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Pole solutions in formation of the Saffman-Teylor ”finger” with one half of the

channel width without surface tension

Oleg Kupervasser
Department of Chemical Physics,The Weizmann Institute of Science,Rehovot 76100, Israel

Laplacian growth without surface tension has nice analytical solutions which replace its complex
integro-differential motion equations by simple differential equations of poles motion in a complex
plane. The main problem of such solution is existing of finite time singularities. To prevent such
singularities nonzero surface tension usually is used. But such nonzero surface tension destroys
analytical solutions. However more elegant way exists to solve the problem. First of all, we can
introduce some small poles noise to system. Secondary, for regularization of problem we throw out
all new poles that can give finite time singularity. It can be strictly proved that asymptotic solution
for such system is a single finger. Moreover the qualitative consideration demonstrate that finger
with 1

2
of the channel width is statistically stable. So all properties of such solution are completely

the same as for the solution with a nonzero surface tension under a numerical noise. Surprisedly,
flame front propagation problem has the same pole solutions and qualitative behavior.

PACS numbers: PACS numbers 47.27.Gs, 47.27.Jv, 05.40.+j

I. INTRODUCTION

The problem of pattern formation is one of the most
rapidly developing branches of nonlinear science today
[1]. Of special interest is the study of the front dynam-
ics between two phases (interface) that arises in a vari-
ety of nonequilibrium physical systems. If, as it usually
happens, the motion of the interface is slow in compar-
ison with the processes that take place in the bulk of
both phases (such as heat transfer, diffusion, etc.), the
scalar field governing the evolution of the interface is a
harmonic function. It is natural then, to call the whole
process Laplacian growth. Depending on the system,
this harmonic scalar field is a temperature (in the freez-
ing of a liquid or Stefan problem), a concentration (in
solidification from a supersaturated solution), an elec-
trostatic potential (in electrodeposition), a pressure (in
flows through porous media), a probability (in diffusion-
limited aggregation), etc.

The mathematical problem of Laplacian growth with-
out surface tension exhibits a family of exact analytical
solutions in terms of logarithmic poles in the complex
plane. We show that this family of solutions has a re-
markable property: generic initial conditions in channel
geometry which begin with arbitrarily many features ex-
hibit an inverse cascade into a single finger.

The main problem of such solution is existing of finite
time singularities. To prevent such singularities nonzero
surface tension usually is used. But such nonzero surface
tension destroys analytical solutions.

However more elegant way exists to solve the problem.
First of all, we can introduce some small noise to sys-
tem. (It can be considered as a poles flux from infinity.)
Secondary, for regularization of problem we throw out all
new poles that can give finite time singularity. It can be
strictly proved that asymptotic solution for such system
is a single finger. Moreover the qualitative consideration
demonstrate that finger with 1

2 of the channel width is

statistically stable. So all properties of such solution are
completely the same as for the solution with a nonzero
surface tension under a numerical noise.
The rest of the paper is organized as follows.

We begin by presenting arguments about Saffman-
Teylor ”finger” formation with one half of the channel
size(Section II).Next Section III describes asymptotic sin-
gle Saffman-Teylor ”finger” formation without surface
tension. And finally (Section IV) we give summary and
conclusions.

II. SAFFMAN-TEYLOR ”FINGER”

FORMATION WITH ONE HALF OF THE

CHANNEL SIZE

This derivation is similar to [2]. The case of Laplacian
growth in the channel without surface tension was in de-
tails considered by Mark Mineev-Weinstein and Dawson
[3]. In this case the problem has the beautiful analytical
solution. Moreover they assumed that all major effects
in the case with vanishingly small surface tension may be
received also without surface tension. It would allow ap-
plying to vanishingly small surface tension case the pow-
erful analytical methods developed for the no surface ten-
sion case. However without additional assumptions this
hypothesis may not be accepted.
The first objection is related to finite time singulari-

ties for some initial conditions. Actually for overcoming
this difficulty the regular item with surface tension was
introduced. This surface tension item is resulting in loss
of the analytical decision. However regularization may
be carried out much more simply - simply by rejecting
the initial conditions which result to these singularities.
The second objection is given in work Siegel and Tanveer
[4]. There it is shown, that in numerical simulations in
a case with any (even vanishingly small) surface tension
any initial thickness ”finger” extends up to 1

2 thickness
width of the channel. The analytical solution in a case
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without a surface tension results in constant thickness of
the ”finger” equal to its initial size that may be arbitrary.
Siegel and Tanveer however did not take into account the
simple fact, that numerical noise introduces small pertur-
bation or to the initial condition, or even during ”finger”
growth, which is equivalent to the remote poles, and with
respect to this perturbation the analytical solution with
constant ”finger” thickness is unstable.

By Mark Mineev-Weinstein [5] it was shown, that sim-
ilar pole perturbations can give, at the some initial con-
ditions, extending up to the Siegel and Tanveer solutions.
This positive aspect of the paper [5] was mentioned by
Sarkissian and Levine in them Comment [6]. Summing
up, it is possible to tell, that for identity of the results
with and without surface tension it is necessary to intro-
duce a permanent source of the new remote poles: it may
be either external noise or infinite number of poles in an
initial condition. What from these methods is preferred
it is a open question yet.

In the case of flame front propagation it was shown
[9], that external noise is necessary for an explanation
of flame front velocity increase with the sizes of system:
the infinite number of poles in an initial condition can
not give this result. It is interesting to know, what is
situation in the channel Laplacian growth. One of main
results of Laplacian growth in the channel with a small
surface tension is Saffman-Teylor ”finger” formation with
the thickness equal to 1

2 thickness of the channel. And to
use the analytical result received for zero surface tension,
it is necessary to prove, that formation of the ”finger”
with thickness equal to 1

2 thickness of the channel takes
place without surface tension also.

In our teamwork with Mark Mineev-Weinstein [7] it
was shown, that for finite number of poles at almost all
allowed (in the sense of not approaching to finite time
singularities) initial conditions, except for small number
of some degenerated initial conditions, they have asymp-
totic as some ”finger” with any possible thickness. It
should be mentioned, that the solutions and asymptotic
found in [7] for finite number of poles are though also
idealization, but quite have real sense for any finite in-
tervals of time between appearance of the new poles in-
troduced into system by external noise or connected to
an entrance to the system of remote poles of an initial
condition, including infinite number of such poles. The
theorem proved in [7] and may be again applied for this
final set of new and old poles is again received asymp-
totic, being again ”finger”, but already with possible new,
distinct from former, thickness. Thus, introduction of a
source of new poles results only in possible drift of thick-
ness of the final ”finger”, but not changing of type of this
solution.

It should be mentioned, that instead of periodi-
cal boundary conditions, much more realistic ”noflux”
boundary conditions may be introduced [8] (This paper
repeats the result about a single finger asymptotic for-
merly already proved in the papers [7] and [9] for peri-
odic boundary conditions.), forbidding a stream through

a wall which insert additional, probably useful, restric-
tions on a positions, number and parameters of new and
old poles (explaining, for example, why the sum of all
complex parameters αi for poles give the real value α for
the pole solution (5) in [5]), not influencing, however, as
shown in [9], on correctness and applicability proved in
[7] results and methods of their including.

Given in [5] by Mark Mineev-Weinstein ”proof”, that
steady asymptotic for Laplacian growth in a channel with
zero surface tension is single ”finger” with thickness equal
to 1

2 thickness of the channel, is unequivocally erroneous:
completely the same method which was used in [5] to
prove and demonstrate instability of ”finger” with thick-
ness distinct from 1

2 with respect to introducing the new
remote poles, instability of ”finger” with thickness equal
to 1

2 may be proved and demonstrated! This objection
was repeatedly stated to Mark Mark Mineev-Weinstein
before the publication of his paper [5], however has not
found any answer there. Moreover, in our teamwork [7]
was is shown, that for finite number of poles any thick-
ness ”finger” is possible as asymptotic.

It does not mean, nevertheless, that privileged role of
”finger” with thickness 1

2 cannot be proved in the case
of surface tension absence, but means only that such the
proof are not given in [5]. Let us try to give these correct
arguments here. The general pole solution (5) in work [5]
is characterized by the real parameter α being the sum
of the complex parameters αi for poles. Thickness of the
asymptotic finger is simple function of α: (Thickness =
1 − α

2 ). The value (α = 1) corresponds to thickness 1
2 .

As far as possible thickness of the ”finger” is between 0
and 1, possible α value is in an interval between 0 and 2:
(0 < α < 2). The value α = 1 corresponding to the finger
width 1

2 is exactly in the middle of this interval. What
occurs to quite possible initial pole conditions with α
outside of limits from 0 up to 2? They are ”not allowed”
because of already known to us finite time singularities
[7]. Also a part of solutions inside of interval 0 < α < 2
results to the similar finite time singularities.

Exact necessary conditions, whether defining the ini-
tial pole condition as ”allowed”, i.e. singular, is still a
open problem. How number of these ”allowed” initial
pole conditions (to be exact speaking, their percent from
the full number of the possible initial pole conditions cor-
responding to the given real value α) is distributed inside
of this interval?

From the reasons of a continuity and symmetry with
respect to α = 1 (Fig. 1) it is possible to conclude, that
this distribution has a minimum in point α = 1 (thick-
ness 1

2 !), the value which is the most remote from both
borders of interval 0 < α < 2, being increased to borders
α = 2 or 0, and reaching 100 percent from all pole so-
lutions outside of these borders. I.e. thickness 1

2 is the
most probable because for this thickness value the mini-
mal percent of potentially capable to give such thickness
value initial conditions is ”not allowed”, i.e. results to
singularities. Source of new poles results to the drift of
finger thickness, but this thickness drift is closed to the
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FIG. 1: A width of a finger is equal to 1 − α

2
(The channel

width is assumed 1). The graph for current α gives percent
of all possible solutions resulting in a finite time singularity.
Maximum value is equal to 100 percent and correspondents
to α ≤ 0 or α ≥ 2. Minimum is in the middle point α = 1
between α = 0 (the finger width 1) and α = 2 (the finger
width 0). So in the minimum the finger width is 1

2

most probable and average size equal to The similar re-
sult is obtained in the case of Saffman-Teylor ”finger”
with vanishingly small surface tension and with some ex-
ternal noise. As it was desirable to be proved. It should
be mentioned that these formulated arguments are only
qualitative and the strict proof are also necessary.

III. ASYMPTOTIC SINGLE

SAFFMAN-TEYLOR ”FINGER” FORMATION

WITHOUT SURFACE TENSION

In the absence of surface tension, whose effect is to
stabilize the short-wavelength perturbations of the inter-
face, the problem of 2D Laplacian growth is described as
follows

(∂2
x + ∂2

y)u = 0 . (1)

u |Γ(t)= 0 , ∂nu |Σ= 1 . (2)

vn = ∂nu |Γ(t) . (3)

Here u(x, y; t) is the scalar field mentioned, Γ(t) is the
moving interface, Σ is a fixed external boundary, ∂n is a
component of the gradient normal to the boundary (i.e.
the normal derivative), and vn is a normal component of
the velocity of the front.

Now we introduce physical “no-flux” boundary condi-
tions. It means no flux across the lateral boundaries of
the channel. This requires that the moving interface or-
thogonally intersects the walls of the channel. However,
unlike the case of periodic boundary conditions, the end
points at the two boundaries do not necessarily have the
same horizontal coordinate. Nevertheless this can be also
considered as a periodic problem where the period equals
twice the width of the channel. But only half of this pe-
riodic strip should be considered as the physical channel,
whereas the second half is its unphysical mirror image.
Then we introduce a time-dependent conformal map f

from the lower half of a “mathematical” plane, ξ ≡ ζ+iη,
to the domain of the physical plane, z ≡ x+iy, where the

Laplace equation 1 is defined as ξ
f

−→ z. We also require
that f(t, ξ) ≈ ξ for ξ −→ ζ − i∞. Thus the function
z = f(t, ζ) describes the moving interface. From Eqs.
(1), (2), (3) for function f(t, ξ) we obtain the Laplacian
Growth Equation

Im(
∂f(ξ, t)

∂ξ

∂f(ξ, t)

∂t
) = 1 |ξ=ζ−i0 , fζ |ζ−i∞= 1 . (4)

Let us look for a solution of Eq. (4) in the nextfollow-
ing form

f(ξ, t) = λξ − iτ(t)− i

N∑

l=1

αl log(e
iξ − eiξl(t)), (5)

α =
N∑

l=1

αl = 1− λ, (6)

where τ(t) is some real function of time, αl is a complex
constant, ξl = ζl + iηl denotes the position of the pole
with the number l and N is the number of poles.
For our “no-flux” boundary condition we must add the

condition that for every pole ξl = ζl + iηl with αl exists
a pole ξl = −ζl + iηl with αl.
So we can conclude from this condition for pairs of

poles and eq. (6) that λ is a real constant.
We will prove below that necessary condition for no

existence of a finite time singularity for a pole solution is

− 1 < λ < 1 , (7)

Also for the function F (iξ, t) = if(ξ, t) for “no-flux”
boundary condition

F (iξ, t) = F (iξ, t) (8)

We want to prove that the final state will be only one
finger if no finite time singularity appears during poles
evolutions.
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FIG. 2: Geometrical interpretation of the complex constants
of motion α′

k = 1

2
αk and βk; k = 1, ..., N .

A. Asymptotic behavior of the poles in the

mathematical plane

This derivation is similar to [7] but we assume ”no-
flux” boundary conditions here (in analogy with [8]). The
main purpose of this chapter is to investigate the asymp-
totic behavior of the poles in the mathematical plane.
We want to demonstrate that for time t 7→ ∞, all poles
go to the two boundary points for no-flux boundary con-
ditions. The equation for the interface is

f(ξ, t) = λξ − iτ(t) − i

N∑

l=1

αl log(e
iξ − eiξl(t)),

N∑

l=1

αl = 1− λ,−1 < λ < 1 . (9)

By substitution of Eq. (9) in the Laplacian Growth
Equation

Im(
∂f(ξ, t)

∂ξ

∂f(ξ, t)

∂t
) = 1 |ξ=ζ−i0 , (10)

we can find the equations of pole motion (FIG. 2):

βk = τ(t)+(1−

N∑

k=1

αk) log
1

al
+

N∑

k=1

αk log(
1

al
−ak) = const

(11)
and

τ = t−
1

2

N∑

k=1

N∑

l=1

αkαl log(1− akal) + C0 , (12)

where al = eiξl , C0 is a constant.

From eqs. (11) we can find

(1− λ)τ −

N∑

l=1

αl log al +

N∑

k=1

N∑

l=1

αkαl log(1− akal) = const . (13)

From eqs. (12) and (13) we can obtain

Im(

N∑

l=1

αl log al) = const (14)

and

t = (
1 + λ

2
)τ +

1

2
Re(

N∑

l=1

αl log al) + C1/2 , (15)

where C1 and αl is a constant, ξl(t) is the position of the
poles, al = eiξl(t).
In Appendix A we will prove from eq.(12) that τ 7→ ∞,

if t 7→ ∞ and if any finite time singularity does not exist.
The equations of pole motion are following from eqs.

(11) are following

τ + iξk +
∑

l

αl log(1− ei(ξl−ξk)) = const, (16)

or in a different form:

ζk +
∑

l

(α′′
l log | 1− ei(ξl−ξk) | +

α′
l arg(1− ei(ξl−ξk))) = const, (17)

τ + ηk +
∑

l

(α′
l log | 1− ei(ξl−ξk) | −

α′′
l arg(1 − ei(ξl−ξk))) = const, (18)

where

ξl = ζl + iηl, ηl > 0 . (19)

αl = α′
l + iα′′

l . (20)

Let us transform

arg(1− ei(ξl−ξk) =

arg([1− ei(ζl−ζk)e−(ηl+ηk)]) =

arg[1− alke
iϕlk ] (21)

ϕlk = ζl − ζk, alk = e−(ηl+ηk) (22)

arg[1 − alke
iϕlk ] is a single valued function of ϕlk, i.e.
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−
π

2
≤ arg[1− alke

iϕlk ] ≤
π

2
. (23)

We multiply eq. (18) by α′′
k and eq. (17) by α′

k and
take difference we obtain the following equation:

α′
kζk − α′′

kτ +
∑

l 6=k

((α′′
l α

′
k − α′′

kα
′
l) log | 1− ei(ξl−ξk) | +

(α′
lα

′
k + α′′

l α
′′
k) arg(1− ei(ξl−ξk))) = const. (24)

We want to investigate asymptotic behavior of poles
τ 7→ ∞.
We have the divergent terms α′′

kτ in this equation.

From the eq. (24 ) only term log | 1 − ei(ξk−ξk) | can
eliminate this divergence. The necessary condition for it
is ηk 7→ 0 for τ 7→ ∞, 1 ≤ k ≤ N .
We may assume that for t 7→ ∞, N ′ groups of poles

exist (N ′ ≤ N) (ϕlk 7→ 0 for all members of a group).
The N ′ is currently arbitrary and even can be equal to
N . Nl is the number of poles in each group, 1 < l < N ′.
For each group by summation of eqs. (24) over all

group poles we obtain

αgr′
k ζgrk − αgr′′

k τ +
∑

l 6=k

((αgr′′
l αgr′

k − αgr′′
k αgr′

l ) log | 1− ei(ξ
gr

l
−ξ

gr

k
) | +

(αgr′
l αgr′

k + αgr′′
l αgr′′

k ) arg(1− ei(ξ
gr

l
−ξ

gr

k
))) = const,(25)

where

αgr′′
l =

Nl∑

k

α′′
k , (26)

αgr′
l =

Nl∑

k

α′
k . (27)

We have no merging between defined groups for large
τ so we investigate the motion of poles with this assump-
tion

| ζgrl − ζgrk |≫ ηgrl + ηgrk , 1 ≤ l, k ≤ N . (28)

For l 6= k, ηgrk 7→ 0, ϕgr
lk = ζgrl − ζgrk we obtain

log | 1− ei(ξ
gr

l
−ξ

gr

k
) |≈ log | 1− ei(ζ

gr

l
−ζ

gr

k
) |=

log 2 +
1

2
log sin2

ϕgr
lk

2
(29)

and

arg(1− ei(ξ
gr

l
−ξ

gr

k
)) ≈ arg(1− ei(ζ

gr

l
−ζ

gr

k
)) =

ϕgr
lk

2
+ πn−

π

2
. (30)

We choose n in Eq.(30) so that Eq.(23) is correct. Sub-
stituting these results to the eqs. (25) we obtain

Ck = αgr′ζgrk − αgr′′
k τ +

∑

l 6=k

[(αgr′′
l αgr′

k − αgr′′
k αgr′

l ) log | sin
ϕgr
lk

2
|

+(αgr′
l αgr′

k + αgr′′
l αgr′′

k )
ϕgr
lk

2
]. (31)

B. Theorem about coalescence of the poles

From eqs. (31) we can conclude
(i) By summation of eqs.(31) (or exactly from eq. (14))

we obtain
∑

k

αgr′
k ζgrk = const . (32)

(ii) For | ϕgr
lk |7→ 0, 2π, we obtain log | sin

ϕ
gr

lk

2 |7→ ∞,
meaning that the poles can not pass off each other;
(iii) From (ii) we conclude that 0 <| ϕgr

lk |< 2π
(iv) From (i) and (iii), ζgrk 7→ ∞ is impossible;
(v) In eq.(31) we must compensate the second diver-

gent term. From (iv) and (iii) we can do it only if

αgr′′
l =

∑Nl

k α′′
k = 0 for all l.

So from eq. (31) we obtain

Nl∑

k

α′′
k = 0 , (33)

˙ϕgr
lk = 0 , (34)

ϕgr
lk 6= 0 , (35)

˙ζgrk = 0 . (36)

For the asymptotic motion of poles in the group Nm

we obtain from eqs. (33), (34), (35), (36) taking leadind
terms in eqs. (15), (16)

τ =
2

λ+ 1
t , (37)

0 = τ̇ +

Nm∑

l

αl

η̇k + η̇l + i(ζ̇k − ζ̇l)

ηk + ηl + i(ζk − ζl)
. (38)

The solution to these equations is

ηk = η0ke
− 1

α
gr′
m

2
1+λ

t
, (39)
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FIG. 3: Three consecutive stages of viscous fingering in
the Hele-Shaw cell: initial (left), intermediate (center), and
asymptotic (right). The physical plane z is shown in the up-
per pictures, while the lower pictures depict a distribution of
moving poles ak(t) in the unit circle |ω| < 1 on the mathe-
matical plane ω. The open circle indicates the repeller, ω = 0,
while the solid circle indicates the attractor, ω = 1, of poles
whose dynamics is given by (11-12).

ϕlk = ϕlk
0e

− 1

α
gr′
m

2
1+λ

t
, (40)

ζ̇k = 0 . (41)

So we may conclude that for eliminating the divergent
term we need

αgr′′
l =

Nl∑

k

α′′
k = 0, (42)

αgr′
l (1 + λ) > 0 (43)

for all l.

C. The final result

With the no-flux boundary condition we have a pair
of the poles whose condition of eq. (42) is correct so all
these pairs must merge. Because of the symmetry of the
problem these poles can merge only on the boundaries of
the channel ζ = 0,±π. Therefore we obtain two groups of
the poles on boundaries N ′ = 2, m = 1, 2, N1+N2 = N ,
αgr′
1 + αgr′

2 = 1− λ.
Consequently we obtain the solution (on two bound-

aries FIG. 3):

η
(1)
k = η

(1),0
k e

− 1

α
gr′
1

2
1+λ

t
, (44)

ϕ
(1)
lk = ϕlk

(1),0e
− 1

α
gr′
1

2
1+λ

t
, (45)

ζ
(1)
k = 0 ; (46)

η
(2)
k = η

(2),0
k e

− 1

α
gr′
2

2
1+λ

t
, (47)

ϕ
(2)
lk = ϕlk

(2),0e
− 1

α
gr′
2

2
1+λ

t
, (48)

ζ
(2)
k = ±π ; (49)

αgr′
1 (1 + λ) > 0, (50)

αgr′
2 (1 + λ) > 0. (51)

By summation of eqs. (50) and (50) and using eq. 6
we obtain

(1− λ)(1 + λ) = 1− λ2 > 0. (52)

This immediately gives us the formerly formulated con-
dition (7) for λ.

λ+1
2 = 1 − α

2 has a explicit physical sense. It is the
portion of the channel occupied by the moving liquid.
We see that for no finite time singularity and for t 7→ ∞
we obtain one finger with wide λ+1

2 .

IV. CONCLUSIONS

Analytical pole solution for Laplasian growth gives
sometimes finite time singularities. But nice solution of
this problem exists. First of all, we introduce some small
noise to system. This noise can be considered as a poles
flux from infinity. Secondary, for regularization of prob-
lem we throw out all new poles that can give a finite time
singularity. It can be strictly proved that asymptotic so-
lution for such system is a single finger. Moreover the
qualitative consideration demonstrate that finger with 1

2
of the channel width is statistically stable. So all prop-
erties of such solution are completely the same as for the
solution with a nonzero surface tension under a numerical
noise.
Surprisedly, flame front propagation problem (in spite

of absolutely different physics and mathematic equations
for motion) has also the analytical pole solutions and
demonstrates the same qualitative behavior of these so-
lutions [9–13].
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V. APPENDIX A

We need to prove that τ 7→ ∞, if t 7→ ∞ and if any
finite time singularity does not exist. Formula for τ is
following:

τ = t+ [−
1

2

N∑

k=1

N∑

l=1

αkαl log(1− akal)] + C0 , (53)

where | al |< 1 for all l.
Let us prove that the second term in this formula is

greater than zero:

−
1

2

N∑

k=1

N∑

l=1

αkαl log(1− akal) =

−
1

2

N∑

k=1

N∑

l=1

αkαl

∞∑

n=1

(−
(akal)

n

n
) =

1

2

∞∑

n=1

1

n
(

N∑

k=1

αk(ak)
n)(

N∑

l=1

αl(al)
n) =

1

2

∞∑

n=1

1

n
(

N∑

l=1

αl(al)n)(

N∑

l=1

αl(al)
n) > 0 (54)

So the second term in eq. (53) always more then zero
and, consequently, τ 7→ ∞, if t 7→ ∞ for no finite time
singularity.
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