simplicity, we only need to consider the case in which equation (3.1)
holds almost surely. Then, by Doob’s inequality and (6.4), similar as in the
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proof of Proposition 6.1,

P

(

max
0≤j<N0

sup
0≤ϑ≤τ

w∈[wj,wj+1]∩Nw

|W̃n,w,ϑ − W̃n,wj,ϑ| ≥ ǫ

)

≤ 1

ǫq

N0−1
∑

j=0

E

(

sup
0≤ϑ≤τ

w∈[wj,wj+1]∩Nw

|W̃n,w,ϑ − W̃n,wj,ϑ|q
)

≤ 1

ǫq

N0−1
∑

j=0

(

q

q − 1

)q

E

(

sup
w∈[wj ,wj+1]∩Nw

|W̃n,w,τ − W̃n,wj,τ |q
)

.

Since W̃n,wn,i+1,ϑ − W̃n,wni
,ϑ is a {Fn,τ,ϑ, ϑ ≥ 0} martingale, from (6.4)

and (3.1) which holds almost surely now, we have

E(|W̃n,wn,i+1,τ − W̃n,wni ,τ
|q)

≤ Cq

(

E[〈W̃n,wn,i+1,· − W̃n,wni ,·〉(τ)]
q/2 +

1

V
q/2
n

)

≤ C

(
∫ τ

0

[

K̃τ · 1(x ≤ wn,i+1)− K̃τ · 1(x ≤ wn,i)
]

dx

)q/2

,

where C is some big constant. Then from Lemma 6.4, there exists C∗ > 0
such that for all large n,

1

ǫq

N0−1
∑

j=0

(

q

q − 1

)q

E
(

sup
w∈[wj ,wj+1]∩Nw

|W̃n,w,τ − W̃n,wj,τ |q
)

(6.6)

≤ 1

ǫq

N0−1
∑

j=0

(

q

q − 1

)q

C

(
∫ τ

0
K̃τ · 1(wn,iwj

< x ≤ wn,iwj+1+1) dx

)q/2

≤ C∗(2ǫ)pq/2−p−q,

where iwj
= max{i : wn,i ≤ wj}. Thus (6.6) < ǫ when ǫ is small enough.

Then the desired conclusion follows. �
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