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Source Separation and Clustering
of Phase-Locked Subspaces: Derivations and Proofs

Miguel Almeida, Jan-Hendrik Schleimer, José BioucassDRicardo Vigario

Abstract—Due to space limitations, our submission “Source  Let's now take a closer look oRA¢(¢). Note that
Separation and Clustering of Phase-Locked Subspaces”, amgted
for publication on the IEEE Transactions on Neural Networks Txn(t)
in 2011, presented some results without proof. Those proofare ¢(t) = arctan Tl or
oo RS wTx(t)
provided in this paper.

. . "xn(t)
Index Terms—phase-locking, synchrony, source separation, ¢(t) = arctan T + .
j wTx(t)
clustering, subspaces

Because of this we can say, w'x(t) # 0, that V() =
V arctan (%) On the other hand, sina®¢(t) = ¢(t)—

APPEND|X2A ¥(t) and+)(t) does not depend ow, we have (we will omit
GRADIENT OF || IN RPA the time dependence for the sake of clarity):
In this section we d_erive_that the_gradient|g|f2 is given by VA$ =V — Vip = Ve = V arctan ( >
Eq. 6 of [1], wheregg| is defined as in Eq. 5 of [1]. Recall that Tx
Ag(t) = ¢(t) —1/)( ), whereg¢(t) is the phase of the estimated Xp WX — X W'xp «(t) - w
sourcey(t) = wlx(t) andy(t) is the phase of the reference - W \2 2 YRAt)
u(t). Further, deflnep = |gle'®. {1 + ( h) } (WTX)
We begin by noting thab|? = (|o| cos(®))?+(| o sin(®))?,
so that where Y2(t) = (w'x(t))” + (wah(t))2 is the squared
magnitude of the estimated source, dng(t) = xy (t)x" (t)—
V0ol? = V(|o| cos(®))? + V(|o| sin(®))? x(t)xn'(t), thusI',,,(t) = Xi(t.)Xj (t) sin(gbl-(.t) — 0 (t)).
= 2| 0| [cos(®) V(| o] cos(®)) + sin(®)V(|o| sin(®))] . We can now replac& A¢(t) in (1) to obtain
T .
Note that we havel "7, cos(A¢(t))) = |o|cos(®) and Vio]? = @ ZMH@) w
LS sin(Ag(t))) = |o] sin(@), s0 we get R Méti]
S —
. =2|Q|<Tfm(t)>w- (2)
. T " Q)
Vlel® = 2lol { cos(@)V | ;cos( (1))
- APPENDIX B
+ sin(@)V %ZSiD(Afb(t))) } GRADIENT OF J; IN IPA
In this section we show that the gradient.ffin Eq. 7 of
20| ) ) [1] is given by Eqg. 8 of[[1]. Throughout this whole section,
T Z {Sm cos(Ag(t)) — cos(®) SIH(A¢(t))] * we will omit the dependence on the subspéactor the sake
=1 of clarity. In other words, we are assuming (with no loss of
x VAS(t) generality) that only one subspace was found. Whenever we
T ) . :
2|0l write W, y, y,,, or z, we will be referring toWy, y;, (y1),,
= Z sin[® — Ag(t)|VA@(t). @) orz.

=1 The derivative oflog|det W| is W~—T. We will therefore
focus on the gradient of the first term of Eq. 7 of [1], which
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have where we again usegin(a — b) = sinacosb — cosasinb in

. the last step. Finally,
Vo = 2 0mn| Vo, [(€207)] - -
—1/2 - -
= |0mn| x (<cos(A¢mn)>2 + i<sin(A¢mn)>2) / X Vo, P = N2 Zijpmn =2 N2 Z Vw;Pmn =

X [2<COS(A¢mn)>vw]~<COS(A¢mn)>+ 1\ | r.(t)
= 4—2 ' sin \I/j — A(b] t v a2 /) Wj.
+ 2<sin(A¢mn)>vw].<sm(A¢mn)>} N ; o < S e (0] Y;(t) >

= 2[0mn| }(eimmnﬂf1 X which is Eq. 8 of [[1].
% { B <COS(A¢’””)>< S(Admn )V, A¢m”>+ APPENDIXC
+ <sin(A¢mn)>< COS(A¢mn)VWjA¢mn>:|7 3) GRADIENT OF J IN PSCA

In this section we derive Eq. 10 dfl[1] for the gradient of
J. Recall that/J is given by

i=1 j=1

where we have interchanged the partial derivative and the ti
average operators, and used

(<cos(A¢mn)>2 + i<sin(A¢mn)>2)l/2 = ‘<eiA¢m">’ ) J = Z

Jj=1

N P
E E Vik Wy

i=1 k=1

Sinceg,, is the phase of the:-th measurement, its deriva-
tive with respect to anyw; is zero unlessn = j or n = j.
In the former case, a reasoning similar to Apperdix A show
that

where thewy; are real coefficients that we want to optimize
and thev;;, are fixed complex numbers. Also recall that(Re
nd Im(.) denote the real and imaginary parts.

We begin by expanding the complex absolute value:

Vw;Apjr = Vw,;0j — Vw,; 0k = Vw,¢j =

2
_ [Zh - Z —;2 Zh] “Wj _ Fz}/'zwj7 (4) Z = Z { lRe(Zvikwkj>]
j j i J ik

where T'.(t) = zn()a"(t) — 2(t)znT(1). It is easy to see Yz

that Vw,A¢jr. = —Vw,A¢y;. Furthermorep,,,, = 1 by
definition, henceéVy,; py = 0 for all m andj. From these
considerations, the only nonzero terms in the derivativé’ of
are of the form

iz}

When computing the derivative in orderg,;, only one term
in the leftmost sum matters. Thus,

_ -1
Vw, ik = Vw,; Pkj = 2|0jk| ‘<€'(¢j7¢k)>‘ x 0J _
owy;
I. w; !
X [—( cos(A¢jk)> <sm(A¢7k)_Y2W-7 > + —-1/2
J vzkwkj + U’Lkwkj X
Fz W zk &
(sin(Agjk)) ( cos(Agjx) V2 2 2
| J a z k 'Uzkwkj):| 0 | ( ik ’U'Lkwk]):|
We now define¥;;, = (¢; — ¢r) = (Agjx). Plugging in X 6wk] " Owg;

this definition into Eq.[(b) we obtain

ijpjk = 2|ij|>< 0 Re(Zi,k vikwkj)
r |z o |Re| 2w B *

2z Wy 0 i

X [_ COS(\I/jk) <Sln(A¢7k)_Y2 J > + J kj
0 Im (Zl k vikwkj)

J
s ) <C05(A¢jk)FZY._2Wj >‘| + Im (; ’Uikwkj> (“)u;kj :| . (6)
; ,

LW, In the sums inside the derivatives, the sum /orcan be
vZ + dropped as only one of those terms will be nonzero. Thergfore
J

. r
= 2|0k [<— cos U sin A¢j,

o Re( Dok Uikwkj) B 9 Re( > ”ikwkj)

6wkj - 8wkj

Y2

J

r, 0 Re V4 i _
= 2|0k <sm( — Adjk) Y2> “W, - (37, Vik) Wi — Re <ZUU€> — Re(),
J i

8wkj

I, -
+ <Sln W p, cos A i >




where we used; = >, vx; to denote the sum of théth
column of V. Similarly,

0 Im( Zi,k vikwkj)

ow kj

=1Im (’Uk) .

These results, with the notatiary = >, v;; as the sum of
the j-th column of U, can be plugged into Edq.(6) to yield

oJ
G = G =] [Re(vk) x Re(ii;) + Im(vi) x Im(aij) |
APPENDIXD
MEAN FIELD

In this section we derive Eq. 9 of[1] for the interaction
of an oscillator with the cluster it is part of. We will assume
that there areN; oscillators in this cluster, coupled all-to-
all with the same coupling coefficient, and that all inter-
cluster interactions are weak enough to be disregarded. We
begin with Kuramoto’s model (Eq. 1 df][1]) omitting the time
dependency:

éi =w; + Z Kik Sin((bk - ¢z) + Z Kik Sin(¢k - ¢z)
kGCj kgcj
(ﬁi = w; + Z Kik Sin(¢k - ¢z)
kec;
‘b] ¢'L) —_ e_|(¢] ‘b )

w; + Z sz 9

keEc;j

—igw

kec; keEc;

We now plug in the definition of mean fiel@cjeiq’%
N L, € to obtain

e~ i eldi
b = w; + Nj——KQc; € 1e; —Nj— of 17e;€ ey
=w; + N; fch] [Mn( (bl) - bln(d)l - CJ )]

= w; + 2Njroe, sm(fl)cj — ;).
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