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Abstract

The random design setting for linear regression concerns estimators based on a random sam-
ple of covariate/response pairs. This work gives explicit bounds on the prediction error for
the ordinary least squares estimator and the ridge regression estimator under mild assumptions
on the covariate/response distributions. In particular, this work provides sharp results on the
“out-of-sample” prediction error, as opposed to the “in-sample” (fixed design) error. Our anal-
ysis also explicitly reveals the effect of noise vs. modeling errors. The approach reveals a close
connection to the more traditional fixed design setting, and our methods make use of recent ad-
vances in concentration inequalities (for vectors and matrices). We also describe an application
of our results to fast least squares computations.

1 Introduction

In the random design setting for linear regression, one is given pairs (X1, Y1), . . . , (Xn, Yn) of co-
variates and responses, sampled from a population, where each Xi are random vectors and Yi ∈ R.
These pairs are hypothesized to have the linear relationship

Yi = X⊤
i β + ǫi

for some linear map β, where the ǫi are noise terms. The goal of estimation in this setting is to
find coefficients β̂ based on these (Xi, Yi) pairs such that the expected prediction error on a new
draw (X,Y ) from the population, measured as E[(X⊤β̂ − Y )2], is as small as possible.

The random design setting stands in contrast to the fixed design setting, where the covariates
X1, . . . ,Xn are fixed (non-random), with only the responses Y1, . . . , Yn being treated as random.
Thus, the covariance structure of the design points is completely known and need not be estimated,
making the conditions simpler for establishing finite sample guarantees and for studying techniques
such as dimension reduction and feature selection. However, the fixed design setting does not
directly address out-of-sample prediction, which is of primary concern in some applications.

In this work, we show that the ordinary least squares estimator can be readily understood in
the random design setting almost as naturally as it is in the fixed design setting. Our analysis
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provides a simple decomposition that decouples the estimation of the covariance structure from
another quantity resembling the fixed design risk; it is revealed that the accuracy of the covariance
estimation has but a second-order effect once n ≥ d, whereupon the prediction error converges at
essentially the same d/n rate as in the fixed design setting. Moreover, the prediction errors of the
optimal linear predictor—which need not be the same as the Bayes predictor x 7→ E[Y |X = x]—
can be separated into (deterministic) approximation errors and zero-mean noise, which our analysis
can treat separately in a simple way. The decomposition allows for the straightforward application
of exponential tail inequalities to all its constituent parts, and we comment on the consequences
of natural subgaussian moment assumptions that afford sharper tail inequalities, which we also
provided in this work. Finally, because many of the tail inequalities applicable here also hold under
relaxed independence assumptions, such as martingale dependence, the sampling assumptions in
the random design regression can be relaxed to these more general conditions as well.

The basic form of our analysis for ordinary least squares also generalizes to give an analysis of
the ridge estimator, which is applicable in infinite-dimensional covariate spaces. This analysis,
which we specialize to the case where β perfectly models the Bayes predictor, is somewhat more
involved because establishing the accuracy of the empirical second-moment matrix is more delicate.
Nevertheless, its core still rests upon the same (or similar) exponential tail inequalities used in the
analysis of ordinary least squares.

Related work. Many classical analyses of the ordinary least squares estimators in the random
design setting (e.g., in the context of non-parametric estimators) do not actually show O(d/n)
convergence of the mean squared error to that of the best linear predictor. Rather, the error
relative to the Bayes error is bounded by some multiple (e.g., eight) of the error of the optimal
linear predictor relative to Bayes error, plus a O(d/n) term (Györfi et al., 2004):

E
[
(X⊤β̂ols − E[Y |X])2

]
≤ 8 · E

[
(X⊤β − E[Y |X])2

]
+O(d/n).

Such bounds are appropriate in non-parametric settings where the error of the optimal linear predic-
tor also approaches the Bayes error at an O(d/n) rate. Beyond these classical results, analyses of or-
dinary least squares often come with non-standard restrictions on applicability or additional depen-
dencies on the spectrum of the second moment matrix (see the recent work of Audibert and Catoni
(2010b) for a comprehensive survey of these results). A result of Catoni (2004, Proposition 5.9.1)
gives a bound on the excess mean squared error of the form

E
[
(X⊤β̂ols −X⊤β)2

]
≤ O

(
d+ log(det(Σ̂)/det(Σ))

n

)

where Σ = E[XX⊤] is the second-moment matrix of X and Σ̂ is its empirical counterpart. This
bound is proved to hold as soon as every linear predictor with low empirical mean squared error
satisfies certain boundedness conditions.

This work provides ridge regression bounds explicitly in terms of the vector β (as a sequence) and in
terms of the eigenspectrum of the of the second moment matrix (e.g. the sequence of eigenvectors
of E[XX⊤]). Previous analyses of ridge regression made certain boundedness assumptions (e.g.,
Zhang, 2005; Smale and Zhou, 2007). For instance, Zhang assumes ‖X‖ ≤ BX and |Y −X⊤β| ≤
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Bbias almost surely, and gives the bound

E[(X⊤β̂λ −X⊤β)2] ≤ λ‖β̂λ − β‖2 +O

(
d1,λ · (Bbias +BX‖β̂λ − β‖)2

n

)

where d1,λ is a notion of effective dimension at scale λ (same as that in (1)). The quantity ‖β̂λ−β‖
is then bounded by assuming ‖β‖ < ∞. Smale and Zhou separately bound E[(X⊤β̂λ − X⊤βλ)

2]
by O(B2

XB2
Y /λ

2n) under the more stringent conditions that |Y | ≤ BY and ‖X‖ ≤ BX almost

surely; this is then used to bound E[(X⊤β̂λ −X⊤β)2] under explicit boundedness assumptions on
β. Our result for ridge regression is given explicitly in terms of E[(X⊤βλ−X⊤β)2] (the first term in
Theorem 3), which can be bounded even when ‖β‖ is unbounded. We note that E[(X⊤βλ−X⊤β)2]
is precisely the bias term from the standard fixed design analysis of ridge regression, and therefore
is natural to expect in a random design analysis.

Recently, Audibert and Catoni (2010a,b) derived sharp risk bounds for the ordinary least squares
estimator and the ridge estimator (in addition to specially developed PAC-Bayesian estimators) in a
random design setting under very mild assumptions. Their bounds are proved using PAC-Bayesian
techniques, which allows them to achieve exponential tail inequalities under simple moment con-
ditions. Their non-asymptotic bound for ordinary least squares holds with probability at least
1 − δ and requires δ > 1/n. This work makes stronger assumptions in some respects, allowing
for δ to be arbitrarily small (through the use of vector and matrix tail inequalities). The analysis
of Audibert and Catoni (2010a) for the ridge estimator is established in an asymptotic sense and
bounds the excess regularized mean squared error rather than the excess mean squared error itself.
Therefore, the results are not directly comparable to those provided here.

Our results can be readily applied to the analysis of certain techniques for speeding up over-
complete least squares computations, originally studied by Drineas et al. (2010). Central to this
earlier analysis is the notion of statistical leverage, which we also use in our work. In the appendix,
we show that these computational techniques can be readily understood in the context of random
design linear regression.

Outline. The rest of the paper is organized as follows. Section 2 sets up notations and the basic
data model used in the analyses. The analysis of ordinary least squares is given in Section 3, and
the analysis of ridge regression is given in Section 4. Appendix A presents the exponential tail
inequalities used in the analyses, and Appendix B discusses the application to fast least squares
computations.

2 Preliminaries

2.1 Notations

The Euclidean norm of a vector x is denoted by ‖x‖. The induced spectral norm of a matrix A is
denoted by ‖A‖, i.e., ‖A‖ := sup{‖Ax‖ : ‖x‖ = 1}; its Frobenius norm is denoted by ‖A‖F, i.e.,
‖A‖2F =

∑
i,j A

2
i,j. For any symmetric and positive semidefinite matrix M (i.e., M = M⊤ and

M � 0), let ‖x‖M denote the norm of a vector x defined by

‖x‖M :=
√
x⊤Mx
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The j-th eigenvalue of a symmetric matrix A is denoted by λj(A), where λ1(A) ≥ λ2(A) ≥ . . . and
the smallest and largest eigenvalues of a symmetric matrix A are denoted by λmin(A) and λmax(A),
respectively.

2.2 Linear regression

Let X be a random vector of covariates (features) and Y ∈ R be a response variable (label),
both sampled from some (unknown) underlying joint distribution. We are interested in linear
predictors of the response variable from the covariates, with performance measured under a standard
probabilistic model of the covariate/response pairs.

In the context of linear regression, the quality of a linear prediction X⊤w of Y from X is typically
measured by the squared error (X⊤w − Y )2. The mean squared error of a linear predictor w is
given by

L(w) := E

[
(X⊤w − Y )2

]

where the expectation is taken over both X and Y . Let

Σ := E[XX⊤]

be the second moment matrix of X.

We assume that Σ is invertible, so there is a unique minimizer of L given by

β := Σ−1
E[XY ].

The excess mean squared error of w over the minimum is

L(w)− L(β) = ‖w − β‖2Σ .

2.3 Data model

We are interested in estimating a vector β̂ of coefficients from n observed random covariate/response
pairs (X1, Y1), . . . , (Xn, Yn). We assume these pairs are independent copies of (X,Y ), i.e., sampled
i.i.d. from the (unknown) distribution over (X,Y ). The quality of an estimator β̂ will be judged
by its excess loss ‖β̂ − β‖2Σ , as discussed above.

We now state conditions on the distribution of the random pair (X,Y ).

2.3.1 Response model

The response model we consider is a relaxation of the typical Gaussian model by allowing for model
approximation error and general subgaussian noise. In particular, define the random variables

η(X) := Y − E[Y |X] and bias(X) := E[Y |X]−X⊤β,

where η(X) corresponds to the response noise, and bias(X) corresponds to the approximation error
of β. This gives the modeling equation

Y = X⊤β + bias(X) + η(X).
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Conditioned on X, the noise η(X) is a random, while the approximation error bias(X) is deter-
ministic.

We assume the following condition on the noise η(X).

Condition 1 (Subgaussian noise). There exist a finite σnoise ≥ 0 such that for all λ ∈ R, almost
surely:

E [exp(λ η(X)) | X] ≤ exp
(
λ2σ2

noise/2
)
.

In some cases, we make the further assumption on the approximation error bias(X). The quantity
Bbias in the following only appears in lower order terms (or as log(Bbias)) in the main bounds.

Condition 2 (Bounded approximation error). There exist a finite Bbias ≥ 0 such that for all λ ∈ R,
almost surely:

‖Σ−1/2X bias(X)‖ ≤ Bbias

√
d.

It is possible to relax this condition to moment bounds, simply by using a different exponential tail
inequality in the analysis. We do not consider this relaxation for sake of simplicity.

2.3.2 Covariate model

We separately consider two conditions on X. The first requires that X has subgaussian moments
in every direction after whitening (the linear transformation x 7→ Σ−1/2x).

Condition 3 (Subgaussian projections). There exists a finite ρ1,cov ≥ 1 such that:

E

[
exp

(
α⊤Σ−1/2X

)]
≤ exp

(
ρ1,cov · ‖α‖2/2

)
∀α ∈ R

d.

The second condition requires that the squared length of X (again, after whitening) is never more
than a constant factor greater than its expectation.

Condition 4 (Bounded statistical leverage). There exists a finite ρ2,cov ≥ 1 such that almost
surely:

‖Σ−1/2X‖√
d

=
‖Σ−1/2X‖√
E[‖Σ−1/2X‖2]

≤ ρ2,cov.

This condition can be seen as being analogous to a Bernstein-like condition (e.g., an assumed
almost-sure upper bound on a random variable and a known variance; in the above, ρ2,cov is the
ratio of these two quantities).

3 Ordinary least squares

We now work in a finite dimensional setting where X ∈ R
d The empirical mean squared error of a

linear predictor w is

L̂(w) :=
1

n

n∑

i=1

(X⊤
i w − Yi)

2.
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Let

Σ̂ :=

n∑

i=1

XiX
⊤
i /n

be the empirical second moment matrix of X1, . . . ,Xn. Throughout, we denote empirical expecta-
tions by Ê[·]; so, for instance,

L̂(w) = Ê(X⊤w − Y )2 and Σ̂ = Ê[XX⊤].

If Σ̂ is invertible, then the unique minimizer, β̂ols, is is given by ordinary least squares:

β̂ols := Σ̂−1
Ê[XY ].

3.1 Review: the fixed design setting

In the fixed design setting, the Xi are regarded as deterministic vectors in R
d, so the only ran-

domness involved is the sampling of the Yi. Here, Σfixed :=
∑n

i=1 XiX
⊤
i /n = Σ̂ (a deterministic

quantity, assumed without loss of generality to be invertible), and

βfixed := Σ−1
fixed

(
1

n

n∑

i=1

XiE[Yi]

)

is the unique minimizer of

Lfixed(w) := E

[
1

n

n∑

i=1

(X⊤
i w − Yi)

2

]
.

Here, we are interested in the excess squared error:

Lfixed(w)− Lfixed(β) = ‖w − βfixed‖2Σfixed

In this case, the analysis under suitable modifications of Condition 1 is standard.

Proposition 1 (Fixed design). Suppose Σfixed is invertible and X ∈ R
d. If var(Yi) = σ2, then:

E

[
‖β̂ols − βfixed‖2Σfixed

]
=

dσ2

n

(where the expectation is over the randomness in the Yi’s).

Instead, suppose that there exists σnoise > 0 such that

E

[
exp

(
n∑

i=1

αi(Yi − E[Yi])

)]
≤ exp

(
‖α‖2σ2

noise/2
)

for all (α1, . . . , αn) ∈ R
n. For δ ∈ (0, 1), we have that with probability at least 1− δ,

‖β̂ols − βfixed‖2Σfixed
≤

σ2
noise ·

(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)

n
.
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Proof. The claim follows immediately from the definitions of β̂ols and βfixed, and by Lemma 14.

Our results for the random design setting will be directly comparable to the bound obtained here
for fixed design.

Remark 1 (Approximation error in the fixed design setting). Note that modeling error has no effect
on the bounds above. That is, there is no dependence on the modeling error with regards to the
excess loss in the fixed design setting.

3.2 Out-of-sample prediction error: correct model

Our main results are largely consequences of the decompositions in Lemma 1 and Lemma 2, com-
bined with probability tail inequalities given in Appendix A.

First, we present the results for the case where bias(X) = 0, i.e., when the linear model is correct.

Lemma 1 (Random design decomposition; correct model). Suppose Σ̂ ≻ 0 and E[Y |X] = X⊤β,
then

‖β̂ols − β‖2Σ =

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
2

Σ

≤
∥∥∥Σ1/2Σ̂−1Σ1/2

∥∥∥
∥∥∥∥Ê
[
Σ̂−1/2X η(X)

]∥∥∥∥
2

.

Proof. Since Y −X⊤β = η(X), we have

Ê[XY ]− Σ̂β = Ê[X η(X)].

Hence, using the definitions of β̂ols,

β̂ols − β = Ê

[
Σ̂−1X η(X)

]
.

Furthermore,

Σ1/2
(
β̂ols − β

)
= Σ1/2Σ̂−1/2

Ê

[
Σ̂−1/2X η(X)

]
.

Observe
∥∥Σ1/2Σ̂−1/2

∥∥ =
∥∥Σ̂−1/2Σ1/2

∥∥ =
∥∥Σ1/2Σ̂−1Σ1/2

∥∥1/2, and the conclusion follows.

This decomposition shows that as long as ‖Σ1/2Σ̂−1Σ1/2‖ = O(1), then the rate at which ‖β̂ols−β‖2Σ
tends to zero is controlled by ‖Ê[Σ̂−1/2X η(X)]‖2, which is essentially the fixed design excess loss.
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To state our main bound, we first define the following quantities for all δ ∈ (0, 1):

n1,δ := 70ρ21,cov (d log 41 + log(2/δ))

n2,δ := 4ρ22,cov d log(d/δ)

K1,δ,n :=
1

1− 10ρ1,cov
9

(√
32(d log 41+log(2/δ))

n + 2(d log 41+log(2/δ))
n

)

K2,δ,n :=
1

1−
√

2ρ2
2,covd log(d/δ)

n

.

Note that 1 < K1,δ,n < ∞ and 1 < K2,δ,n < ∞, respectively, when n > n1,δ and n > n2,δ.
Furthermore,

lim
n→∞

K1,δ,n = 1, lim
n→∞

K2,δ,n = 1.

Our first result follows.

Theorem 1 (Correct model). Fix any δ ∈ (0, 1). Suppose that Conditions 1 and 3 hold and that
E[Y |X] = β ·X. If n > n1,δ, then with probability at least 1− 2δ, we have

• (Matrix errors) ∥∥Σ1/2Σ̂−1Σ1/2
∥∥ ≤ K1,δ,n ≤ 5;

• (Excess loss)

‖β̂ols − β‖2Σ ≤ K1,δ,n ·
σ2
noise ·

(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)

n
.

Suppose that Conditions 1 and 4 hold and that bias(X) = 0. If n > n2,δ, then with probability at
least 1− 2δ, we have

• (Matrix errors) ∥∥Σ1/2Σ̂−1Σ1/2
∥∥ ≤ K2,δ,n ≤ 5;

• (Excess loss)

‖β̂ols − β‖2Σ ≤ K2,δ,n ·
σ2
noise ·

(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)

n
.

Remark 2 (Accuracy of Σ̂). Observe that ‖Σ1/2Σ̂−1Σ1/2‖ ≤ 5 is not a particularly stringent
condition on accuracy. In particular, a scaling of ρ1,cov = Θ(

√
n) (or ρ2,cov = Θ(

√
n)) would imply

‖Σ1/2Σ̂−1Σ1/2‖ is constant.
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3.3 Out-of-sample prediction error: misspecified model

Now we state our results in the general case where bias(X) 6= 0 is allowed, i.e., a misspecified linear
model. Again, we begin with a basic decomposition.

Lemma 2 (Random design decomposition; misspecified model). If Σ̂ ≻ 0, then

‖β̂ols − β‖Σ =

∥∥∥∥Ê
[
Σ̂−1X(bias(X) + η(X))

]∥∥∥∥
Σ

≤
∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
Σ

+

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
Σ

‖β̂ols − β‖2Σ ≤ 2

∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
2

Σ

+ 2

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
2

Σ

.

Furthermore,

∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
2

Σ

≤
∥∥∥Σ1/2Σ̂−1Σ1/2

∥∥∥
2
·
∥∥∥∥Ê
[
Σ−1/2X bias(X)

]∥∥∥∥
2

and

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
2

Σ

≤
∥∥∥Σ1/2Σ̂−1Σ1/2

∥∥∥
∥∥∥∥Ê
[
Σ̂−1/2X η(X)

]∥∥∥∥
2

.

Proof. Since Y −X⊤β = bias(X) + η(X), we have

Ê[XY ]− Σ̂β = Ê[X(bias(X) + η(X))].

Using the definitions of β̂ols, multiplying both sides on the left by Σ1/2Σ̂−1 (which exists given the
assumption Σ̂ ≻ 0) gives

Σ1/2
(
β̂ols − β

)
= Σ1/2Σ̂−1/2

Ê

[
Σ̂−1/2Xi(bias(Xi) + ηi)

]

= Σ1/2Σ̂−1Σ1/2
Ê

[
Σ−1/2Xi bias(Xi)

]
+Σ1/2Σ̂−1/2

Ê

[
Σ̂−1/2Xi ηi

]
.

The claims now follow.

Our main result for ordinary least squares, with approximation error, follows.

Theorem 2 (Misspecified model). Fix any δ ∈ (0, 1). Suppose that Conditions 1, 2, and 3 hold.
If n > n1,δ, then with probability at least 1− 3δ, the following holds:

• (Matrix errors) ∥∥Σ1/2Σ̂−1Σ1/2
∥∥ ≤ K1,δ,n ≤ 5

9



• (Approximation error contribution)

∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
2

Σ

≤ K2
1,δ,n

(
4E
[
‖Σ−1/2X bias(X)‖2

] (
1 + 8 log(1/δ)

)

n
+

3B2
biasd log

2(1/δ)

n2

)

(See Remark 4 below for interpretation).

• (Noise contribution) and

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
2

Σ

≤ K1,δ,n ·
σ2
noise ·

(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)

n
.

• (Excess loss)

‖β̂ols − β‖Σ ≤
∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
Σ︸ ︷︷ ︸√

approximation error contribution

+

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
Σ︸ ︷︷ ︸√

noise contribution

;

‖β̂ols − β‖2Σ ≤ 2

∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
2

Σ

+ 2

∥∥∥∥Ê
[
Σ̂−1X η(X)

]∥∥∥∥
2

Σ

.

Instead, if Conditions 1, 2, and 4 hold, then the above claims hold with n2,δ and K2,δ,n in place of
n1,δ and K1,δ,n.

Remark 3. Since β = argminw E[(X⊤w−Y )2], the excess loss bound ‖β̂ols−β‖Σ can be translated
into an oracle inequality with the following identity:

E[(X⊤β̂ols − Y )2] = inf
w

E[(X⊤w − Y )2] + ‖β̂ols − β‖2Σ .

Remark 4 (Approximation error interpretation). Under Condition 4, the term which governs the
approximation error, the quantity E[‖Σ−1/2X‖2 bias(X)2], is bounded as

E

[
‖Σ−1/2X bias(X)‖2

]
≤ ρ22,cov · d · E

[
bias(X)2

]
.

A similar bound can be obtained under Conditions 2 and 3; see Lemma 7.

Remark 5 (Comparison to fixed design). The bounds in Theorems 1 and 2 reveal the relative effect
of approximation error E[bias(X)2] and stochastic noise (through σ2

noise). The main leading factors,
K1,δ,n and K2,δ,n, quickly approach 1 after n > n1,δ and n > n2,δ, respectively. If we disregard
K1,δ,n and K2,δ,n, then the bounds from Theorem 1 essentially match the those in the usual fixed
design and Gaussian noise setting (where the conditional response Y |X is assumed to have a normal
N (X⊤β, σ2

noise) distribution); see Proposition 1 for comparison.

Remark 6 (The σnoise = 0 case and a tight upper bound). If σnoise = 0 (no stochastic noise), then
the excess loss is entirely due to approximation error. In this case,

‖β̂ols − β‖2Σ =

∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
2

Σ

= ‖Ê[Σ1/2Σ̂−1X bias(X)]‖2.
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Furthermore, Theorem 2 bounds this as:

∥∥∥∥Ê
[
Σ̂−1X bias(X)

]∥∥∥∥
2

Σ

≤ K2
1,δ,n

(
4E
[
‖Σ−1/2X bias(X)‖2

] (
1 + 8 log(1/δ)

)

n
+

3B2
biasd log

2(1/δ)

n2

)
.

Note that Σ1/2Σ̂−1Σ1/2 ≈ I for large enough n. In particular, with probability greater than 1− δ,
if n > cn1,δ where c is a constant (or n > cn2,δ), we have that:

1

2
‖Ê[Σ−1/2X bias(X)]‖2 ≤ ‖Ê[Σ1/2Σ̂−1X bias(X)]‖2 ≤ 2‖Ê[Σ−1/2X bias(X)]‖2

(which follows from the arguments provided in Lemmas 3 and 4). Furthermore, observe that
E[‖Ê[Σ−1/2X bias(X)]‖2] = (1/n)E[‖Σ−1/2X bias(X)‖2] (where the outside expectation is with
respect to the sample X1, . . . Xn). Hence, the bound given for the approximation error contribution
is essentially tight, up to constant factors and lower order terms, for constant δ.

3.4 Analysis of ordinary least squares

We separately control ‖Σ1/2Σ̂−1Σ1/2‖ under Condition 3 and Condition 4.

Lemma 3. For all δ ∈ (0, 1), if Condition 3 holds and n > n1,δ, then

Pr
[
Σ̂ ≻ 0 ∧

∥∥Σ1/2Σ̂−1Σ1/2
∥∥ ≤ K1,δ,n

]
≥ 1− δ

and that K1,δ,n ≤ 5.

Proof. Let X̃i := Σ−1/2Xi for i = 1, . . . , n, and Σ̃ := (1/n)
∑n

i=1 X̃iX̃
⊤
i . Let E be the event that

λmin(Σ̃) ≥ 1− ρ1,cov
1− 2/0.05

(√
32 (d log(1 + 2/0.05) + log(2/δ))

n
+

2 (d log(1 + 2/0.05) + log(2/δ))

n

)
.

By Lemma 16 (with η = 0.05), Pr[E] ≥ 1 − δ. Now assume the event E holds. The lower
bound on n ensures that λmin(Σ̃) > 0, which implies that Σ̂ = Σ1/2Σ̃Σ1/2 ≻ 0. Moreover, since
Σ1/2Σ̂−1Σ1/2 = Σ̃−1,

∥∥Σ1/2Σ̂−1Σ1/2
∥∥ =

∥∥Σ̃−1
∥∥ =

1

λmin(Σ̃)
≤ K1,δ,n.

Lemma 4. For all δ ∈ (0, 1), if Condition 4 holds and n > n2,δ, then

Pr
[
Σ̂ ≻ 0 ∧

∥∥Σ1/2Σ̂−1Σ1/2
∥∥ ≤ K2,δ,n

]
≥ 1− δ

and that K2,δ,n ≤ 5.

Proof. Analogous to the proof of Lemma 3 (using Lemma 17 in place Lemma 16).

Under Condition 1, we control ‖Ê[Σ̂−1/2X η(X)]‖2 using a tail inequality for certain quadratic
forms of subgaussian random vectors (Lemma 14).
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Lemma 5. Suppose Condition 1 holds. Fix δ ∈ (0, 1). Conditioned on Σ̂ ≻ 0, we have that with
probability at least 1− δ,

∥∥∥∥Ê[Σ̂
−1/2X η(X)]

∥∥∥∥
2

≤
σ2
noise

(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)

n
.

Proof. We condition on X1, . . . ,Xn, and consider the matrix A ∈ R
d×n whose i-th column is

(1/
√
n)Σ̂−1/2Xi, so A⊤A = I. From Conditions 1 and Lemma 14, the result follows.

We control ‖E[Σ−1/2X bias(X)]‖2 using a tail inequality for sums of random vectors (Lemma 15),

Lemma 6. Suppose Condition 1 holds. Fix δ ∈ (0, 1). With probability at least 1− δ,

∥∥∥∥Ê[Σ
−1/2X bias(X)]

∥∥∥∥
2

≤ 4E
[
‖Σ−1/2X bias(X)‖2

] (
1 + 8 log(1/δ)

)

n
+

3B2
biasd log

2(1/δ)

n2
.

Proof. The optimality β implies E[Xi bias(Xi)] = E[X bias(X)] = 0 for all i = 1, . . . , n. Using this
fact and the bound ‖Σ−1/2X bias(X)‖ ≤ Bbias

√
d from Condition 2, Lemma 15 implies:

Pr

[∥∥∥∥Ê[Σ
−1/2X bias(X)]

∥∥∥∥ ≤

√
E
[
‖Σ−1/2X bias(X)‖2

] (
1 +

√
8 log(1/δ)

)2

n

+
4Bbias

√
d log(1/δ)

3n

]
≥ 1− δ,

and the claim follows

The expectation E[‖Σ−1/2X bias(X)‖2] that appears in the previous lemma can be bounded in
terms of E[bias(X)2] under our conditions.

Lemma 7. If Conditions 2 and 3 hold, then for any λ > 0,

E

[
‖Σ−1/2X bias(X)‖2

]
≤ ρ1,cov · d · E[bias(X)2]

·


1 +

√√√√ log max
{

B2

bias
d

λρ1,covE[bias(X)2] , 1
}

d
+

logmax
{

B2

bias
d

λρ1,covE[bias(X)2] , 1
}
+ λ

d


 .

If Condition 4 holds, then

E

[
‖Σ−1/2X bias(X)‖2

]
≤ ρ22,cov · d · E

[
bias(X)2

]
.

12



Proof. For the first part of the claim, we assume Conditions 3 and 1 hold. Let E be the event that

‖Σ−1/2X‖2 ≤ ρ1,cov ·
(
d+

√
d log(1/δ) + log(1/δ)

)
.

By Lemma 14, Pr[Eδ] ≥ 1− δ. Therefore

E

[
‖Σ−1/2X bias(X)‖2

]
= E

[
‖Σ−1/2X bias(X)‖2 · 1[Eδ]

]
+ E

[
‖Σ−1/2X bias(X)‖2 ·

(
1− 1[Eδ]

)]

≤ ρ1,cov ·
(
d+

√
d log(1/δ) + log(1/δ)

)
· E
[
bias(X)2 · 1[Eδ]

]

+B2
bias · d · E

[(
1− 1[Eδ]

)]

≤ ρ1,cov ·
(
d+

√
d log(1/δ) + log(1/δ)

)
· E[bias(X)2] +B2

bias · d · δ.

Choosing δ := min{λρ1,covE[bias(X)2]/(B2
biasd), 1} completes the proof of the first part.

For the second part, note that under Condition 4, we have ‖Σ−1/2X‖2 ≤ ρ22,covd almost surely, so
the claim follows immediately.

4 Ridge regression

In infinite dimensional spaces, the ordinary least squares estimator is not applicable (note that
our analysis hinges on the invertibility of Σ̂). A natural alternative is the ridge estimator : in-
stead of minimizing the empirical mean squared error, the ridge estimator minimizes the empirical
regularized mean squared error.

For a fixed λ > 0, the regularized mean squared error and the empirical regularized error of a linear
predictor w are defined as

Lλ(w) := E(X⊤w − Y )2 + λ‖w‖2 and L̂λ(w) := Ê(X⊤
i w − Yi)

2 + λ‖w‖2.

The minimizer βλ of the regularized mean squared error is given by

βλ := (Σ + λI)−1
E[XY ].

The ridge estimator β̂λ is the minimizer of the empirical regularized mean squared error, and is
given by

β̂λ := (Σ̂ + λI)−1
Ê[XY ].

It is convenient to define the λ-regularized matrices Σλ and Σ̂λ as

Σλ := Σ + λI and Σ̂λ := Σ̂ + λI

so that
βλ = Σ−1

λ E[XY ] and β̂λ = Σ̂−1
λ Ê[XY ].

Due to the random design, β̂λ is not generally an unbiased estimator of βλ; this is a critical issue
in our analysis.

13



Throughout this section, we assume that our representation is rich enough so that

E[Y |X] = X⊤β.

However, we will not require that ‖β‖2 be finite. The specific conditions (in addition to Condition 1)
are given as follows.

Condition 5 (Ridge conditions).

1. E[Y |X] = X⊤β almost surely. That is, the regression function is perfectly modeled by β.

2. There exists ρλ ≥ 1 such that almost surely,

‖Σ−1/2
λ X‖√

E‖Σ−1/2
λ X‖2

=
‖Σ−1/2

λ X‖√∑
j

λj(Σ)
λj(Σ)+λ

≤ ρλ

where λ1(Σ), λ2(Σ), . . . are the eigenvalues of Σ.

3. There exists Bbiasλ ≥ 0 such that the approximation error biasλ(X) due to βλ, defined as

biasλ(X) := X⊤(β − βλ),

is bounded almost surely as
|biasλ(X)| ≤ Bbiasλ .

Remark 7. The second part is analogous to the bounded statistical leverage condition (Condition 4)

except with λ-whitening (the linear transformation x 7→ Σ
−1/2
λ x) instead of whitening. Note that∑

j λj(Σ)/(λj(Σ) + λ) → d (the dimension of the covariate space) and Σλ → Σ as λ → 0.

Remark 8. As with the quantity Bbias from Condition 2 in the ordinary least squares analysis, the
quantity Bbiasλ here only appears in lower order terms in the results.

4.1 Review: ridge regression in the fixed design setting

Again, in the fixed design setting, X1, . . . Xn are fixed (non-random) points, and, again, define
Σfixed :=

∑n
i=1 XiX

⊤
i /n (a deterministic quantity). Here, β̂λ is an unbiased estimate of the mini-

mizer of the true regularized loss, i.e.,

βλ,fixed := E[β̂λ] = (Σfixed + λI)−1
E

[
1

n

n∑

i=1

XiYi

]
.

where the expectation is with respect to the Yi’s.

The following bias-variance decomposition is useful:

Eβ̂λ
‖β̂λ − β‖2Σfixed

= ‖βλ,fixed − β‖2Σfixed
+ Eβ̂λ

‖βλ,fixed − β̂λ‖2Σfixed

where the expectation is with respect to the randomness in the Yi’s. Here, the first term represents
the bias due to regularization and the second is the variance.

The following straightforward lemma provides a bound on the risk of ridge regression.
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Proposition 2. Denote the singular values of Σfixed by λj,fixed (in decreasing order) and define the
effective dimension as

dλ,fixed =
∑

j

(
λj,fixed

λj,fixed + λ

)2

.

If var(Yi) = σ2, then

Eβ̂λ
‖β̂λ − β‖2Σfixed

=
∑

j

β2
j

λj,fixed

(1 + λj,fixed/λ)2
+

σ2dλ,fixed
n

where the expectation is with respect to the Yi’s.

Remark 9 (Approximation error). Again, note that modeling error has no effect on the fixed design
excess loss for ridge regression.

The results in the random design case are comparable to this bound, in certain ways.

4.2 Out-of-sample prediction error: ridge regression

Due to the random design, β̂λ may be a biased estimate of βλ. For the sake of analysis, this motivates
us to consider another estimate, β̄λ, which is the conditional expectation of β̂λ (conditioned on
X1, . . . ,Xn). Precisely,

β̄λ := E[β̂λ|X1, . . . Xn] = Σ̂−1
λ Ê[X(β ·X)] = Σ̂−1

λ Σ̂β

where the expectation is with respect to the Yi’s. These definitions lead to the following natural
decomposition.

Lemma 8 (Random design ridge decomposition). Assume Condition 5 holds. We have that

‖β̂λ − β‖Σ ≤ ‖βλ − β‖Σ + ‖β̄λ − βλ‖Σ + ‖β̄λ − β̂λ‖Σ

‖β̂λ − β‖2Σ ≤ 3
(
‖βλ − β‖2Σ + ‖β̄λ − βλ‖2Σ + ‖β̄λ − β̂λ‖2Σ

)
.

Remark 10 (Special case: ordinary least squares (λ = 0)). Here, β̄λ = βλ = β if Σ̂ is invertible and
λ = 0, in which case the constant 3 can be replaced by 2 in the second inequality.

Proof. A norm obeys the triangle inequality, and (a+ b+ c)2 ≤ 3(a2 + b2 + c2).

Our main result for ridge regression provides a bound on each of these terms.

Theorem 3 (Ridge regression). Suppose that Conditions 1 and 5 hold. Let λ1(Σ), λ2(Σ), . . .
denote the eigenvalues of Σ, and define the following notions of effective dimensions:

d1,λ :=
∑

j

λj(Σ)

λj(Σ) + λ
and d2,λ :=

∑

j

(
λj(Σ)

λj(Σ) + λ

)2

. (1)
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Define the λ-whitened error matrix as

∆λ := Σ
−1/2
λ (Σ̂ −Σ)Σ

−1/2
λ (2)

and

Kλ,δ,n :=
1

1−
(√

4ρ2
λ
d1,λ log(d1,λ/δ)

n +
ρ2
λ
d1,λ log(d1,λ/δ)

n

) .

Suppose that δ ∈ (0, 1/8), λ ≤ λmax(Σ), and

n ≥ 16ρ2λd1,λ log(d1,λ/δ).

(see Remark 15 below). There exists a universal constant 0 < c < 40 (explicit constants are provided
in the lemmas) such that following claims hold with probability at least 1− 4δ:

• (Matrix errors)

‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖ ≤ 1

1− ‖∆λ‖
≤ Kλ,δ,n ≤ 4

and

‖∆λ‖F ≤ c
(
1 +

√
log(1/δ)

)
√

E[‖Σ−1/2
λ X‖4]− d2,λ

n
+

c(ρ2λd1,λ +
√

d2,λ) log(1/δ)

n
.

• (First term)

‖βλ − β‖2Σ =
∑

j

β2
j

λj(Σ)

(1 + λj(Σ)/λ)2
.

• (Second term)

‖β̄λ − βλ‖2Σ ≤ cK2
λ,δ,n (1 + log(1/δ))

E[‖Σ−1/2
λ (X biasλ(X) − λβλ)‖2]

n

+
cK2

λ,δ,n(ρ
2
λd1,λB

2
biasλ

+ ‖βλ − β‖2Σ) log2(1/δ)
n2

.

Furthermore (for interpretation),

E[X biasλ(X)− λβλ] = 0

and
E[‖Σ−1/2

λ (X biasλ(X)− λβλ)‖2] ≤ ‖βλ − β‖2Σ(2ρ2λd1,λ + 2)

(see Remark 13 below).
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• (Third term)

‖β̄λ − β̂λ‖2Σ ≤
K2

λ,δ,nσ
2
noise

n

(
d2,λ +

√
d2,λ‖∆λ‖F

)

+
2K

3/2
λ,δ,nσ

2
noise

n

√(
d2,λ +

√
d2,λ‖∆λ‖F

)
log(1/δ) +

2Kλ,δ,nσ
2
noise

n
log(1/δ);

• (Excess loss)

‖β̂λ − β‖Σ ≤ ‖βλ − β‖Σ︸ ︷︷ ︸√
first term

+ ‖β̄λ − βλ‖Σ︸ ︷︷ ︸√
second term

+ ‖β̄λ − β̂λ‖Σ︸ ︷︷ ︸√
third term

;

‖β̂λ − β‖2Σ ≤ 3
(
‖βλ − β‖2Σ + ‖β̄λ − βλ‖2Σ + ‖β̄λ − β̂λ‖2Σ

)
.

Remark 11 (Overall form). For a fixed λ, the overall bound roughly has the form

‖β̂λ − β‖Σ ≤ ‖βλ − β‖Σ ·


1 +O



√

K2
λ,δ,n · ρ

2
λd1,λ log(1/δ)

n






+

√

K2
λ,δ,n · σ

2
noise

(
d2,λ + 2

√
d2,λ log(1/δ) + 2 log(1/δ)

)

n
+ lower order o(1/

√
n) terms

where ‖βλ − β‖Σ =
√∑

j β
2
j λj(Σ)/(1 + λj(Σ)/λ)2.

Remark 12 (Special case: ordinary least squares (λ = 0)). Theorem 1 is essentially a special case
for λ = 0 (with minor differences in constants and lower order terms). To see this, note that
d2,λ = d1,λ = d and take ρλ = ρ2,cov so that Condition 4 holds. It is clear that the first and second
terms from Theorem 3 are zero in the case of ordinary least squares, and the third term gives rise to
a nearly identical excess loss bound (in comparison to Theorem 1). In particular, the dependencies
on all terms which are Θ(1/n) are identical (up to constants), and the terms which depend on
‖∆λ‖F are lower order (relative to 1/n).

Remark 13 (Comparison to fixed design). The random design setting behaves much like the fixed
design, with the notable exception of the second term in the decomposition. This term behaves much
like modeling error (in the finite dimensional case), since X biasλ(X)−λβλ is mean 0. Furthermore,
since

E[‖Σ−1/2
λ (X biasλ(X)− λβλ)‖2] ≤ ‖βλ − β‖2Σ(2ρ2λd1,λ + 2),

this second term is a lower order term compared to the first term ‖βλ −β‖2Σ . Note that ‖βλ − β‖2Σ
is precisely the bias term from the fixed design analysis, except with the eigenvalues λj(Σ) in place
of the eigenvalues of the fixed design matrix.

Remark 14 (Random design effects and scaling λ). Note that above condition allows one to see the
effects of scaling λ, such as the common setting of λ = Θ(1/

√
n). As long as ρ2λd1,λ scales in a mild

way with λ, then the random design has little effect.
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Remark 15 (Conditions: λ ≤ λmax(Σ) and δ ∈ (0, 1/8)). These conditions allow for a simplified

expression for the matrix error term ‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖ (through ‖∆λ‖) and are rather mild. The

proof of Lemma 10 provides the general expression, even if these conditions do not hold.

4.3 Analysis of ridge regression

Recall the definitions of d2,λ, d1,λ, and ∆λ from (1) and (2) in Theorem 3. First, we bound the
Frobenius and spectral norms of ∆λ in terms of d2,λ, d1,λ, and the quantities from Condition 5.
Then, assuming ‖∆λ‖ < 1, we proceed to bound the various terms in the decomposition from
Lemma 8 using these same quantities.

Lemma 9 (Frobenius error concentration). Assume Condition 5 holds. With probability at least
1− δ,

‖∆λ‖F ≤
(
1 +

√
8 log(1/δ)

)
√

E[‖Σ−1/2
λ X‖4]− d2,λ

n
+

(4/3)(ρ2λd1,λ +
√

d2,λ) log(1/δ)

n
.

Proof. Define the λ-whitened random vectors

Xi,w := Σ
−1/2
λ Xi

so that the random matrices

Mi := Xi,wX
⊤
i,w −Σ

−1/2
λ ΣΣ

−1/2
λ

have expectation zero. In these terms, ∆λ = (1/n)
∑n

i=1 Mi. Observe that ‖∆λ‖2F is the inner
product

‖∆λ‖2F = 〈∆λ,∆λ〉
where 〈A,B〉 := tr(AB⊤).

We apply Lemma 15, treating Mi as random vectors with inner product 〈·, ·〉, to bound ‖∆λ‖2F with
probability at least 1− δ. Note that E[Mi] = 0 and, by Condition 5, that

E[‖Mi‖2F] = E[〈Xi,wX
⊤
i,w,Xi,wX

⊤
i,w〉]− 〈Σw, Σw〉

= E[‖Xi,w‖4]− tr(Σ2
w)

= E[‖Σ−1/2
λ X‖4]− d2,λ.

Also,
‖Xi,wX

⊤
i,w‖2F = ‖Xi,w‖4 ≤ ρ4λd

2
1,λ

and
‖Σw‖2F = 〈Σw, Σw〉 = d2,λ

so that
‖Mi‖F ≤ ‖Xi,wX

⊤
i,w‖F + ‖Σw‖F ≤ ρ2λd1,λ +

√
d2,λ.

Therefore, Lemma 15 implies the claim, so the proof is complete.
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Lemma 10 (Spectral error concentration). Assume Condition 5 holds. Suppose that λ ≤ λ1(Σ)
and that δ ∈ (0, 1/8). With probability at least 1− δ,

‖∆λ‖ ≤

√
4ρ2λd1,λ log(d1,λ/δ)

n
+

2ρ2λd1,λ log(d1,λ/δ)

3n
.

Remark 16. The condition that λ ≤ λ1(Σ) is only needed to simplify the bound on ‖∆λ‖; it ensures
a lower bound on d1,λ (since d1,λ → 0 as λ → ∞), but this can be easily removed with a somewhat
more cumbersome bound.

Proof. Define Mi = Σ
−1/2
λ (XiX

⊤
i −Σ)Σ

−1/2
λ . Note that by Condition 5,

λmax(Mi) ≤ ‖Σ−1/2
λ Xi‖2 ≤ ρ2λd1,λ,

λmax(−Mi) ≤ λmax(Σ
−1/2
λ ΣΣ

−1/2
λ ) ≤ λ1(Σ)

λ1(Σ) + λ
≤ ρ2λd1,λ,

λmax(E[M
2
i ]) ≤ λmax(E[(Σ

−1/2
λ XiX

⊤
i Σ

−1/2
λ )2]) ≤ ρ2λd1,λλmax(Σ

−1/2
λ ΣΣ

−1/2
λ ) ≤ ρ2λd1,λ,

tr(E[M2
i ]) ≤ tr(E[(Σ

−1/2
λ XiX

⊤
i Σ

−1/2
λ )2]) ≤ ρ2λd1,λ tr(Σ

−1/2
λ ΣΣ

−1/2
λ ) = ρ2λd1,λ

∑

j

λj(Σ)

λj(Σ) + λ
= ρ2λd

2
1,λ.

From Lemma 18, for t ≥ 2.6

Pr


λmax

(
1

n

n∑

i=1

Mi

)
>

√
2ρ2λd1,λt

n
+

ρ2λd1,λt

3n


 ≤ d1,λ · e−t/2.

The claim follows for t = 2 log(d1,λ/δ) for δ ≤ 1/8.

Now we bound the (second and third) terms in the decomposition from Lemma 8.

Lemma 11 (Second term in ridge decomposition). Assume Condition 5 holds. If ‖∆λ‖ < 1, then

1. ‖β̄λ − βλ‖2Σ ≤ 1

(1− ‖∆λ‖)2
‖Ê[Σ−1/2

λ (X biasλ(X)− λβλ)]‖2 ;

2. with probability at least 1− δ,

‖β̄λ − βλ‖2Σ ≤ 1

(1− ‖∆λ‖)2

(
(4 + 32 log(1/δ))

E[‖Σ−1/2
λ (X biasλ(X) − λβλ)‖2]

n

+
6(ρ2λd1,λB

2
biasλ

+ ‖βλ − β‖2Σ) log2(1/δ)
n2

)
.

Furthermore,

E[‖Σ−1/2
λ (X biasλ(X)− λβλ)‖2] ≤ ‖βλ − β‖2Σ(2ρ2λd1,λ + 2).
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Proof. Since β̄λ = Σ̂−1
λ Σ̂β and βλ = Σ̂−1

λ Σ̂λβλ = Σ̂−1
λ (Σ̂βλ + λβλ), we have that

‖β̄λ − βλ‖2Σ = ‖Σ̂−1
λ

(
Σ̂β − (Σ̂βλ + λβλ)

)
‖2Σ

≤ ‖Σ1/2Σ
−1/2
λ ‖2 ‖Σ1/2

λ Σ̂−1
λ

(
Σ̂β − (Σ̂βλ + λβλ)

)
‖2

≤ ‖Σ1/2
λ Σ̂−1

λ

(
Σ̂β − (Σ̂βλ + λβλ)

)
‖2

= ‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖2 ‖Σ−1/2

λ

(
Σ̂β − (Σ̂βλ + λβλ)

)
‖2

= ‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖2 ‖Ê[Σ−1/2

λ (X biasλ(X)− λβλ)]‖2.

The first claim now follows from Lemma 13.

Now we prove the second claim using Lemma 15. First, note that for each i,

‖Σ−1/2
λ (Xi biasλ(Xi)− λβλ)‖ ≤ ‖Σ−1/2

λ Xi biasλ(Xi)‖+ ‖λΣ−1/2
λ βλ‖

Each term can be further bounded using Condition 5 as

‖Σ−1/2
λ (Xi biasλ(Xi))‖ ≤ ρλ

√
d1,λ|biasλ(Xi)| ≤ ρλ

√
d1,λBbiasλ

and

‖λΣ−1/2
λ βλ‖2 =

∑

j

β2
j

λ2λ2
j

(λ+ λj)3
≤
∑

j

β2
j

λ2λj

(λ+ λj)2
= ‖βλ − β‖2Σ .

By Lemma 15, we have that with probability at least 1− δ,

‖Ê[Σ−1/2
λ (X biasλ(X)− λβλ)]‖ ≤

√
E[‖Σ−1/2

λ (X biasλ(X)− λβλ)‖2]
n

(
1 +

√
8 log(1/δ)

)

+
(4/3)(ρλ

√
d1,λBbiasλ + ‖βλ − β‖Σ)

n
log(1/δ)

so

‖Ê[Σ−1/2
λ (X biasλ(X)− λβλ)]‖2 ≤ 2E[‖Σ−1/2

λ (X biasλ(X)− λβλ)‖2]
n

(
1 +

√
8 log(1/δ)

)2

+
(8/3)(ρλ

√
d1,λBbiasλ + ‖βλ − β‖Σ)2

n2
log2(1/δ)

≤ 4E[‖Σ−1/2
λ (X biasλ(X)− λβλ)‖2]

n
(1 + 8 log(1/δ))

+
6(ρ2λd1,λB

2
biasλ

+ ‖βλ − β‖2Σ)
n2

log2(1/δ).
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Finally,

E[‖Σ−1/2
λ (X biasλ(X)− λβλ)‖2] ≤ 2E[‖Σ−1/2

λ X biasλ(X)‖2] + 2‖βλ − β‖2Σ

≤ 2ρ2λd1,λE[biasλ(X)2] + 2‖βλ − β‖2Σ

= ‖βλ − β‖2Σ(2ρ2λd1,λ + 2)

which proves the last claim.

Lemma 12 (Third term in ridge decomposition). Assume Condition 1 holds. Let A := [X1| · · · |Xn]
be the random matrix whose i-th column is Xi. Let

M :=
1

n2
A⊤Σ̂−1

λ ΣΣ̂−1
λ A.

We have

Pr
[
‖β̄λ − β̂λ‖2Σ ≤ σ2

noise tr(M) + 2σ2
noise

√
tr(M)‖M‖ log(1/δ) + 2σ2

noise‖M‖ log(1/δ)
∣∣ X1, . . . ,Xn

]
≥ 1−δ.

Furthermore, if ‖∆λ‖ < 1, then

tr(M) ≤ 1

n
· 1

(1− ‖∆λ‖)2
·
(
d2,λ +

√
d2,λ‖∆λ‖F

)
and ‖M‖ ≤ 1

n
· 1

1− ‖∆λ‖
.

Proof. Let Z := (η(X1), . . . , η(Xn)) be the random vector whose i-th component is η(Xi). By
definition of β̂λ and β̄λ,

‖β̂λ − β̄λ‖2Σ = ‖Σ̂−1
λ (Ê[XY ]− Ê[XE[Y |X]])‖2Σ

= ‖Σ̂−1
λ (Ê[X η(X)])‖2Σ

= ‖(1/n)Σ̂−1
λ AZ‖2Σ

= ‖M1/2Z‖2.

By Lemma 14, we have that with probability at least 1− δ (conditioned on X1, . . . ,Xn),

‖β̄λ − β̂λ‖2Σ ≤ σ2
noise tr(M) + 2σ2

noise

√
tr(M2) log(1/δ) + 2σ2

noise‖M‖ log(1/δ)

≤ σ2
noise tr(M) + 2σ2

noise

√
tr(M)‖M‖ log(1/δ) + 2σ2

noise‖M‖ log(1/δ).

The second step uses the fact that M is positive semi-definite and therefore

tr(M2) =
∑

j

λj(M)2 ≤
∑

j

λj(M) · λmax(M) = tr(M)‖M‖

where we use the notation λj(H) to denote the j-th largest eigenvalue of a symmetric matrix H.
This gives the first claim.
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Now observe that since (1/n)AA⊤ = Σ̂,

‖M‖ =
1

n2
· ‖Σ1/2Σ̂−1

λ A‖2

≤ 1

n2
· ‖Σ1/2Σ

−1/2
λ ‖2‖Σ1/2

λ Σ̂
−1/2
λ ‖2‖Σ̂−1/2

λ A‖2

=
1

n
· ‖Σ1/2Σ

−1/2
λ ‖2‖Σ1/2

λ Σ̂
−1/2
λ ‖2‖Σ̂−1/2

λ Σ̂1/2‖2

≤ 1

n
· ‖Σ1/2

λ Σ̂
−1/2
λ ‖2

=
1

n
λmax(Σ

1/2
λ Σ̂−1

λ Σ
1/2
λ )

≤ 1

n
· 1

1− ‖∆λ‖

where the last inequality follows from the assumption ‖∆λ‖ < 1 and Lemma 13. Moreover,

tr(M) =
1

n2
· tr(A⊤Σ̂−1

λ ΣΣ̂−1
λ A) =

1

n
· tr(Σ̂−1

λ Σ̂Σ̂−1
λ Σ).

To bound this trace expression, we first define the λ-whitened versions of Σ, Σ̂, and Σ̂λ:

Σw := Σ
−1/2
λ ΣΣ

−1/2
λ

Σ̂w := Σ
−1/2
λ Σ̂Σ

−1/2
λ

Σ̂λ,w := Σ
−1/2
λ Σ̂λΣ

−1/2
λ .

We have the following identity:

tr(Σ̂−1
λ Σ̂Σ̂−1

λ Σ) = tr(Σ̂−1
λ,wΣ̂wΣ̂

−1
λ,wΣw).

By von Neumann’s theorem (Horn and Johnson, 1985, page 423),

tr(Σ̂−1
λ,wΣ̂wΣ̂

−1
λ,wΣw) ≤

∑

j

λj(Σ̂
−1
λ,wΣ̂wΣ̂

−1
λ,w) · λj(Σw),

and by Ostrowski’s theorem (Horn and Johnson, 1985, Theorem 4.5.9),

λj(Σ̂
−1
λ,wΣ̂wΣ̂

−1
λ,w) ≤ λmax(Σ̂

−2
λ,w) · λj(Σ̂w).
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Therefore,

tr(Σ̂−1
λ,wΣ̂wΣ̂

−1
λ,wΣw) ≤ λmax(Σ̂

−2
λ,w) ·

∑

j

λj(Σ̂w) · λj(Σw)

≤ 1

(1− ‖∆λ‖)2
·
∑

j

λj(Σ̂w) · λj(Σw)

=
1

(1− ‖∆λ‖)2
·
∑

j

(
λj(Σw)

2 + λj(Σw)(λj(Σ̂w)− λj(Σw))
)

≤ 1

(1− ‖∆λ‖)2
·



∑

j

λj(Σw)
2 +

√∑

j

λj(Σw)2
√∑

j

(λj(Σ̂w)− λj(Σw))2




where the second inequality follows from Lemma 13, and the third inequality follows from Cauchy-
Schwarz. Since

∑

j

λj(Σw)
2 =

∑

j

(
λj(Σ)

λj(Σ) + λ

)2

= d2,λ

and, by Mirsky’s theorem (Stewart and Sun, 1990, Corollary 4.13),

∑

j

(λj(Σ̂w)− λj(Σw))
2 ≤ ‖Σ̂w −Σw‖2F = ‖∆λ‖2F

Hence,

tr(M) =
1

n
· tr(Σ̂−1

λ,wΣ̂wΣ̂
−1
λ,wΣw) ≤

1

n
· 1

(1− ‖∆λ‖)2
·
(
d2,λ +

√
d2,λ · ‖∆λ‖2F

)

which completes the proof.

Lemma 13. If ‖∆λ‖ < 1, then

λmax(Σ
1/2
λ Σ̂−1

λ Σ̂
1/2
λ ) ≤ 1

1− ‖∆λ‖
.

Proof. Observe that Σ
−1/2
λ Σ̂λΣ

−1/2
λ = I + Σ

−1/2
λ (Σ̂λ − Σλ)Σ

−1/2
λ = I + Σ

−1/2
λ (Σ̂ − Σ)Σ

−1/2
λ =

I +∆λ, and that
λmin(I +∆λ) ≥ 1− ‖∆λ‖ > 0

byWeyl’s theorem (Horn and Johnson, 1985, Theorem 4.3.1) and the assumption ‖∆λ‖ < 1. There-
fore

λmax(Σ
1/2
λ Σ̂−1

λ Σ̂
1/2
λ ) = λmax

(
(Σ

−1/2
λ Σ̂λΣ̂

−1/2
λ )−1

)
≤ 1

1− ‖∆λ‖
.
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A Exponential tail inequalities

The following exponential tail inequalities are used in our analysis. These specific inequalities were
chosen in order to satisfy the general conditions setup in Section 2; however, our analysis can
specialize or generalize with the availability of other tail inequalities of these sorts.

The first tail inequality is for positive semidefinite quadratic forms of a subgaussian random vector.
We provide the proof for completeness.

Lemma 14 (Quadratic forms of a subgaussian random vector; Hsu et al., 2011b). Let A ∈ R
m×n

be a matrix and Σ := AA⊤. Let X = (X1, . . . ,Xn) be a random vector such that for some σ ≥ 0,

E

[
exp

(
α⊤X

)]
≤ exp

(
‖α‖2σ2/2

)

for all α ∈ R
n, almost surely. For all δ ∈ (0, 1),

Pr

[
‖AX‖2 > σ2 tr(Σ) + 2σ2

√
tr(Σ2) log(1/δ) + 2σ2‖Σ‖ log(1/δ)

]
≤ δ.

Proof. Let Z be a vector of m independent standard Gaussian random variables (sampled inde-
pendently of X). For any α ∈ R

m,

E

[
exp

(
Z⊤α

)]
= exp

(
‖α‖2/2

)
.

Thus, for any λ ∈ R and ε ≥ 0,

E

[
exp

(
λZ⊤AX

)]
≥ E

[
exp

(
λZ⊤AX

) ∣∣∣∣ ‖AX‖2 > ε

]
· Pr

[
‖AX‖2 > ε

]

≥ exp

(
λ2ε

2

)
· Pr

[
‖AX‖2 > ε

]
. (3)

Moreover,

E

[
exp

(
λZ⊤AX

)]
= E

[
E

[
exp

(
λZ⊤AX

) ∣∣∣∣ Z
]]

≤ E

[
exp

(
λ2σ2

2
‖A⊤Z‖2

)]
(4)

Let USV ⊤ be a singular value decomposition of A; where U and V are, respectively, matrices of
orthonormal left and right singular vectors; and S = diag(

√
ρ1, . . . ,

√
ρm) is the diagonal matrix of

corresponding singular values. Note that

‖ρ‖1 =
m∑

i=1

ρi = tr(Σ), ‖ρ‖22 =
m∑

i=1

ρ2i = tr(Σ2), and ‖ρ‖∞ = max
i

ρi = ‖Σ‖.

By rotational invariance, Y := U⊤Z is an isotropic multivariate Gaussian random vector with mean
zero. Therefore ‖A⊤Z‖2 = Z⊤US2U⊤Z = ρ1Y

2
1 + · · · + ρmY 2

m. Let γ := λ2σ2/2. By a standard
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bound for the moment generating function of linear combinations of χ2-random variables (e.g.,
Laurent and Massart, 2000),

E

[
exp

(
γ

m∑

i=1

ρiY
2
i

)]
≤ exp

(
‖ρ‖1γ +

‖ρ‖22γ2
1− 2‖ρ‖∞γ

)
(5)

for 0 ≤ γ < 1/(2‖ρ‖∞). Combining (3), (4), and (5) gives

Pr
[
‖AX‖2 > ε

]
≤ exp

(
−εγ/σ2 + ‖ρ‖1γ +

‖ρ‖22γ2
1− 2‖ρ‖∞γ

)

for 0 ≤ γ < 1/(2‖ρ‖∞) and ε ≥ 0. Choosing

ε := σ2(‖ρ‖1 + τ) and γ :=
1

2‖ρ‖∞

(
1−

√
‖ρ‖22

‖ρ‖22 + 2‖ρ‖∞τ

)
,

we have

Pr
[
‖AX‖2 > σ2(‖ρ‖1 + τ)

]
≤ exp

(
− ‖ρ‖22
2‖ρ‖2∞

(
1 +

‖ρ‖∞τ

‖ρ‖22
−
√

1 +
2‖ρ‖∞τ

‖ρ‖22

))

= exp

(
− ‖ρ‖22
2‖ρ‖2∞

h1

(
‖ρ‖∞τ

‖ρ‖22

))

where h1(a) := 1+a−
√
1 + 2a, which has the inverse function h−1

1 (b) =
√
2b+b. The result follows

by setting τ := 2
√

‖ρ‖22t+ 2‖ρ‖∞t = 2
√

tr(Σ2)t+ 2‖Σ‖t.

The next lemma is a general tail inequality for sums of bounded random vectors. We use the
shorthand a1:k to denote the sequence a1, . . . , ak, and a1:0 is the empty sequence.

Lemma 15 (Sums of random vectors). Let X1, . . . ,Xn be a martingale difference vector sequence
( i.e., E[Xi|X1:i−1] = 0 for all i = 1, . . . , n) such that

n∑

i=1

E
[
‖Xi‖2 | X1:i−1

]
≤ v and ‖Xi‖ ≤ b

for all i = 1, . . . , n, almost surely. For all δ ∈ (0, 1),

Pr

[ ∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥ >
√
v
(
1 +

√
8 log(1/δ)

)
+ (4/3)b log(1/δ)

]
≤ δ

The proof of Lemma 15 is a standard application of Bernstein’s inequality.

The last three tail inequalities concern the spectral accuracy of an empirical second moment matrix.
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Lemma 16 (Spectrum of subgaussian empirical covariance matrix; Litvak et al., 2005; also see Hsu et al.,
2011a). Let X1, . . . ,Xn be random vectors in R

d such that, for some γ > 0,

E

[
XiX

⊤
i

∣∣∣ X1:i−1

]
= I and

E

[
exp

(
α⊤Xi

) ∣∣∣ X1:i−1

]
≤ exp

(
‖α‖22γ/2

)
for all α ∈ R

d

for all i = 1, . . . , n, almost surely.

For all η ∈ (0, 1/2) and δ ∈ (0, 1),

Pr

[
λmax

(
1

n

n∑

i=1

XiX
⊤
i

)
> 1+

1

1− 2η
· εη,δ,n or λmin

(
1

n

n∑

i=1

XiX
⊤
i

)
< 1− 1

1− 2η
· εη,δ,n

]
≤ δ

where

εη,δ,n := γ ·
(√

32 (d log(1 + 2/η) + log(2/δ))

n
+

2 (d log(1 + 2/η) + log(2/δ))

n

)
.

Lemma 17 (Matrix Chernoff bound; Tropp, 2011). Let X1, . . . ,Xn be random vectors in R
d such

that, for some b ≥ 0,
E
[
‖Xi‖2

∣∣ X1:i−1

]
≥ 1 and ‖Xi‖ ≤ b

for all i = 1, . . . , n, almost surely. For all δ ∈ (0, 1),

Pr

[
λmin

(
1

n

n∑

i=1

XiX
⊤
i

)
< 1−

√
2b2

n
log

d

δ

]
≤ δ.

Lemma 18 (Infinite dimensional matrix Bernstein bound; Hsu et al., 2011a). Let M be a random
matrix, and b̄ > 0, σ̄ > 0, and k̄ > 0 be such that, almost surely:

E[M ] = 0,

λmax(M) ≤ b̄,

λmax

(
E[M2]

)
≤ σ̄2,

tr
(
E[M2]

)
≤ σ̄2k̄.

If M1, . . . ,Mn are independent copies of M , then for any t > 0,

Pr

[
λmax

(
1

n

n∑

i=1

Mi

)
>

√
2σ̄2t

n
+

b̄t

3n

]
≤ k̄ · t(et − t− 1)−1.
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B Application to fast least squares computations

B.1 Fast least squares computations

Our main results can be used to analyze certain data pre-processing techniques designed for speeding
up over-complete least squares computations (e.g., Drineas et al., 2010; Rokhlin and Tygert, 2008).
The goal of these randomized methods is to approximately solve the least squares problem

min
w∈Rd

1

N
‖Aw − b‖2

for some large design matrix A ∈ R
N×d and vector b ∈ R

N . In these methods, the columns of A and
the vector b are first subjected to a random rotation (orthogonal linear transformation) Θ ∈ R

N×N .
Then, the rows of [ΘA,Θb] ∈ R

N×(d+1) are jointly sub-sampled. Finally, the least squares problem
is solved using just the sub-sampled rows.

Let (X,Y ) ∈ R
d × R be a random pair distributed uniformly over the rows of [ΘA,Θb]. It can be

shown that the bounded statistical leverage condition (Condition 4) is satisfied with

ρ2,cov = O

(√
1 +

log(N/δ′)

d

)

with probability at least 1 − δ′ over the choice of the random rotation matrix Θ under a variety
of standard ensembles (see below). We thus condition on the event that this holds. Now, let β be
the solution to the original least squares problem, and let β̂ols be the solution to the least squares
problem given by a random sub-sample of the rows of [ΘA,Θb]. We have, for any w ∈ R

d,

L(w) = E[(X⊤w − Y )2] =
1

N
‖ΘAw −Θb‖2 = 1

N
‖Aw − b‖2.

Moreover, we have that Y −X⊤β = bias(X), so E[bias(X)2] = L(β). Therefore, Theorem 2 implies
that if at least

n > n2,δ = O
((
d+ log(N/δ′)

)
· log(d/δ)

)

rows of [ΘA,Θb] are sub-sampled, then β̂ols satisfies the approximation error guarantee (with prob-
ability at least 1− δ over the random sub-sample):

L(β̂ols)− L(β) = O

(
d · L(β) · log(1/δ)

n

)
+ lower order O(1/n2) terms.

It is possible to slightly improve these bounds with more direct arguments. Nevertheless, our
analysis shows how these specialized results for fast least squares computations can be understood
in the more general context of random design linear regression.

B.2 Random rotations and bounding statistical leverage

The following lemma gives a simple condition on the distribution of the random orthogonal matrix
Θ ∈ R

N×N used to pre-process a data matrix A so that Condition 4 (bounded statistical leverage) is
applicable to the uniform distribution over the rows of ΘA. Its proof is a straightforward application
of Lemma 14. We also give two simple examples under which the required condition holds.
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Lemma 19. Suppose Θ ∈ R
N×N is a random orthogonal matrix and σ > 0 is a constant such that

for each i = 1, . . . , N , for all α ∈ R
N , and almost surely:

E

[
exp

(
α⊤(√NΘ⊤ei

))]
≤ exp

(
‖α‖2σ2/2

)
.

Let A ∈ R
N×d be any matrix of rank d, and let Σ := (1/N)(ΘA)⊤(ΘA) = (1/N)A⊤A. There exists

ρ2,cov ≤ σ

√

1 + 2

√
log(N/δ)

d
+

2 log(N/δ)

d

such that

Pr

[
max

i=1,...,N
‖Σ−1/2(ΘA)⊤ei‖ > ρ2,cov

√
d

]
≤ δ.

Proof. Let Zi :=
√
NΘ⊤ei for each i = 1, . . . , N . Let U ∈ R

N×d be a matrix of left orthonormal
singular vectors of A. We have

‖Σ−1/2(ΘA)⊤ei‖ = ‖
√
NU⊤Θ⊤ei‖ = ‖U⊤Zi‖.

By Lemma 14,

Pr
[
‖U⊤Zi‖2 > σ2

(
d+ 2

√
d log(N/δ) + 2 log(N/δ)

)]
≤ δ/N.

Therefore, by a union bound,

Pr

[
max

i=1,...,N
‖Σ−1/2(ΘA)⊤ei‖2 > σ2

(
d+ 2

√
d log(N/δ) + 2 log(N/δ)

)]
≤ δ.

Example 1. Let Θ be distributed uniformly over all N × N orthogonal matrices. Fix any i =
1, . . . , N . The random vector V := Θ⊤ei is distributed uniformly on the unit sphere S

N−1. Let L
be a χ random variable with N degrees of freedom, so LV has an isotropic multivariate Gaussian
distribution. By Jensen’s inequality

E

[
exp

(
α⊤(√NΘ⊤ei

))]
= E

[
exp

(
α⊤(√NV

))]

= E

[
E

[
exp

(√
N

E[L]
α⊤(E[L]V )

) ∣∣∣ V
]]

≤ E

[
exp

(√
N

E[L]
α⊤(LV )

)]

≤ exp

(‖α‖2N
2E[L]2

)

≤ exp

(
‖α‖2

(
1− 1

4N
− 1

360N3

)−2

/2

)

29



since

E[L] ≥
√
N

(
1− 1

4N
− 1

360N3

)
.

Therefore, the condition is satisfied with σ = 1 +O(1/N).

Example 2. Let N be a power of two, and let Θ := H diag(S)/
√
N , where H ∈ {±1}N×N is the

N ×N Hadamard matrix, and S := (S1, . . . , Sn) ∈ {±1}N is a vector of N Rademacher variables
(i.e., S1, . . . , SN i.i.d. with Pr[S1 = 1] = Pr[S1 = −1] = 1/2). This random rotation is a key
component of the fast Johnson-Lindenstrauss transform of Ailon and Chazelle (2009), also used
by Drineas et al. (2010). For each i = 1, . . . , N , the distribution of

√
NΘ⊤ei is the same as that of

S, and therefore

E

[
exp

(
α⊤(√NΘ⊤ei

))]
= E

[
exp

(
α⊤S

)]
≤ exp(‖α‖2/2)

where the last step follows by Hoeffding’s inequality. Therefore, the condition is satisfied with
σ = 1.
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