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Abstract. This paper presents a unified treatment of Gaussian process
models that extends to data from the exponential dispersion family
and to survival data. Our specific interest is in the analysis of data
sets with predictors that have an a priori unknown form of possibly
nonlinear associations to the response. The modeling approach we de-
scribe incorporates Gaussian processes in a generalized linear model
framework to obtain a class of nonparametric regression models where
the covariance matrix depends on the predictors. We consider, in par-
ticular, continuous, categorical and count responses. We also look into
models that account for survival outcomes. We explore alternative co-
variance formulations for the Gaussian process prior and demonstrate
the flexibility of the construction. Next, we focus on the important
problem of selecting variables from the set of possible predictors and
describe a general framework that employs mixture priors. We com-
pare alternative MCMC strategies for posterior inference and achieve
a computationally efficient and practical approach. We demonstrate
performances on simulated and benchmark data sets.

Key words and phrases: Bayesian variable selection, generalized linear
models, Gaussian processes, latent variables, MCMC, nonparametric
regression, survival data.

Terrance Savitsky is Associate Statistician, RAND

Corporation, 1776 Main Street, Santa Monica,

California 90401-3208, USA e-mail: tds151@gmail.com.

Marina Vannucci is Professor, Department of Statistics,

Rice University, 6100 Main Street, Houston, Texas

77030, USA e-mail: marina@rice.edu. Naijun Sha is

Associate Professor, Department of Mathematical

Sciences, University of Texas at El Paso, 500 W

University Ave, El Paso, Texas 79968, USA e-mail:

nsha@utep.edu.

This is an electronic reprint of the original article
published by the Institute of Mathematical Statistics in
Statistical Science, 2011, Vol. 26, No. 1, 130–149. This
reprint differs from the original in pagination and
typographic detail.

1. INTRODUCTION

In this paper we present a unified modeling ap-
proach to Gaussian processes (GP) that extends to
data from the exponential dispersion family and to
survival data. With the advent of kernel-based meth-
ods, models utilizing Gaussian processes have be-
come very common in machine learning approaches
to regression and classification problems; see Ras-
mussen and Williams (2006). In the statistical lit-
erature GP regression models have been used as
a nonparametric approach to model the nonlinear
relationship between a response variable and a set of
predictors; see, for example, O’Hagan (1978). Sacks,
Schiller and Welch (1989) employed a stationary GP
function of spatial locations in a regression model to
account for residual spatial variation. Diggle, Tawn
and Moyeed (1998) extended this construction to
model the link function of the generalized linear
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model (GLM) construction of McCullagh and Nelder
(1989). Neal (1999) considered linear regression and
logit models.
We follow up on the literature cited above and

introduce Gaussian process models as a class that
broadens the generalized linear construction by in-
corporating fairly complex continuous response sur-
faces. The key idea of the construction is to in-
troduce latent variables on which a Gaussian pro-
cess prior is imposed. In the general case the GP
construction replaces the linear relationship in the
link function of a GLM. This results in a class of
nonparametric regression models that can accom-
modate linear and nonlinear terms, as well as noise
terms that account for unexplained sources of varia-
tion in the data. The approach extends to latent re-
gression models used for continuous, categorical and
count data. Here we also consider a class of models
that account for survival outcomes. We explore al-
ternative covariance formulations for the GP prior
and demonstrate the flexibility of the construction.
In addition, we address practical computational is-
sues that arise in the application of Gaussian pro-
cesses due to numerical instability in the calculation
of the covariance matrix.
Next, we look at the important problem of select-

ing variables from a set of possible predictors and
describe a general framework that employs mixture
priors. Bayesian variable selection has been a topic
of much attention among researchers over the last
few years. When a large number of predictors is
available the inclusion of noninformative variables
in the analysis may degrade the prediction results.
Bayesian variable selection methods that use mix-
ture priors were investigated for the linear regression
model by George and McCulloch (1993, 1997), with
contributions by various other authors on special
features of the selection priors and on computational
aspects of the method; see Chipman, George and
McCulloch (2001) for a nice review. Extensions to
linear regression models with multivariate responses
were put forward by Brown, Vannucci and Fearn
(1998b) and to multinomial probit by Sha et al.
(2004). Early approaches to Bayesian variable se-
lection for generalized linear models can be found in
Chen, Ibrahim and Yiannoutsos (1999) and Raftery,
Madigan and Volinsky (1996). Survival models were
considered by Volinsky et al. (1997) and, more re-
cently, by Lee and Mallick (2004) and Sha, Tadesse
and Vannucci (2006). As for Gaussian process mod-
els, Linkletter et al. (2006) investigated Bayesian

variable selection methods in the linear regression
framework by employing mixture priors with a spike
at zero on the parameters of the covariance matrix
of the Guassian process prior.
Our unified treatment of Gaussian process models

extends the line of work of Linkletter et al. (2006)
to more complex data structures and models. We
transform the covariance parameters and explore
designs and MCMC strategies that aim at produc-
ing a minimally correlated parameter space and ef-
ficiently convergent sampling schemes. In particu-
lar, we find that Metropolis-within-Gibbs schemes
achieve a substantial improvement in computational
efficiency. Our results on simulated data and bench-
mark data sets show that GP models can lead to im-
proved predictions without the requirement of pre-
specifying higher order and nonlinear additive func-
tions of the predictors. We show, in particular, that
a Gaussian process covariance matrix with a single
exponential term is able to map a mixture of linear
and nonlinear associations with excellent prediction
performance.
GP models can be considered part of the broad

class of nonparametric regression models of the type
y = f(x) + error , with y an observed (or latent) re-
sponse, f an unknown function and x a p-dimensio-
nal vector of covariates, and where the objective is
to estimate the function f for prediction of future
responses. Among possible alternative choices to GP
models, one famous class is that of kernel regression
models, where the estimate of f is selected from the
set of functions contained in the reproducing ker-
nel Hilbert space (RKHS) induced by a chosen ker-
nel. Kernel models have a long and successful his-
tory in statistics and machine learning [see Parzen
(1963), Wahba (1990) and Shawe-Taylor and Cris-
tianini (2004)] and include many of the most widely
used statistical methods for nonparametric estima-
tion, including spline models and methods that use
regularized techniques. Gaussian processes can be
constructed with kernel convolutions and, therefore,
GP models can be seen as contained in the class
of nonparametric kernel regression with exponen-
tial family observations. Rasmussen and Williams
(2006), in particular, note that the GP construction
is equivalent to a linear basis regression employing
an infinite set of Gaussian basis functions and results
in a response surface that lies within the space of
all mathematically smooth, that is, infinitely mean
square differentiable, functions spanning the RKHS.
Constructions of Bayesian kernel methods in the
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context of GP models can be found in Bishop (2006)
and Rasmussen and Williams (2006).
Another popular class of nonparametric spline re-

gression models is the generalized additive models
(GAM) of Ruppert, Wand and Carroll (2003), that
employ linear projections of the unknown function f
onto a set of basis functions, typically cubic splines
or B-splines, and related extensions, such as the
structured additive regression (STAR) models of
Fahrmeir, Kneib and Lang (2004) that, in addition,
include interaction surfaces, spatial effects and ran-
dom effects. Generally speaking, these regression mo-
dels impose additional structure on the predictors
and are therefore better suited for the purpose of
interpretability, while Gaussian process models are
better suited for prediction. Extensions of STAR
models also enable variable selection based on spike
and slab type priors; see, for example, Panagiotelis
and Smith (2008).
Ensamble learning models, such as bagging, boost-

ing and random forest models, utilize decision trees
as basis functions; see Hastie, Tibshirani and Fried-
man (2001). Trees readily model interactions and
nonlinearity subject to a maximum tree depth con-
straint to prevent overfitting. Generalized boosting
models (GBMs), as an example, such as the Ada-
Boost of Freund and Schapire (1997), represent a non-
linear function of the covariates by simpler basis func-
tions typically estimated in a stage-wise, iterative
fashion that successively adds the basis functions to
fit generalized or pseudo residuals obtained by mini-
mizing a chosen loss function. GBMs accommodate
dichotomous, continuous, event time and count res-
ponses. These models would be expected to produce
similar prediction results to GP regression and clas-
sification models. We explore their behavior on one
of the benchmark data sets in the application section
of this paper. Notice that GBMs do not incorporate
an explicit variable selection mechanism that allows
to exclude nuisance covariates, as we do with GP
models, although they do provide a relative measure
of variable importance, averaged over all trees.
Regression trees partition the predictor space and

fit independent models in different parts of the input
space, therefore facilitating nonstationarity and lead-
ing to smaller local covariance matrices. “Treed GP”
models are constructed by Gramacy and Lee (2008)
and extend the constant and linear construction of
Chipman, George and McCulloch (2002). A prior is
specified over the tree process, and posterior infer-
ence is performed on the joint tree and leaf models.

The effect of this formulation is to allow the corre-
lation structure to vary over the input space. Since
each tree region is composed of a portion of the ob-
servations, there is a computational savings to gen-
erate the GP covariance matrix from mr <n obser-
vations for region r. The authors note that treed GP
models are best suited “. . .towards problems with a
smaller number of distinct partitions. . . .” So, while
it is theoretically possible to perform variable selec-
tion in a forward selection manner, in applications
these models are often used with single covariates.
The rest of the paper is organized as follows: In

Section 2 we formally introduce the class of GP mod-
els by broadening the generalized linear construc-
tion. We also extend this class to include models for
survival data. Possible constructions of the GP co-
variance matrix are enumerated in Section 3. Prior
distributions for variable selection are discussed in
Section 4 and posterior inference, including MCMC
algorithms and prediction strategies, in Section 5.
We include simulated data illustrations for continu-
ous, count and survival data regression in Section 6,
followed by benchmark applications in Section 7.
Concluding remarks and suggestions for future re-
search are in Section 8. Some details on computa-
tional issues and related pseudo-code are given in
the Appendix.

2. GAUSSIAN PROCESS MODELS

We introduce Gaussian process models via a uni-
fied modeling approach that extends to data from
the exponential dispersion family and to survival
data.

2.1 Generalized Models

In a generalized linear model the monotone link
function g(·) relates the linear predictors to the cano-
nical parameter as g(ηi) = x′

iβ, with ηi the canonical
parameter for the ith observation, xi = (x1, . . . , xp)

′

a p× 1 column vector of predictors for the ith sub-
ject and β the coefficient vector β = (β1, . . . , βp)

′.
A broader class of models that incorporate fairly
complex continuous response surfaces is obtained
by introducing latent variables on which a Gaus-
sian process prior is imposed. More specifically, the
latent variables z(xi) define the values of the link
function as

g(ηi) = z(xi), i= 1, . . . , n,(1)
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and a Gaussian process (GP) prior on the n × 1
latent vector is specified as

z(X) = (z(x1), . . . , z(xn))
′ ∼N(0,C),(2)

with the n×n covariance matrix C a fairly complex
function of the predictors. This class of models can
be cast within the model-based geostatistics frame-
work of Diggle, Tawn and Moyeed (1998), with the
dimension of the space being equal to the number
of covariates.
The class of models introduced above extends to

latent regression models used for continuous, cate-
gorical and count data. We provide some details on
models for continuous and binary responses and for
count data, since we will be using these cases in our
simulation studies presented below. GP regression
models are obtained by choosing the link function
in (1) as the identity function, that is,

y= z(X) + ε,(3)

with y the n × 1 observed response vector, z(X)
an n-dimensional realization from a GP as in (2),
and ε ∼ N (0, 1r In) with r a precision parameter.
A Gamma prior can be imposed on r, that is, r ∼
G(ar, br). Linear models of type (3) were studied by
Neal (1999) and Linkletter et al. (2006). One notices
that, by integrating z(X) out, the marginalized like-
lihood is

y|C, r ∼N

(

0,

[

1

r
In +C

])

,(4)

that is, a regression model with the covariance ma-
trix of the response depending on the predictors. Non-
linear response surfaces can be generated as a func-
tion of those covariates for suitable choices of the co-
variance matrix. We discuss some of the most popu-
lar in Section 3.
In the case of a binary response, class labels ti ∈

{0,1} for i= 1, . . . , n are observed. We assume ti ∼
Binomial(1;pi) and define pi = P (ti = 1|z(xi)) with
z(X) as in (2). For logit models, for example, we
have pi =F(z(xi)) = 1/[1 + exp(−z(xi))]. Similarly,
for binary probit we can directly define the inverse
link function as pi = Φ(z(xi)), with Φ(·) the cdf of
standard normal distribution. However, a more com-
mon approach to inference in probit models uses
data augmentation; see Albert and Chib (1993). This
approach defines latent values yi which are related
to the response via a regression model, that is, in
our latent GP framework, yi = z(xi) + εi, with εi ∼
N (0,1), and associated to the observed classes, ti,

via the rule ti = 1 if yi > 0 and ti = 0 if yi < 0. No-
tice that the latent variable approach results in a GP
on y with a covariance function obtained by adding
a “jitter” of variance one to C, with a similar effect
of the noise component in the regression models (3)
and (4). Neal (1999) argues that an effect close to
a probit model can be produced by a logit model by
introducing a large amount of jitter in its covariance
matrix. Extensions to multivariate models for con-
tinuous and categorical responses are quite straight-
forward.
As another example, count data models can be

obtained by choosing the canonical link function for
the Poisson distribution as log(λ) = z(X) with z(X)
as in (2). Over-dispersion, possibly caused from lack
of inclusion of all possible predictors, is taken into
account by modeling the extra variability via ran-
dom effects, ui, that is, λ̃i = exp(z(xi) + ui) =
exp(z(xi)) exp(ui) = λiδi. For identifiability, one can
impose E(δi) = 1 and marginalize over δi using a con-
jugate prior, δi ∼ G(τ, τ), to achieve the negative bi-
nomial likelihood as in Long (1997),

π(si|λi, τ)
(5)

=
Γ(si + τ)

Γ(si + 1)Γ(τ)

(

τ

τ + λi

)τ( λi

τ + λi

)si

,

for si ∈N∪{0}, with the same mean as the Poisson
regression model, that is, E(si) = λi, and Var(si) =
λi+λ2

i /τ , with the added parameter τ capturing the
variance inflation associated with over-dispersion.

2.2 Survival Data

The modeling approach via Gaussian processes ex-
ploited above extends to other classes of models, for
example, those for survival data. In survival studies
the task is typically to measure the effect of a set of
variables on the survival time, that is, the time to
a particular event or “failure” of interest, such as
death or occurrence of a disease. The Cox proportio-
nal hazard model of Cox (1972) is an extremely pop-
ular choice. The model is defined through the hazard
rate function h(t|xi) = h0(t) exp(x

′

iβ), where h0(·)
is the baseline hazard function, t is the failure time
and β the p-dimensional regression coefficient vec-
tor. The cumulative baseline hazard function is de-
noted as H0(t) =

∫ t
0 h0(u)du and the survivor func-

tion becomes S(t|xi) = S0(t)
exp(x′

iβ), where S0(t) =
exp{−H0(t)} is the baseline survivor function.
Let us indicate the data as (t1,x1, d1), . . . , (tn,xn,

dn) with censoring index di = 0 if the observation
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is right censored and di = 1 if the failure time ti is
observed. A GP model for survival data is defined as

h(ti|z(xi)) = h0(ti) exp(z(xi)), i= 1,2, . . . , n,(6)

with z(X) as in (2). In this general setting, defining
a probability model for Bayesian analysis requires
the identification of a prior formulation for the cu-
mulative baseline hazard function. One strategy of-
ten adopted in the literature on survival models is
to utilize the partial likelihood of Cox (1972) that
avoids prior specification and estimation of the base-
line hazard, achieving a parsimonious representa-
tion of the model. Alternatively, Kalbfleisch (1978)
employs a nonparametric gamma process prior on
H0(ti) and then calculates a marginalized likelihood.
This “full” likelihood formulation tends to behave
similarly to the partial likelihood one when the con-
centration parameter of the gamma process prior
tends to 0, placing no confidence in the initial para-
metric guess. Sinha, Ibrahim and Chen (2003) ex-
tend this theoretical justification to time-dependent
covariates and time-varying regression parameters,
as well as to grouped survival data.

3. CHOICE OF THE GP COVARIANCE

MATRIX

We explore alternative covariance formulations for
the Gaussian process prior (2) and demonstrate the
flexibility of the construction. In general, any plau-
sible relationship between the covariates and the re-
sponse can be represented through the choice of C,
as long as the condition of positive definiteness of the
matrix is satisfied; see Thrun, Saul and Scholkopf
(2004). In the Appendix we further address practical
computational issues that arise in the application of
Gaussian processes due to numerical instability in
the construction of the covariance matrix and the
calculation of its inverse.

3.1 1-term vs. 2-term Exponential Forms

We consider covariance functions that include a
constant term and a nonlinear, exponential term as

C=Cov(z(X)) =
1

λa
Jn +

1

λz
exp(−G),(7)

with Jn an n×n matrix of 1’s and exp(G) a matrix
with elements exp(gij), where gij = (xi−xj)

′P(xi−
xj) and P= diag(− log(ρ1, . . . , ρp)), with ρk ∈ [0,1]
associated to xk, k = 1, . . . , p. In the literature on
Gaussian processes a noise component, called “jit-
ter,” is sometimes added to the covariance matrix C,

in addition to the term (1/λ)J, in order to make the
matrix computations better conditioned; see Neal
(1999). This is consistent with the belief that there
may be unexplained sources of variation in the data,
perhaps due to explanatory variables that were not
recorded in the original study. The parametrization
of G we adopt allows simpler prior specifications
(see below), and it is also used by Linkletter et al.
(2006) as a transformation of the exponential term
used by Neal (1999) and Sacks, Schiller and Welch
(1989) in their formulations. Neal (1999) notices that
introducing an intercept in model (3), with preci-
sion parameter λa, placing a Gaussian prior on it
and then marginalizing over the intercept produces
the additive covariance structure (7). The parame-
ter for the exponential term, λz , serves as a scaling
factor for this term. In our empirical investigations
we found that construction (7) is sensitive to scaling
and that best results can be obtained by normalizing
X to lie in the unit cube, [0,1]p, though standardiz-
ing the columns to mean 0 and variance 1 produces
similar results.
The single-term exponential covariance provides

a parsimonious representation that enables a broad
class of linear and nonlinear response surfaces. Plots
(a)–(c) of Figure 1 show response curves produced
by utilizing a GP with the exponential covariance
matrix (7) and three different values of ρ. One read-
ily notes how higher order polynomial-type response
surfaces can be generated by choosing relatively lower
values for ρ, whereas the assignment of higher values
provides lower order polynomial-type that can also
include roughly linear response surfaces [plot (c)].
We also consider a two-term covariance obtained

by adding a second exponential term to (7), that is,

C=Cov(z(X))

(8)

=
1

λa
Jn +

1

λ1,z
exp(−G1) +

1

λ2,z
exp(−G2),

where G1 and G2 are parameterized as P1

= diag(− log(ρ1,1, . . . , ρ1,p)) andP2 = diag(− log(ρ2,1,
. . . , ρ2,p)), respectively. As noted in Neal (2000), ad-
ding multiple terms results in rougher, more com-
plex, surfaces while retaining the relative computa-
tional efficiency of the exponential formulation. For
example, plot (d) of Figure 1 shows examples of sur-
faces that can be generated by employing the 2-term
covariance formulation with (ρ1, ρ2) = (0.5,0.05) and
(λ1,z = 1, λ2,z = 8).
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Fig. 1. Response curves drawn from a GP. Each plot shows two (solid and dashed) random realizations. Plots (a)–(c) were
obtained with the exponential covariance (7) and plot (d) with the 2-term formulation (8). Plots (e) and (f) show realizations
from the matern construction. All curves employ a one-dimensional covariate.
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3.2 The Matern Construction

An alternative choice to the exponential covari-
ance term is the Matern formulation. This intro-
duces an explicit smoothing parameter, ν, such that
the resulting Gaussian process is k times differen-
tiable for k ≤ ν,

C(z(xi), z(xj))
(9)

=
1

2ν−1Γ(ν)
[2
√

νd(xi,xj)]
νKν [2

√

νd(xi,xj)],

with d(xi,xj) = (xi−xj)
′P(xi−xj), Kν(·) the Bes-

sel function and P parameterized as in (7). Banerjee
et al. (2008) employ such a construction with ν fixed
to 0.5 for modeling a spacial random effects process
characterized by roughness. One recovers the expo-
nential covariance term from the Matern construc-
tion in the limit as ν →∞. However, Rasmussen and
Williams (2006) point out that two formulations are
essentially the same for ν > 7

2 , as confirmed by our
own simulations.

4. PRIOR MODEL FOR BAYESIAN VARIABLE

SELECTION

The unified modeling approach we have described
allows us to put forward a general framework for
variable selection that employs Bayesian methods
and mixture priors for the selection of the predic-
tors. In particular, variable selection can be achieved
within the GPmodeling framework by imposing “spi-
ke-and-slab” mixture priors on the covariance pa-
rameters in (7), that is,

π(ρk|γk) = γkI[0≤ ρk ≤ 1] + (1− γk)δ1(ρk),(10)

for k = 1, . . . , p, with δ1(·) a point mass distribu-
tion at one. Clearly, ρk = 1 causes the predictor xk
to have no effect on the computation for the GP co-
variance matrix. This formulation is similar in spirit
to the use of selection priors for linear regression
models and is employed by Linkletter et al. (2006)
in the univariate GP regression framework (3). Fur-
ther Bernoulli priors are imposed on the selection
parameters, that is, γk ∼Bernoulli(αk) and Gamma
priors are specified on the precision terms (λa, λz).
Variable selection with a covariance matrix that

employs two exponential terms as in (8) is more
complex. In particular, one can select covariates sep-
arately for each exponential term by assigning a spe-
cific set of variable selection parameters to each term,
that is, (γ1,γ2) associated to (ρ1,ρ2), and simply

extending the single term formulation via indepen-
dent spike-and-slab priors of the form

π(ρ1,k|γ1,k)
(11)

= γ1,kI[0≤ ρ1,k ≤ 1] + (1− γ1,k)δ1(ρ1,k),

π(ρ2,k|γ2,k)
(12)

= γ2,kI[0≤ ρ2,k ≤ 1] + (1− γ2,k)δ1(ρ2,k),

with k = 1, . . . , p. Assuming a priori independence
of the two model spaces, Bernoulli priors can be im-
posed on the selection parameters, that is, γi,k ∼
Bernoulli(αi,k), i= 1,2. This variable selection frame-
work identifies the association of each covariate, xk,
to one or both terms. Final selection can then be ac-
complished by choosing the covariates in the union
of those selected by either of the two terms. An
alternative strategy for variable selection may em-
ploy a common set of variable selection parameters,
γ = (γ1, . . . , γp) for both ρ1 and ρ2, in a joint spike-
and-slab (product) prior formulation,

π(ρ1,k, ρ2,k|γk)

= γkI[0≤ ρ1,k ≤ 1]I[0≤ ρ2,k ≤ 1](13)

+ (1− γk)δ1(ρ1,k)δ1(ρ2,k),

where we assume a priori independence of the pa-
rameter spaces, ρ1 and ρ2. This prior choice focuses
more on overall covariate selection, rather than si-
multaneous selection and assignment to each term
in (8). While we lose the ability to align the ρi,k
to each covariance function term, we expect to im-
prove computational efficiency by jointly sampling
(γ,ρ1,ρ2) at each iteration of the MCMC scheme
as compared to a separate joint sampling on (γ1,ρ1)
and (γ2,ρ2). Some investigation is done in Savitsky
(2010).

5. POSTERIOR INFERENCE

The methods for posterior inference we are go-
ing to describe apply to all GP formulations, even
though we focus our simulation work on the con-
tinuous and count data models. We therefore ex-
press the posterior formulation employing a gen-
eralized notation. First, we collect all parameters
of the GP covariance matrix in Θ and write C =
C(Θ). For example, for covariance matrix of type
(7) we have Θ = (ρ, λa, λz). Next, we extend our
notation to include the selection parameter γ by us-
ing Θγ = (ργ , λa, λz) to indicate that ρk = 1 when



8 T. SAVITSKY, M. VANNUCCI AND N. SHA

γk = 0, for k = 1, . . . , p. For covariance of type (8) we
write Θγ = {Θγ1

,Θγ2
, λa}, where γ = (γ1,γ2)

′ and
Θγi

= (ρiγi
, λi,z), i ∈ {1,2} for prior of type (11)–

(12) and Θγ = (ρ1γ ,ρ2γ , λa, λ1,z, λ2,z) for prior of
type (13), and similarly for the Matern construc-
tion. Next, we define Di ∈ {yi,{si, z(xi)}} and D :=
{D1, . . . ,Dn} to capture the observed data augmen-

ted by the unobserved GP variate, z(X), for the la-
tent response models [such as model (5) for count
data]. Finally, we set h := {r, τ} to group unique
parameters /∈ Θγ and we collect hyperparameters
in m := {a,b}, with a = {aλa

, aλz
, ar, aτ} and sim-

ilarly for b, where a and b include the shape and
rate hyperparameters of the Gamma priors on the
associated parameters. With this notation we can
finally outline a generalized expression for the full
conditional of (γ,ργ) as

π(γ,ργ |Θγ\ργ ,D,h,m)
(14)

∝ La(γ,ργ |Θγ\ργ ,D,h,m)π(γ),

with La the augmented likelihood. Notice that the
term π(ργ |γ) does not appear in (14) since π(ρk|
γk) = 1, for k = 1, . . . , p.

5.1 Markov Chain Monte Carlo—Scheme 1

We first describe a Metropolis–Hastings scheme
within Gibbs sampling to jointly sample (γ,ργ),
which is an adaptation of the MCMCmodel compar-
ison (MC3) algorithm originally outlined in Madigan
and York (1995) and extensively used in the variable
selection literature. As we are unable to marginal-
ize over the parameter space, we need to modify the
algorithm in a hierarchical fashion, using the move
types outlined below. Additionally, we need to sam-
ple all the other nuisance parameters.
A generic iteration of this MCMC procedure com-

prises the following steps:

(1) Update (γ, ργ): Randomly choose among three
between-models transition moves:

(i) Add: set γ′k = 1 and sample ρ′k from a U(0,1)
proposal. Position k is randomly chosen from the set
of k’s where γk = 0 at the previous iteration.

(ii) Delete: set (γ′k = 0, ρ′k = 1). This results in
covariate xk being excluded in the current iteration.
Position k is randomly chosen from among those
included in the model at the previous iteration.
(iii) Swap: perform both an Add andDelete move.

This move type helps to more quickly traverse a large
covariate space.

The proposed value (γ ′,ρ′

γ′) is accepted with prob-
ability,

α=min

{

1,
π(γ ′,ρ′

γ′ |Θγ′\ρ′

γ′ ,D,h,m)q(γ|γ ′)

π(γ,ργ |Θγ\ργ ,D,h,m)q(γ ′|γ)

}

,

where the ratio of the proposals q(ργ)/q(ρ
′

γ ′) drops

out of the computation since we employ a U(0,1)
proposal.
(2) Execute a Gibbs-type move, Keep, by sam-

pling from a U(0,1) all ρ′k’s such that γ′k = 1. This
move is not required for ergodicity, but it allows to
perform a refinement of the parameter space within
the existing model, for faster convergence.
(3) Update {λa, λz}: These are updated using Me-

tropolis–Hastings moves with Gamma proposals cen-
tered on the previously sampled values.
(4) Update h: Individual model parameters in h

are updated using Metropolis–Hastings moves with
proposals centered on the previously sampled values.
(5) Update z: Jointly sample z for latent response

models using the approach enumerated in Neal (1999)
with proposal z′ = (1 − ε2)1/2z + εLu, where u is
a vector of i.i.d. standard Gaussian values and L
is the Cholesky decomposition of the GP covarian-
ce matrix. For faster convergence R consecutive up-
dates are performed at each iteration.

Green (1995) introduced a Markov chain Monte
Carlo method for Bayesian model determination for
the situation where the dimensionality of the param-
eter vector varies iteration by iteration. Recently,
Gottardo and Raftery (2008) have shown that the
reversible jump can be formulated in terms of a mix-
ture of singular distributions. Following the results
given in their examples, it is possible to show that
the acceptance probability of the reversible jump for-
mulation is the same as in the Metropolis–Hastings
algorithm described above, and therefore that the
two algorithms are equivalent; see Savitsky (2010).
For inference, estimates of the marginal poste-

rior probabilities of γk = 1, for k = 1 . . . , p, can be
computed based on the MCMC output. A simple
strategy is to compute Monte Carlo estimates by
counting the number of appearances of each covari-
ate across the visited models. Alternatively, Rao–
Blackwellized estimates can be calculated by aver-
aging the full conditional probabilities of γk = 1. Al-
though computationally more expensive, the latter
strategy may result in estimates with better pre-
cision, as noted by Guan and Stephens (2011). In



VARIABLE SELECTION FOR GAUSSIAN PROCESS MODELS 9

all simulations and examples reported below we ob-
tained satisfactory results by estimating the marginal
posterior probabilities by counts restricted to be-
tween-models moves, to avoid over-estimation.

5.2 Markov Chain Monte Carlo—Scheme 2

Next we enumerate a Markov chain Monte Carlo
algorithm to directly sample (γ,ργ) with a Gibbs
scan that employs a Metropolis acceptance step. We
formulate a proposal distribution of a similar mix-
ture form as the joint posterior by extending a re-
sult from Gottardo and Raftery (2008) to produce
a move to (γk = 0, ρk = 1), as well as to (γk = 1, ρk =
[0,1)).
A generic iteration of this MCMC procedure com-

prises the following steps:

(1) For k = 1, . . . , p perform a joint update for
(γk, ρk) with two moves, conducted in succession:

(i) Between-models: Jointly propose a new model
such that if γk = 1, propose γ′k = 0 and set ρ′k =
1; otherwise, propose γ′k = 1 and draw ρ′k ∼ U(0,1).
Accept the proposal for (γ′k, ρ

′

k) with probability,

α=min

{

1,
π(γ′k, ρ

′

k|γ
′

(k),Θγ′
(k)
,D,h,m)

π(γk, ρk|γ
′

(k),Θγ′
(k)
,D,h,m)

}

,

where now γ ′

(k) := (γ′1, . . . , γ
′

k−1, γk+1, . . . , γp) and si-

milarly for ρ′

(k) ∈Θγ′
(k)

. The joint proposal ratio for

(γk, ρk), reduces to 1 since we employ a U(0,1) pro-
posal for ρk ∈ [0,1] and a symmetric Dirac measure
proposal for γk.
(ii) Within model: This move is performed only if

we sample γ′k = 1 from the between-models move, in
which case we propose γ′′k = 1 and, as before, draw
ρ′′k ∼ U(0,1). Similar to the between-models move,
accept the joint proposal for (γ′′k , ρ

′′

k) with probabil-
ity,

α=min

{

1,
π(γ′′k , ρ

′′

k|γ
′

(k),Θγ′
(k)
,D,h,m)

π(γ′k, ρ
′

k|γ
′

(k),Θγ′
(k)
,D,h,m)

}

,

which further reduces to just the ratio of posteriors
since we propose a move within the current model
and utilize a U(0,1) proposal for ρk.

(2) Sample the parameters {λa, λz,h} and latent
responses z as outlined in scheme 1.

In simulations we also investigate performances
of an adaptive scheme that employs a proposal with
tuning parameters adapted based on “learning” from

the data. In particular, we employ the method of
Haario, Saksman and Tamminen (2001) for our Ber-
noulli proposal for γ|α to successively update the
mean parameter, αk, k = 1, . . . , p, based on prior sam-
pled values for γk. The construction does not re-
quire additional likelihood computations and it is
expected to achieve more rapid convergence in the
model space than the nonadaptive scheme. Roberts
and Rosenthal (2007) and Ji and Schmidler (2009)
note conditions under which adaptive schemes achie-
ve convergence to the target posterior distribution.
Schemes 1 and 2 we enumerated above may be

easily modified when employing the 2-term covari-
ance formulation (8); see Savitsky (2010).

5.3 Prediction

Let zf = z(Xf ) be an nf ×1 latent vector of future
cases. We use the regression model (3) to demon-
strate prediction under the GP framework. The joint
distribution over training and test sets is defined to
be z∗ := [z′,z′f ]

′ ∼N (0,Cn+nf
) with covariance,

Cn+nf
:=

(

C(X,X) C(X,Xf )

C(Xf ,X) C(Xf ,Xf )

)

,

where C(X,X) := C(X,X)(Θ). The conditional joint
predictive distribution over the test cases, zf |z, is
also multivariate normal distribution with expecta-
tion E[zf |z] =C(Xf ,X)C

−1
(X,X)z. Estimation is based

on the posterior MCMC samples. Here we take a com-
putationally simple approach by first estimating ẑ as
the mean of all sampled values of z, defining

D(Θ) :=C(Xf ,X)C
−1
(X,X)ẑ,(15)

and then estimating the response value as

ŷf = ẑf |ẑ=
1

K

K
∑

t=1

D(Θ(t)),(16)

with K the number of MCMC iterations and where
calculations of the covariance matrices in (15) are re-
stricted to the variables selected based on the margi-
nal posterior probabilities of γk = 1. A more coher-
ent estimation procedure, that may return more pre-
cise estimates but that is also computationally more
expensive, would compute Rao–Blackwellized esti-
mates by averaging the predictive probabilities over
all visited models; see Guan and Stephens (2011).
In the simulations and examples reported below we
have calculated (16) using every 10th MCMC sam-
pled value, to provide a relatively less correlated
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sample and save on computational time. In addi-
tion, when computing the variance product term in
(15), we have employed the Cholesky decomposition
C= LL′, following Neal (1999), to avoid direct com-
putation of the inverse of C(X,X).
For categorical data models, we may predict the

new class labels, tf , via the rule of largest proba-
bility in the case of a binary logit model, with esti-
mated latent realizations ẑf , and via data augmen-
tation based on the values of ŷf in the case of a bi-
nary probit model.

5.3.1 Survival Function Estimation For survival
data it is of interest to estimate the survivor function
for a new subject with unknown event time, Ti, and
associated zf,i := zf,i(xf,i). This is defined as

P (Ti ≥ t|zf,i,z) = Si(t|zf,i,z)
(17)

= S0(t|z)
exp(zf,i).

When using the partial likelihood formulation an
empirical Bayes estimate of the baseline survivor
function, S0(t|z), must be calculated, since the model
does not specifically enumerate the baseline haz-
ard. Weng and Wong (2007), for example, propose
a method that discretizes the likelihood to produce
an estimator with the useful property that it cannot
take negative values. Accuracy of this estimate may
be potentially improved by Rao–Blackwellizing the
computation by averaging over the MCMC runs.

6. SIMULATION STUDY

6.1 Parameter Settings

In all simulations and applications reported in this
paper we set both priors on λa and λz as G(1,1).
We did not observe any strong sensitivity to this
choice. In particular, we considered different choices
of the two parameters of these Gammma priors in
the range (0.01,1), keeping the prior mean at 1 but
with progressively larger variances, and observed ve-
ry little change in the range of posterior sampled
values. We also experimented with prior mean val-
ues of 10 and 100, which produced only a small
impact on the posterior. For model (3) we set r ∼
G(ar, br) with (ar, br) = (2,0.1) to reflect our a pri-
ori expected residual variance. For the count model
(5), we set τ ∼G(1,1). For survival data, when using
the full likelihood from Kalbfleisch (1978) we spec-
ified a G(1,1) prior for both the parameter of the
exponential base distribution and the concentration

parameter of the Gamma process prior on the base-
line.
Some sensitivity on the Bernoulli priors on the

γk’s is, of course, to be expected, since these priors
drive the sparsity of the model. Generally speaking,
parsimonious models can be selected by specifying
γk ∼ Bernoulli(αk) with αk = α and α a small per-
centage of the total number of variables. In our sim-
ulations we set αk to 0.025. We observed little sen-
sitivity in the results for small changes around this
value, in the range of 0.01–0.05, though we would
expect to see significant sensitivity for much higher
values of α. We also investigated sensitivity to a Beta
hyperprior on α; see below.
When running the MCMC algorithms indepen-

dent chain samplers with U(0,1) proposals for the
ρk’s have worked well in all applications reported
in this paper, where we have always approximately
achieved the target acceptance rate of 40–60% indi-
cating efficient posterior sampling.

6.2 Use of Variable Selection Parameters

We first demonstrate the advantage of introducing
selection parameters in the model. Figure 2 shows
results with and without the inclusion of the vari-
able selection parameter vector γ on a simulated
scenario with a kernel that incorporates both linear
and nonlinear associations. The observed continuous
response, y, is constructed from a mix of linear and
nonliner relationships to 4 variables, each generated
from a U(0,1),

y = x1 + x2 + sin(3x3) + sin(5x4) + ε,

with ε∼N (0, σ2) and σ = 0.05. Additional variables
are randomly generated, again from U(0,1). In this
simulation we used (n,p) = (80,20). We ran 70,000
MCMC iterations, of which 10,000 were discarded
as burn-in.
Plot (a) of Figure 2 displays box plots of the MCMC

samples for the ρ′ks, k = 1, . . . ,20, for the case of no
variable selection, that is, by using a simple “slab”
prior on the ρk’s. As both Linkletter et al. (2006)
and Neal (2000) note, the single covariates demon-
strate an association to the response whose strength
may be assessed utilizing the distance of the pos-
terior samples of the ρk’s from 1. One notes that,
according to this criterion, the true covariates are
all selected. It is conceivable, however, for some of
the unrelated covariates to be selected using the
same criterion, since the ρk’s all sample below 1, and
that this problem would be compounded as p grows.
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Fig. 2. Use of variable selection parameters: Simulated data (n= 80, p= 20). Box plots of posterior samples for ρk ∈ [0,1].
Plots ( a) and (b) demonstrate selection without and with, respectively, the inclusion of the selection parameter γ.

Plot (b) of Figure 2, instead, captures results from
employing the variable selection parameters γ and
shows how the inclusion of these parameters results
in the sampled values of the ρk’s for variables unre-
lated to the response being all pushed up against 1.
This simple simulated scenario also helps us to il-

lustrate a couple of other features. First, a single ex-
ponential term in (7) is able to capture a wide vari-
ety of continuous response surfaces, allowing a great
flexibility in the shape of the response surface, with
the linear fit being a subset of one of many types
of surfaces that can be generated. Second, the effect
of covariates with higher-order polynomial-like as-
sociation to the response is captured by having esti-
mates of the corresponding ρk’s further away from 1;
see, for example, covariate x4 in Figure 2 which ex-
presses the highest order association to the response.

6.3 Large p

Next we show simulation results on continuous,
count and survival data models, for (n,p) = (100,
1,000). We employ an additive term as the kernel
for all models,

y = a1x1 + a2x2 + a3x3 + a4x4
(18)

+ a5 sin(a6x5) + a7 sin(a8x6) + ε.

The functional form for the simulation kernel is de-
signed so that the first four covariates express a lin-
ear relationship to the response while the next two
express nonlinear associations. Model-specific coef-
ficient values are displayed in Table 1. Methods em-
ployed to randomly generate the observed count and

event time data from the latent response kernel are
also outlined in the table. For example, the kernel
captures the log-mean of the Poisson distribution
used to generate count data, and it is used to gener-
ate the survivor function that is inverted to provide
event time data for the Cox model. As in the pre-
vious simulation, all covariates are generated from
U(0,1).
We set the hyperparameters as described in Sec-

tion 6.1. We used MCMC scheme 1 and increased
the number of total iterations, with respect to the
simpler simulation with only p = 20, to 800,000 it-
erations, discarding half of them for burn-in.
Results are reported in Table 1. While the con-

tinuous and count data GP models readily assigned
high marginal posterior probabilities to the correct
covariates (figures not shown), the Cox GP model
correctly identified only 5 of 6 predictors; see Fig-
ure 3 for the posterior distributions of γk = 1 and
the box plots for the posterior samples of ρk for this
model (for readability, only the first 20 covariates
are displayed). The predictive power for the con-
tinuous and count data models was assessed by nor-
malizing the mean squared prediction error (MSPE)
with the variance of the test set. Excellent results
were achieved in our simulations. For the Cox GP
model, the averaged survivor function estimated on
the test set is shown in Figure 4, where we ob-
serve a tight fit between the estimated curve and the
Kaplan–Meier empirical estimate constructed from
the same test data.
Though for the Cox model we only report results

obtained using the partial likelihood formulation,
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Table 1

Large p: Simulations for continuous, count and survival data models with (n,p) = (100,1,000)

Continuous data Count data Cox model

Coefficients:
a1 1.0 1.6 3.0
a2 1.0 1.6 −2.5
a3 1.0 1.6 3.5
a4 1.0 1.6 −3.0
a5 1.0 1.0 1.0
a6 3.0 3.0 3.0
a7 1.0 1.0 −1.0
a8 5.0 5.0 5.0
Model Identity link log(λ) = y S(t|y) = exp[−H0(t) exp(y)]

t∼ Pois(λ) H0(t) = λt,λ= 0.2
t=M/(λ exp(y)),M ∼ Exp(1)
5% uniform randomly censored,

tcens = U(0, tevent)
Train/test 100/20 100/20 100/60

Correctly selected 6 out of 6 6 out of 6 5 out of 6
False positives 0 0 0
MSPE (normalized) 0.0067 0.045 see Figure 4

Fig. 3. Cox GP model with large p: Simulated data (n= 100, p= 1,000). Posterior distributions for γk = 1 and box plots of
posterior samples for ρk.

we conducted the same simulation study with the

model based on the full likelihood of Kalbfleisch

(1978). The partial likelihood model formulation pro-

duced more consistent results across multiple chains,

with the same data, and was able to detect much

weaker signals. The Kalbfleisch (1978) model did,

however, produce lower posterior values near 0 for

nonselected covariates, unlike the partial likelihood

formulation, which shows values typically from 10–

40%, pointing to a potential bias toward false posi-
tives.
Additional simulations, including larger sample si-

zes cases, are reported in Savitsky (2010).

6.4 Comparison of MCMC Methods

We compare the 2 MCMC schemes previously de-
scribed for posterior inference on (γ,ρ) on the basis
of sampling and computational efficiency. We use
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Table 2

Efficiency comparison of GP MCMC methods

MCMC scheme 2 MCMC scheme 1

Adaptive Nonadaptive

Iterations (computation) 5,000 5,000 500,000
Autocorrelation time
ρ6 310 82 441
ρ8 59 35 121

Computation
CPU-time (sec) 980 4,956 10,224

Fig. 4. Cox GP model with large p: Simulated data
(n= 100, p = 1,000). Average survivor function curve on the
validation set (dashed line) compared to the Kaplan–Meier
empirical estimate (solid line).

the univariate regression simulation kernel

y = x1 + 0.8x2 +1.3x3 + sin(x4) + sin(3x5)

+ sin(5x6) + (1.5x7)(1.5x8) + ε,

with ε∼N (0, σ2) and σ = 0.05. We utilize 1,000 co-
variates with all but the first 8 defined as nuisance.
We use a training and a validation set of 100 obser-
vations each.
The two schemes differ in the way they update

(γ,ρ). While scheme 1 samples either one or two po-
sitions in the model space on each iteration, scheme 2
samples (γk, ρk) for each of the p covariates. Be-
cause of this a good “rule-of-thumb” should em-
ploy a number of iterations for scheme 1 which is
roughly p times the number of iterations employed
for scheme 2. The use of the Keep move in scheme 1,
however, reduces the need of scaling the number of
iterations by exactly p, since all ρk’s are sampled

at each iteration. In our simulations we found sta-
ble convergence under moderate correlation among
covariates for scheme 2 in 5,000 iterations and for
scheme 1 in 500,000 iterations. For both schemes, we
discarded half of the iterations as burn-in. The CPU
run times we report in Table 2 are based on utiliza-
tion of Matlab with a 2.4 GHz Quad Core (Q6600)
PC with 4 GB of RAM running 64-bit Windows XP.
We compared sampling efficiency looking at auto-

correlation for selected ρk. The autocorrelation time
is defined as one plus twice the sum of the autocorre-
lations at all lags and serves as a measure of the rel-
ative dependence for MCMC samples. We used the
number of MCMC iterations divided by this factor
as an “effective sample size.” We followed a proce-
dure outlined by Neal (2000) and ran first scheme 2
for 1,000 iterations, to obtain a state near the pos-
terior distribution. We then employed this state to
initiate a chain for each of the two schemes. We
ran scheme 2 for an additional 2,000 iterations and
scheme 1 for 200,000 (using the last 2,000 draws
for each of the target ρk for final comparison). For
scheme 2 we used both the adaptive and nonadap-
tive versions. Table 2 reports results for ρ8, aligned
to a covariate expressing a linear interaction, and
for ρ6, for a highly nonlinear interaction. We observe
that both versions of scheme 2 express notable im-
provements in computational efficiency as compared
to scheme 1. We note, however, that the adaptive
scheme method produces draws of higher autocor-
relation than the nonadaptive method.

6.5 Sensitivity Analysis

We begin with a sensitivity analysis on the prior for
ρk|γk = 1. Table 3 shows results under a full factorial
combination for hyperparameters (a, b) of a Beta prior
construction, where we recall Beta(1,1) ≡ U(0,1).
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Fig. 5. Prior Sensitivity for ρk|γk = 1∼Beta(a, b): Box plots of posterior samples for ρk for (a, b) = (0.5,0.5)—plot ( a)—and
(a, b) = (2.0,2.0)—plot (b).

Table 3

Prior sensitivity for ρk|γk = 1∼Beta(a, b). Results are
reported as (number of false negatives)/(normalized MSPE)

b\a 0.5 1.0 2.0

0.5 2/0.18 2/0.15 2/0.18
1.0 1/0.14 1/0.16 2/0.18
2.0 1/0.15 2/0.16 2/0.17

Results were obtained with the univariate regression
simulation kernel

y = x1 + x2 + sin(1.5x3) sin(1.5x4) + sin(3x5)

+ sin(3x6) + (1.5x7)(1.5x8) + ε,

with ε∼N (0, σ2) and where we employed a higher
error variance of σ = 0.28. As before, we employ
1,000 covariates with all but the first 8 defined as
nuisance. A training sample of 110 was simulated,
along with a test set of 100 observations. We em-
ployed the adaptive scheme 2, with 5,000 iterations,
half discarded as burn-in.
Figure 5 shows box plots of posterior samples for

ρk for two symmetric alternatives, 1 : (a, b) = (0.5,0.5)
(U-shaped) and 2 : (a, b) = (2.0,2.0) (symmetric uni-
modal). For scenario 2 we observe a reduction in
posterior jitter on nuisance covariates and a stabi-
lization of posterior sampling for associated covari-
ates, but also a greater tendency to exclude x3, x4.
One would expect the differences in posterior sam-
pling behavior across prior hyperparameter values to
decline as the sample size increases. Table 3 displays
the number of nonselected true variables (false neg-
atives), out of 8, along with the normalized MSPEs

for all scenarios. There were no false positives to re-
port across all hyperparameter settings. Overall, re-
sults are similar across the chosen settings for (a, b),
with slightly better performances for a < 1 and b≥
1, corresponding to strictly decreasing shapes that
aid selection by pushing more mass away from 1, in-
creasing the prior probability of the good variables
to be selected, especially in the presence of a large
number of noisy variables.
Next we imposed a Beta distribution on the hy-

perparameter α of the priors γk ∼ Bernoulli(α) for
covariate inclusion. We follow Brown, Vannucci and
Fearn (1998a) to specify a vague prior by setting the
mean of the Beta prior to 0.025, reflecting a prior
expectation for model sparsity, and the sum of the
two parameters of the distribution to 2. We ran
the same univariate regression simulation kernel as
above with the hyperparameter settings for the Beta
prior on ρk equal to (1,1) and obtained the same se-
lection results as in the case of α fixed and a slightly
lower normalized MSPE of 0.14.
Last, we explored performances with respect to

correlation among the predictors. We utilized the
same kernel as above with 8 true predictors from
which to construct the response. We then induced
a 70% correlation among 20 randomly chosen nui-
sance covariates and the true predictor x6. We found
2 false negatives and 1 false positive, which demon-
strates a relative selection robustness under corre-
lation. We did observe a significant decline in nor-
malized MSPE, however, to 0.33, as compared to
previous runs.
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Table 4

Ozone data: Results

Prior on g Mγ pγ RMSPE

Local empirical Bayes X5,X6,X7,X
2
6 ,X

2
7 ,X3X5 6 4.5

Hyper-g (a= 4) X5,X6,X7,X
2
6 ,X

2
7 ,X3X5 6 4.5

Fixed (BIC) X5,X6,X7,X
2
6 ,X

2
7 ,X3X5 6 4.5

Brown, Vannucci and Fearn (2002) X1X6,X1X7,X6X7,X
2
1 ,X

2
3 ,X

2
7 6 4.5

GP model X3,X6,X7 3 3.7

7. BENCHMARK DATA APPLICATIONS

We now present results on two data sets often
used in the literature as benchmarks. For both anal-
yses we performed inference by using the MCMC—
scheme 2, with 5,000 iterations and half discarded
as burn-in.

7.1 Ozone data

We start by revisiting the ozone data, first an-
alyzed for variable selection by Breiman and Fried-
man (1985) and more recently by Liang et al. (2008).
This data set supplies integer counts for the maxi-
mum number of ozone particles per one million par-
ticles of air near Los Angeles for n = 330 days and
includes an associated set of 8 meteorological pre-
dictors. We held out a randomly chosen set of 165
observations for validation.
Liang et al. (2008) use a linear regression model

including all linear and quadratic terms for a to-
tal of p = 44 covariates. They achieve variable se-
lection by imposing a mixture prior on the vector
β of regression coefficients and specifying a g-prior
of the type βγ |φ∼N (0, gφ(X

T
γXγ)

−1). Their results
are reported in Table 4 with various formulations for
g. In particular, the local empirical Bayes method of-
fers a model-dependent maximizer of the marginal
likelihood on g, while the hyper-g formulation with
a = 4 is one member of a continuous set of hyper-
prior distributions on the shrinkage factor, g/(1 +
g) ∼ Beta(1, a/2 − 1). Since the design matrix ex-
presses a high condition number, a situation that
can at times induce poor results with g-priors, we
additionally applied the method of Brown, Vannucci
and Fearn (2002) who used a mixture prior of the
type βγ ∼N (0, cI). Results shown in Table 4 were
obtained from the Matlab code made available by
the authors.
Though previous variable selection work on the

ozone data all choose a Gaussian likelihood, a more

precise approach employs a discrete Poisson or neg-
ative binomial formulation on data with low count
values, or a log-normal approximation where counts
are high. With a maximum value of 38 and a mean
of 11 we chose to model the data with the negative-
binomial count data model (5). We used the same
hyperparameter settings as in our simulation study.
Results are shown in Figure 6. By selecting, for ex-
ample, the best 3 variables, we achieve a notable
decrease in the root-MSPE as compared to the lin-
ear models. Also, by allowing an a priori unspeci-
fied functional form for how covariates relate to the
response, we end up selecting a much more parsi-
monious model, although, of course, we lose in in-
terpretability of the selected terms, with respect to
linear formulations that specifically include linear,
quadratic and interactions terms in the model.

7.2 Boston Housing data

Next we utilize the Boston Housing data set, also
analyzed by Breiman and Friedman (1985), who used
an additive model and employed an algorithm to
empirically determine the functional relationship for
each predictor. This data set relates p= 13 predic-
tors to the median value of owner-occupied homes in
each of n= 506 census tracts in the Boston metro-
politan area. As with the previous data set, we held
out a random set of 250 observations to assess pre-
diction.
We employed the continuous data model (3) with

the same hyperparameter settings as in our simu-
lations. The four predictors chosen by Breiman and
Friedman (1985), (x6, x10, x11, x13), had all marginal
posterior probability of inclusion greater than 0.9 in
our model. Other variables with high marginal pos-
terior probability were (x5, x7, x8, x12). The adapt-
ability of the GP response surface is illustrated with
closer examination of covariate x5, which measures
the level of nitrogen oxide (NOX), a pollutant emit-
ted by cars and factories. At low levels, indicating
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Fig. 6. Ozone data: Posterior distributions for γk = 1 and box plots of posterior samples for ρk.

Fig. 7. Boston housing data: Posterior distributions for γk = 1 and box plots of posterior samples for ρk.

proximity to jobs, x5 presents a positive association
to the response, and at high levels, indicating overly
industrialized areas, a negative association. This in-
verted parabolic association over the covariate range
probably drove its exclusion in the model of Breiman
and Friedman (1985). The GP formulation is, how-
ever, able to capture this strong nonlinear relation-
ship as is noted in Figure 7. By using only the subset
of the best eight predictors, we achieved a normal-
ized MSE of 0.1 and a prediction R2 of 0.9, very
close to the value of 0.89 reported by Breiman and
Friedman (1985) on the training data.
We also employed the Matern covariance construc-

tion (9), which we recall employs an explicit smooth-
ing parameter, ν ∈ [0,∞). While selection results

were roughly similar, the prediction results for the
Matern model were significantly worse than the ex-
ponential model, with a normalized MSPE of 0.16,
probably due to overfitting. It is worth noticing that
the more complex form for the Bessel function in-
creases the CPU computation time by a factor of
5–10 under the Matern covariance as compared to
the exponential construction.
For comparison, we looked at GBMs. We used ver-

sion 3.1 of the gbm package for the R software envi-
ronment. We utilized the same training and valida-
tion data as above. After experimentation and use
of 10-fold cross-validation, we chose a small value
for the input regularization parameter, ν = 0.0005,
to provide a smoother fit that prevents overfitting.
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Fig. 8. Boston housing data: GBM covariate analysis. Left-hand chart provides variables importance, normalized to sum up
to 100. Right-hand plot enumerates partial association of x13 to the response.

Larger values of ν resulted in higher prediction er-
rors. The GBM was run for 50,000 iterations to
achieve minimum fit error. The result provided a nor-
malized MSPE of 0.13 on the test set, similar to,
though slightly higher than, the GP result. The left-
hand chart of Figure 8 displays the relative covariate
importance. Higher values correspond to (x13, x6, x8),
and agree with our GP results. A number of other
covariates show similar importance values to one an-
other, though lower than these top 3, making it un-
clear as to whether they are truly related or nui-
sance covariates. Similar conclusions are reported by
other authors. For example, Tokdar, Zhu and Ghosh
(2010) analyze a subset of the same data set with
a Bayesian density regression model based on lo-
gistic Gaussian processes and subspace projections
and found (x13, x6) as the most influential predic-
tors, with a number of others having a mild influ-
ence as well. The right-hand plot supplies a partial
dependence plot obtained by the GBM for variable
x13 by averaging over the associations for the other
covariates. We note that the nonlinear association is
not constrained to be smooth under GBM.

8. DISCUSSION

In this paper we have presented a unified mod-
eling approach via Gaussian processes that extends
to data from the exponential dispersion family and
to survival data. Such model formulation allows for

nonlinear associations of the predictors to the re-
sponse. We have considered, in particular, contin-
uous, categorical and count responses and survival
data. Next we have addressed the important prob-
lem of selecting variables from a set of possible pre-
dictors and have put forward a general framework
that employs Bayesian variable selection methods
and mixture priors for the selection of the predic-
tors. We have investigated strategies for posterior
inference and have demonstrated performances on
simulated and benchmark data. GP models provide
a parsimonious approach to model formulation with
a great degree of freedom for the data to define the
fit. Our results, in particular, have shown that GP
models can achieve good prediction performances
without the requirement of prespecifying higher or-
der and nonlinear additive functions of the predic-
tors. The benchmark data applications have shown
that a GP formulation may be appropriate in cases
of heterogeneous covariates, where the inability to
employ an obvious transformation would require
higher order polynomial terms in an additive lin-
ear fashion, or even in the case of a homogeneous
covariate space where the transformation overly re-
duces structure in the data. Our simulation results
have further highlighted the ability of the GP for-
mulation to manage data sets with p≫ n.
A challenge in the use of variable selection meth-

ods in the GP framework is to manage the numeri-
cal instability in the construction of the GP covari-
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ance matrix. In the Appendix we describe a projec-
tion method to reduce the effective dimension of this
matrix. Another practical limitation of the models
we have described is the difficulty to use them with
qualitative predictors. Qian, Wu andWu (2008) pro-
vide a modification of the GP covariance kernel that
allows for nominal qualitative predictors consisting
of any number of levels. In particular, the authors
model the covariance structure under a mixture of
qualitative and quantitative predictors by employ-
ing a multiplicative factor against the usual GP ker-
nel for each qualitative predictor to capture the by-
level categorical effects.
Some generalization of the methods we have pre-

sented are possible. For example, as with GLM mod-
els, we may employ an additional set of variance in-
flation parameters in a similar construction to Neal
(1999) and others to allow for heavier tailed distri-
butions while maintaining the conjugate framework.

APPENDIX: COMPUTATIONAL ASPECTS

We focus on the exponential form (7) and intro-
duce an efficient computational algorithm to gener-
ate C. We also review a method of Banerjee et al.
(2008) to approximate the inverse matrix that em-
ploys a random subset of observations and provide
a pseudo-code.

A.1 Generating the Covariance Matrix C

Let us begin with the quadratic expression, G=
{gi,j} in (7). We rewrite gi,j = A′

i,j[− log(ρ)] with
Ai,j constructed as a p × 1 vector of term-by-term
squared differences, (xik−xjk)

2, k = 1, . . . , p. We may
directly employ the p× 1 vector, ρ, as P is diago-
nal. As a first step, we may then directly compute
G=A[− log(ρ)], where A is n×n×p. We are, how-
ever, able to reduce the more complex structure ofA
to a two dimensional matrix form by simply stacking
each {i, j} row of dimension 1× p under each other
such that our revised structure, A∗, is of dimension
n2 × p and the computation, G=A∗[− log(ρ)], re-
duces to a series of inner products. Next, we note
that log(ρk) = 0 for ρk = 1. So we may reduce the
dimension for each of the n2 inner products by re-
ducing the dimension of ρ to the pγ < p nontriv-
ial covariates. We may further improve efficiency
by recognizing that since our resultant covariance
matrix, C, is symmetric positive definite, we need
only compute the inner products for a reduced set
of unique terms (by removing redundant rows from

A∗) and then “re-inflate” the result to a vector of
the correct length. Finally, we exponentiate this vec-
tor, multiply the nonlinear weight (1/λz), add the
affine intercept term, (1/λa), and then reshape this
vector into the resulting n× n matrix, C. The re-
sulting improvement in computational efficiency at
n= 100 from the naive approach that employs dou-
ble loops of inner products is on the order of 500
times.
Our MCMC scheme 2 proposes a change to ρk ∈ ρ,

one-at-a-time, conditionally on ρ
−k and the other

sampled parameters. Changing a single ρk requires
updating only one column of the inner product com-
putation of A∗ and [− log(ρ)]. Rather than conduct-
ing an entire recomputation for C, we multiply the
kth column of A∗ (with number of rows reduced
to only unique terms in C) by log(

ρk,prop
ρk,old

), where

“prop” means the proposed value for ρk. This re-
sult is next exponentiated (to a covariance kernel),
re-inflated and shaped into an n × n matrix, ∆.
We then take the current value less the affine term,
Cold−

1
λa
Jn, and multiply by ∆, term-by-term, and

add back the affine term to achieve the new covari-
ance matrix associated to the proposed value for ρk.
So we may devise an algorithm to update an exist-
ing covariance matrix, C, rather than conducting an
entire recomputation. At p= 1,000 with 6 nontriv-
ial covariates and n = 100, this algorithm further
reduces the computation time over recomputing the
full covariance by a factor of 2. This efficiency grows
nonlinearly with the number of nontrivial covariates.

A.2 Projection Method for Large n

In order to ease the computations, we have also
adapted a dimension reduction method proposed by
Banerjee et al. (2008) for spatial data. The method
achieves a reduced-dimension computation of the in-
verse of the full (n × n) covariance matrix. It can
also help with the accuracy and stability of the pos-
terior computations when working with possibly ill-
conditioned GP covariance matrices, particularly for
large n. To begin, randomly choose m < n points
(knots), sampled within fixed intervals on a grid to
ensure relatively uniform coverage, and label these
m points z∗. Then define zm→n as the orthogonal
projection of z onto the lower dimensional space
spanned by z∗, computed as the conditional expec-
tation

zm→n = E(z|z∗) =C′

(z∗,z)C
−1
(z∗,z∗)z

∗.



VARIABLE SELECTION FOR GAUSSIAN PROCESS MODELS 19

We use the univariate regression framework in (3) to
illustrate the dimension reduction from constructing
the projection model using zm→n in place of z(x).
Recast the model from (3) to

y= zm→n + ε=C′

(z∗,z)C
−1
(z∗,z∗)z

∗ + ε,

where εi ∼ N (0, 1r ). Then derive Λn = Cov(y) =
1
r In + C′

(z∗,z)C
−1
(z∗,z∗)C(z∗,z). Finally, employ the

Woodbury matrix identity to transform the inverse
computation, Λ−1

n = rI − r2C′

(z∗,z)[C(z∗,z∗) +

rC(z∗,z) ·C
′

(z∗,z)]
−1C(z∗,z), where the quantity inside

the square brackets, now being inverted, is m×m,
supplying the dimension reduction for inverse com-
putation we seek. We note that, in the absence of
the projection method, a large jitter term would be
required to invert the GP covariance matrix, trad-
ing accuracy for stability. Though the projection
method approximates a higher dimensional covari-
ance matrix in a lower dimensional projection, we
yet improve performance and avoid the accuracy/sta-
bility trade-off. We do, however, expect to use more
iterations for MCMC convergence when employing
a relatively lower projection ratio.
All results shown in this paper were obtained with

m/n = 0.35, for simulated data, and with m/n =
0.25, for the benchmark applications, where we en-
hanced computation stability in the presence of the
high condition number for the design matrix. We
have also employed the Cholesky decomposition, in
a similar fashion as in Neal (1999), in lieu of directly
computing the resulting m×m inverse.

A.3 Pseudo-code

Procedure to Compute, C= 1
λa
Jn +

1
λz

exp(−G):

Input: data matrices;
(X1,X2) of dimension (n1, n2)× p

Output: function, [A∗, Ifull] = difference(X1,X2)
% A∗ is matrix of squared L2 distances

for 2 data matrices of p columns
% A∗ size, ℓ× p, ℓ≤ n1n2: only unique entries
% Ifull re-inflates A

∗ with duplicate entries
% Key point: Compute A∗, once,

and re-use in GP posterior computations
% Set counter to stack all (i, j) obs

from X1,X2 in vectorized construction
count = 1;

% Compute squared distances
FOR i= 1 to n1

FOR j = 1 to n2

A∗

full(count,:) = (x1,i − x2,j)
2;

count = count + 1;
END

END
% Reduce A∗

full to A∗

[A∗, Ifull] = unique(A∗

full,by row);
END FUNCTION

Input: Data = (A∗, Ifull), Θ= (ρ, λa, λz)
Output: function, [C] = C(A∗, Ifull,Θ)
% An n1 × n2 GP covariance matrix
% Only compute inner product

for column k where ρk < 1
selρ = {ρk < 1};
ρ= ρ(selρ)
A∗ =A∗(:, selρ);

% Compute vector of unique values for C
−Gvec =A∗[log(ρ)]′;
Cvec =

1
λa

+ 1
λz

exp(−Gvec);

% Re-inflate Cvec to include duplicate values
Cvec =Cvec(Ifull);

% Snap Cvec into matrix form, C
C = reshape(Cvec, n2, n1)

′;
END FUNCTION

Input: Previous covariance = Cold;
Data = (A∗, Ifull); Position changed = k,
Parameters = (ρk,new, ρk,old), Intercept = λa

Output:[Cnew] =Cpartial(Cold,A
∗, Ifull, k, λa)

% Compose new covariance matrix, Cnew,
from old, Cold

% Compute inner products only for row k of A∗

% Produce matrix of multiplicative differences
from old to new

−∆Gvec =A∗(:, k)× log(
ρk,new
ρk,old

);

% Re-inflate exp(−∆Gvec)
exp(−∆Gvec) = exp(−∆Gvec)(Ifull);

% Re-shape −∆Gvec to matrix, ∆
∆= reshape(exp[−∆Gvec], n2, n1)

′;
% Compute Cnew

Cnew = 1
λa
Jn + (Cold −

1
λa
Jn)

⊙

∆;

END FUNCTION
Procedure to Compute Inverse of Λn = 1

r In +C:
Input: Number of sub-sample =m, Data =X,

Error precision = r
Covariance parameters = Θ= (ρ, λa, λz)

Output: Λ−1
n

% Randomly select m<n observations
on which to project n× 1, z(x)

ind = random.permutations.latin.hypercube(n);
% space-filling
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Xm =X(ind(1 :m), :);
% Compute squared distances, A∗

m,A∗

[A∗

m, Im,full] = difference(Xm,Xm); % m× n
[A∗, Ifull] = difference(Xm,X); % n× n

% Compose associated covariance matrices
C(m,m) =C(A∗

m, Im,full,Θ);
C(m,n) =C(A∗, Ifull,Θ);

% Compute Λn

Λn = 1
r In +C ′

(m,n)C
−1
(m,m)C(m,n);

% Compute Λ−1
n employing

term-by-term multiplication
Λ−1

n = rIn − r2C ′

(m,n)[C(m,m)

+rC(m,n)C
′

(m,n)]
−1C(m,n);

END
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