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Source Separation and Clustering
of Phase-Locked Subspaces: Derivations and Proofs

Miguel Almeida, Jan-Hendrik Schleimer, José Bioucas-Dias, Ricardo Vigário

Abstract—Due to space limitations, our submission “Source
Separation and Clustering of Phase-Locked Subspaces”, accepted
for publication on the IEEE Transactions on Neural Networks
in 2011, presented some results without proof. Those proofsare
provided in this paper.

Index Terms—phase-locking, synchrony, source separation,
clustering, subspaces

APPENDIX A
GRADIENT OF |̺|

2
IN RPA

In this section we derive that the gradient of|̺|2 is given by
Eq. 6 of [1], where|̺| is defined as in Eq. 5 of [1]. Recall that
∆φ(t) = φ(t)−ψ(t), whereφ(t) is the phase of the estimated
sourcey(t) = wTx(t) andψ(t) is the phase of the reference
u(t). Further, define̺ ≡ |̺|eiΦ.

We begin by noting that|̺|2 = (|̺| cos(Φ))2+(|̺| sin(Φ))2,
so that

∇|̺|2 = ∇(|̺| cos(Φ))2 +∇(|̺| sin(Φ))2

= 2|̺| [cos(Φ)∇(|̺| cos(Φ)) + sin(Φ)∇(|̺| sin(Φ))] .

Note that we have1
T

∑T
t=1 cos(∆φ(t))) = |̺| cos(Φ) and

1
T

∑T
t=1 sin(∆φ(t))) = |̺| sin(Φ), so we get

∇|̺|2 = 2|̺|

{

cos(Φ)∇

[

1

T

T
∑

t=1

cos(∆φ(t)))

]

+

+ sin(Φ)∇

[

1

T

T
∑

t=1

sin(∆φ(t)))

]}

=
2|̺|

T

T
∑

t=1

[

sin(Φ) cos(∆φ(t)) − cos(Φ) sin(∆φ(t))
]

×

×∇∆φ(t)

=
2|̺|

T

T
∑

t=1

sin[Φ−∆φ(t)]∇∆φ(t). (1)
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Let’s now take a closer look on∇∆φ(t). Note that

φ(t) = arctan

(

wTxh(t)

wTx(t)

)

or

φ(t) = arctan

(

wTxh(t)

wTx(t)

)

+ π.

Because of this we can say, ifwTx(t) 6= 0, that ∇φ(t) =

∇ arctan
(

w
T
xh(t)

wTx(t)

)

. On the other hand, since∆φ(t) = φ(t)−

ψ(t) andψ(t) does not depend onw, we have (we will omit
the time dependence for the sake of clarity):

∇∆φ = ∇φ −∇ψ = ∇φ = ∇ arctan

(

wTxh

wTx

)

=
xh ·wTx− x ·wTxh

[

1 +
(

wTxh

wTx

)2
]

·
(

wTx
)2

=
Γx(t) ·w

Y 2(t)
,

where Y 2(t) =
(

wTx(t)
)2

+
(

wTxh(t)
)2

is the squared
magnitude of the estimated source, andΓx(t) = xh(t)x

T(t)−
x(t)xh

T(t), thusΓxij
(t) = Xi(t)Xj(t) sin(φi(t)− φj(t)).

We can now replace∇∆φ(t) in (1) to obtain

∇|̺|2 =
2|̺|

T

[

T
∑

t=1

sin[Φ−∆φ(t)]

Y 2(t)
Γx(t)

]

w

= 2|̺|

〈

sin[Φ−∆φ(t)]

Y 2(t)
Γx(t)

〉

w. (2)

APPENDIX B
GRADIENT OF Jl IN IPA

In this section we show that the gradient ofJl in Eq. 7 of
[1] is given by Eq. 8 of [1]. Throughout this whole section,
we will omit the dependence on the subspacel, for the sake
of clarity. In other words, we are assuming (with no loss of
generality) that only one subspace was found. Whenever we
write W, y, ym or z, we will be referring toWl, yl, (yl)m
or zl.

The derivative oflog |detW| is W−T. We will therefore
focus on the gradient of the first term of Eq. 7 of [1], which
we will denote byP :

P ≡
1− λ

N2

∑

m,n

|̺mn|
2.

Let’s rewriteP asP = 1−λ
N2

∑

m,n pmn with pmn = |̺mn|
2.

Define∆φmn = φm −φn. Omitting the time dependency, we
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have

∇wj
pmn = 2|̺mn|∇wj

∣

∣

〈

ei∆φmn
〉∣

∣

= |̺mn| ×
(

〈

cos(∆φmn)
〉2

+ i
〈

sin(∆φmn)
〉2
)−1/2

×

×
[

2
〈

cos(∆φmn)
〉

∇wj

〈

cos(∆φmn)
〉

+

+ 2
〈

sin(∆φmn)
〉

∇wj

〈

sin(∆φmn)
〉

]

= 2|̺mn|
∣

∣

〈

ei∆φmn
〉∣

∣

−1
×

×
[

−
〈

cos(∆φmn)
〉

〈

sin(∆φmn)∇wj
∆φmn

〉

+

+
〈

sin(∆φmn)
〉

〈

cos(∆φmn)∇wj
∆φmn

〉]

, (3)

where we have interchanged the partial derivative and the time
average operators, and used
(

〈

cos(∆φmn)
〉2

+ i
〈

sin(∆φmn)
〉2
)1/2

=
∣

∣

〈

ei∆φmn
〉∣

∣ .

Sinceφm is the phase of them-th measurement, its deriva-
tive with respect to anywj is zero unlessm = j or n = j.
In the former case, a reasoning similar to Appendix A shows
that

∇wj
∆φjk ≡ ∇wj

φj −∇wj
φk = ∇wj

φj =

=
[zh · z− z · zh] ·wj

Y 2
j

=
Γ z ·wj

Y 2
j

, (4)

whereΓ z(t) = zh(t)z
T(t) − z(t)zh

T(t). It is easy to see
that ∇wj

∆φjk = −∇wj
∆φkj . Furthermore,pmm = 1 by

definition, hence∇wj
pmm = 0 for all m andj. From these

considerations, the only nonzero terms in the derivative ofP

are of the form

∇wj
pjk = ∇wj

pkj = 2|̺jk|
∣

∣

∣

〈

ei(φj−φk)
〉∣

∣

∣

−1

×

×

[

−
〈

cos(∆φjk)
〉

〈

sin(∆φjk)
Γ z ·wj

Y 2
j

〉

+

+
〈

sin(∆φjk)
〉

〈

cos(∆φjk)
Γ z ·wj

Y 2
j

〉]

. (5)

We now defineΨjk ≡ 〈φj − φk〉 = 〈∆φjk〉. Plugging in
this definition into Eq. (5) we obtain

∇wj
pjk = 2|̺jk|×

×

[

− cos(Ψjk)

〈

sin(∆φjk)
Γ z ·wj

Y 2
j

〉

+

+sin(Ψjk)

〈

cos(∆φjk)
Γ z ·wj

Y 2
j

〉]

= 2|̺jk|

[〈

− cosΨjk sin∆φjk
Γ z ·wj

Y 2
j

〉

+

+

〈

sinΨjk cos∆φjk
Γ z ·wj

Y 2
j

〉]

= 2|̺jk|

〈

sin (Ψjk −∆φjk)
Γ z

Y 2
j

〉

·wj ,

where we again usedsin(a − b) = sina cos b − cos a sin b in
the last step. Finally,

∇wj
P =

1− λ

N2

∑

m,n

∇wj
pmn = 2

1− λ

N2

∑

m<n

∇wj
pmn =

= 4
1− λ

N2

N
∑

k=1

|̺jk|

〈

sin [Ψjk −∆φjk(t)]
Γ z(t)

Yj(t)2

〉

·wj .

which is Eq. 8 of [1].

APPENDIX C
GRADIENT OF J IN PSCA

In this section we derive Eq. 10 of [1] for the gradient of
J . Recall thatJ is given by

J ≡

P
∑

j=1

∣

∣

∣

∣

∣

N
∑

i=1

uij

∣

∣

∣

∣

∣

=

P
∑

j=1

∣

∣

∣

∣

∣

N
∑

i=1

P
∑

k=1

vikwkj

∣

∣

∣

∣

∣

where thewkj are real coefficients that we want to optimize
and thevik are fixed complex numbers. Also recall that Re(.)
and Im(.) denote the real and imaginary parts.

We begin by expanding the complex absolute value:

∑

j

∣

∣

∣

∣

∣

∣

∑

i,k

vikwkj

∣

∣

∣

∣

∣

∣

=
∑

j







[

Re

(

∑

i,k

vikwkj

)]2

+

[

Im

(

∑

i,k

vikwkj

)]2






1/2

.

When computing the derivative in order towkj , only one term
in the leftmost sum matters. Thus,

∂J

∂wkj
=

= 2





[

Re

(

∑

i,k

vikwkj

)]2

+

[

Im

(

∑

i,k

vikwkj

)]2




−1/2

×

×







∂
[

Re
(

∑

i,k vikwkj

)]2

∂wkj
+
∂
[

Im
(

∑

i,k vikwkj

)]2

∂wkj







=
1

|
∑

i uij |



Re





∑

i,k

vikwkj





∂ Re
(

∑

i,k vikwkj

)

∂wkj
+

+ Im





∑

i,k

vikwkj





∂ Im
(

∑

i,k vikwkj

)

∂wkj



 . (6)

In the sums inside the derivatives, the sum onk can be
dropped as only one of those terms will be nonzero. Therefore,

∂ Re
(

∑

i,k vikwkj

)

∂wkj
=
∂ Re

(

∑

i vikwkj

)

∂wkj

=
∂ Re(

∑

i vik)wkj

∂wkj
= Re

(

∑

i

vik

)

= Re(v̄k) ,
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where we used̄vi ≡
∑

k vki to denote the sum of thei-th
column ofV. Similarly,

∂ Im
(

∑

i,k vikwkj

)

∂wkj
= Im (v̄k) .

These results, with the notation̄uj ≡
∑

k vjk as the sum of
the j-th column ofU, can be plugged into Eq. (6) to yield

Gkj =
∂J

∂wkj
=

1

|ūj|

[

Re(v̄k)× Re(ūj) + Im(v̄k)× Im(ūj)
]

.

APPENDIX D
MEAN FIELD

In this section we derive Eq. 9 of [1] for the interaction
of an oscillator with the cluster it is part of. We will assume
that there areNj oscillators in this cluster, coupled all-to-
all with the same coupling coefficientκ, and that all inter-
cluster interactions are weak enough to be disregarded. We
begin with Kuramoto’s model (Eq. 1 of [1]) omitting the time
dependency:

φ̇i = ωi +
∑

k∈cj

κik sin(φk − φi) +
∑

k/∈cj

κik sin(φk − φi)

φ̇i = ωi +
∑

k∈cj

κik sin(φk − φi)

= ωi +
∑

k∈cj

κik
ei(φj−φi) − e−i(φj−φi)

2i

= ωi +
e−iφi

2i

∑

k∈cj

κike
iφk −

eiφi

2i

∑

k∈cj

κike
−iφk .

We now plug in the definition of mean field̺cje
iΦcj =

1
Nj

∑

k∈cj
eiφk to obtain

φ̇i = ωi +Nj
e−iφi

2i
κ̺cje

iΦcj −Nj
eiφi

2i
κ̺cje

−iΦcj

= ωi +Njκ̺cj
[

sin(Φcj − φi)− sin(φi − Φcj )
]

= ωi + 2Njκ̺cj sin(Φcj − φi).
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