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Abstract

We present a method to obtain families of lattice equations. Specifically we focus on two of such

families, which include 3-parameters and their members are connected through Bäcklund transforma-

tions. At least one of the members of each family is integrable, hence the whole family inherits some

integrability properties.
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1 Introduction

Discrete mathematics returned on the interest of mathematicians at the beginning of the 20th century.
Poincaré, Birkhoff, Ritt (1924) [1], Julia, Fatou (1918-23) [2],[3] and many others saw the necessity of
exploring the discrete scene. Unfortunately, this trend was paused through the two big wars and only after
1960, keeping pace with the revolution caused by the discovery of soliton from Zabusky and Kruskal [4],
mathematicians started to investigate discrete systems in the context of integrable systems.

It was the work of Hirota [5], as well as Ablowitz et.al [6] and separately Capel and his school [7],
which introduced lattice and differential difference analogues of many integrable PDE’s. The introduction
of discrete versions of integrable ODE’s, surprisingly , came later with the QRT family of mappings by
Quispel Roberts and Thomson [8] and by the work of Papageorgiou et.al. [9, 10], where Liouville integrable
maps [11] were obtained by imposing periodic staircase initial data on integrable lattices. Another way to
obtain integrable mappings from an integrable lattice equation was suggested in series of papers [12, 13, 14].
Actually with this procedure one can get involutive mappings (composition of the map with itself is the
identity map) which are set theoretical solutions of the quantum Yang-Baxter equation the so called Yang-
Baxter maps [15, 16, 12, 17]. As in our previous work [18], we focus here on the inverse procedure, i.e. how
to obtain integrable lattice equations from involutive mappings that may or may not satisfy the Yang-Baxter
equation.

The main result of the paper is that the procedure we have in mind can lead to families of equations.
The members of families are related by a Bäcklund transformation (see section 3) and since in considered
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cases at least one of the members is integrable, the whole family inherits some properties from the distin-
guished member. Notion of the family of discrete integrable systems should not be confused with notion
of hierarchies of integrable systems. The later notion was widely investigated in the literature whereas for
the former one we can indicate only the articles that investigate family of discrete KdV equations [19] and
family of discrete Boussinesq equations [20, 21, 22].

We discuss here two examples the first one is continuation of our previous paper [18]. We introduce
family of difference equations associated with type III of maps discussed in [12, 13] (we introduced families
related to types IV and V in [18]). Example of the map of type III is map Z2 ∋ (u, v) 7→ (U, V ) ∈ Z2

U = v
pu− qv

qu− pv
, V = u

pu− qv

qu− pv
. (1)

and the three parameter family of equations (see section 3) reads

ψ12 = ψ + a ln
pu− qv

qu− pv
+ (p2 − q2)

[

b
uv

qu− pv
− c

1

pu− qv

]

(2)

where u and v are given implicitly by

a lnu+ p

(

bu+ c
1

u

)

= ψ1 + ψ,

a ln v + q

(

bv + c
1

v

)

= ψ2 + ψ,

(3)

function ψ is dependent variable on Z2 and we denote ψ(m,n) =: ψ, ψ(m+1, n) =: ψ1, ψ(m,n+1) =: ψ2,
ψ(m + 1, n + 1) =: ψ12, p := p(m) and q := q(n) are given functions of a single variable and a, b and
c are arbitrary constants (we assume that one of the constants a, b or c is not equal to zero). All the
equations within the family are consistent around the cube (for the consistency around the cube property
see [23, 24, 25], notice we resign from multiaffinity assumption of paper [25]). Members of the family are
Hirota’s sine-Gordon equation (choice of parameters b = 0 = c) referred also to as lattice potential modified
KdV [26, 27, 28, 29, 30, 14, 31] (see section 2 where we discuss a various forms of lattice equations)

p(xx1 + x2x12) = q(xx2 + x1x12). (4)

lattice Schwarzian KdV [27] in a disguise, see section 2 (choice of parameters a = 0 = b or a = 0 = c)

p2(y12 + y1)(y2 + y) = q2(y12 + y2)(y1 + y). (5)

In the second example we go away from the maps of papers [12, 13] and consider the map

U = v + k
(

1−
v

u

)

, V = u+ k
(

−1 +
u

v

)

. (6)

which gives also a 3 parameter family of equations (see section 5) including Hirota’s KdV lattice equation
[5]

x12 − x = κ

(

1

x2
−

1

x1

)

(7)

and two further bilinear equations

y1y − y12y1 = κ(y12y + y1y2)
z12z + z1z2 = z12z2 + z12z1

(8)
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In this case an interesting fact is that the procedure yields τ -function representation of the family (see e.g.
[19])

τ112τ − κτ11τ2 = τ12τ1,
τ122τ + κτ22τ1 = τ12τ2.

(9)

In section 2, we give an overview of point transformations, Bäcklund transformations and difference sub-
stitutions and touch the issue of equivalence of lattice equations. We proceed in section 3 where we present
the method that lead to families of lattice equations. In section 4 we relate our findings to some results of
the papers [12, 13], followed by section 5 where we deal with Hirota’s KdV lattice equation. We finish with
explanation how to get Bäcklund transformation between members of the families (section 6).

2 Point transformations, Difference substitutions, Bäcklund trans-

formations and Equivalence of lattice equations

Before we start we would like to give some definitions and recall some well known relations [28, 29, 30, 19, 31]
between equations that appear in the article (terminology used by various authors is far from being unified).
Let us consider k dependent variables of n independent ones: ui(m1, . . . ,mn), i = 1, . . . , k. We denote
M ≡ (m1, . . . ,mn).

Proposition 1 (Change of independent variables) By change of independent variables we under-
stand the bijection f : Zn → Zn

m̃i = f i(M) i = 1, . . . , n

2D examples are m̃1 = m1, m̃2 = m1 +m2, or m̃1 = m1 + 2m2, m̃2 = m1 +m2.

Proposition 2 (Point transformations not altering independent variables) By point transforma-
tion not altering independent variables we understand an invertible map F between subsets of Ck

ũi(M) = F i(u1(M), . . . , uk(M);M) i = 1, . . . , k.

Proposition 3 (Equivalence of lattice equations) Two lattice equations are equivalent if and only if
there exists composition of point transformation with change of independent variables which maps solutions
of one equation to solutions to the second one.

Examples of various disguises of the same equation are

• Hirota’s sine-Gordon equation

q sin(ψ12 + ψ − ψ1 − ψ2) = p sin(ψ12 + ψ + ψ1 + ψ2)

turns into
(H30) : p(xx1 + x2x12) = q(xx2 + x1x12) (10)

H30 equation from ABS list [25] by means of point transformation x = im+ne2i(−1)nψ. H30 in turn
can be transformed into lattice potential modified KdV

p(ww1 − w2w12) = q(ww2 − w1w12)

by substitution x = im+nw
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• Schwarzian KdV equation (or cross ratio equation, or equation Q10 on ABS list)

(z12 − z1)(z
2 − z)

(z12 − z2)(z1 − z)
=
q2

p2

under the point transformation z = (−1)m+ny turns into

(A10) : p2(y12 + y1)(y2 + y) = q2(y12 + y2)(y1 + y) (11)

which in the paper [25] got its own name A10.

Proposition 4 (Difference substitutions) Let j points M i, i = 1, . . . , j of a lattice are given. By
difference substitution of order j we understand a transformation

ũi(M) = F i(u1(M1), . . . , uk(M1), . . . , u1(M j), . . . , uk(M j);M) i = 1, . . . , k

Every point transformation is difference substitutions of order 1. Standard examples of difference substi-
tution (of order 2, 3 and 4 respectively) are

• potential relation

v =
1

α− β
(u2 − u1)

between lattice potential KdV
(u12 − u)(u1 − u2) = α2 − β2

and Hirota’s difference KdV

v12 − v =
α+ β

α− β

(

1

v1
−

1

v2

)

• Miura-type transformation

v =
βψ2 − αψ1

(β − α)ψ

between H30 (Hirota’s sine-Gordon or lattice modified potential KdV)

α(ψ2ψ12 − ψψ1) = β(ψ1ψ12 − ψψ2).

and Hirota’s difference KdV

• and finally the introduction of τ function

v =
τ12τ

τ1τ2

which transform every solution of the compatible system

τ112τ − κτ11τ2 = τ12τ1, τ122τ + κτ22τ1 = τ12τ2

to solution of Hirota’s difference KdV.
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To the end we propose draft definition of Bäcklund transformation which is convenient for our purposes.
However we are aware that the definition is not exhaustive (some transformation that deserve this name
can be not covered by the definition).

Proposition 5 (Bäcklund transformations (in narrow sense)) By Bäcklund transformation we un-
derstand here a transformation

ũ1 = f(ũ, u, u1) ũ2 = g(ũ, u, u2)

which is invertible to
u1 = f̃(u, ũ, ũ1) u2 = g̃(u, ũ, ũ2),

where functions f and g are fractional linear in ũ and functions f̃ , g̃ are function fractional linear in u.

A classical example of Bäcklund transformation between

p(xx1 + x2x12)− q(xx2 + x1x12) = 0.

and
p2(y12 + y1)(y2 + y) = q2(y12 + y2)(y1 + y)

is transformation
y1 + y = px1x y2 + y = qx2x. (12)

3 Outline of the method

Consider Z2 lattice together with its horizontal edges (which can be viewed as set of ordered pair of points of
Z2 i.e. Eh =

{

((m,n), (m+ 1, n))|(m,n) ∈ Z2
}

) and vertical ones (Ev =
{

((m,n), (m,n+ 1))|(m,n) ∈ Z2
}

).
We take into account function u which is given on horizontal edges u : Eh → C and function v given
on vertical ones v : Ev → C. Shift operators T1 and T2 act on horizontal edges in standard way
T1((m,n), (m + 1, n)) := ((m + 1, n), (m + 2, n)), T2((m,n), (m + 1, n)) := ((m,n + 1), (m + 1, n + 1))
(and similarly for vertical edges). We use convention to denote shift action on function by subscripts
T1u := u1.

Now, the outline of the method we developed in [18] can be presented as follows.

3.1 From equations to involutive maps. Idea System

Take a function x given on vertices of the lattice and which obeys H30 equation

p(xx1 + x2x12) = q(xx2 + x1x12). (13)

Introduce fields u and v given on horizontal and vertical edges respectively

u = xx1 v = xx2 (14)

We get
u2u = v1v
p(u2 + u) = q(v1 + v)

(15)
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and we arrive at the system of equations
u2 = v pu−qv

qu−pv

v1 = u pu−qv
qu−pv

.
(16)

The main idea is to investigate system (16) rather than equation (13) itself. We dare to refer to the system
(16) as to 2D Idea system III. The point is the system (16) admits, as we shall see, three parameter family of
potentials ψ given on vertices of the lattice. Every “potential image” of (16) we refer to as idolon (adopting
Plato terminology of Ideas and idolons).

First we apply the standard procedure for reinterpretation of a map as equations on a lattice. The
reinterpretation is based on identification (see Figure 1.)

u(m,n) = u, v(m,n) = v, U = u(m,n+ 1), V = v(m+ 1, n) (17)

which turns system (16) into Z2 → Z2 map

U = v pu−qv
qu−pv

V = u pu−qv
qu−pv (18)

u

v

u2

v1

u

v

U

V

Figure 1: Variables on edges of a Z2 lattice (left picture) and arguments and values of a C2 7→ C2 map
(right picture).

We arrive at involutive Yang-Baxter map that belongs to family of maps denoted by FIII on list [12].

3.2 Finding functions such that F (U) +G(V ) = f(u) + g(v)

The next step is to find such functions F and G such that for the map (18)

F (U) +G(V ) = f(u) + g(v). (19)

holds. Differentiation of (19) with respect u and v yields

−F ′′(U)qU2(pU2−2qUV+pV 2)+F ′(U)2(qU−pV )qUV G′′(V )pV 2(qU2−2pUV+qV 2)+G′(V )2(qU−pV )pUV = 0

which leads to
F (U) +G(V ) = a ln(U/V ) + b(pU − qV ) + c

( p

U
−
q

V

)

.

Therefore for map (18) the following equality holds

a ln(U/V ) + b(pU − qV ) + c
(

p
U
− q

V

)

= −
[

a ln(u/v) + b(pu− qv) + c
(

p
u
− q

v

)]

(20)
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3.3 Potentials of the Idea systems. Idolons.

Returning to equations on the lattice (by means of (17)) one can rewrite (20) as

(T2 + 1)(a lnu+ bpu+ c p
u
+ d) = (T1 + 1)(a ln v + bqv + c q

v
+ d) (21)

It means there exists function ψ such that

a lnu+ p(bu+ c 1
u
) + d = ψ1 + ψ

a ln v + q(bv + c 1
v
) + d = ψ2 + ψ

(22)

where a, b, c and d are arbitrary constants (we assume that one of the constants a, b, c is not equal zero).
The constant d can be always removed by redefinition ψ → ψ+ 1

2d and we neglect it. So system (22) gives
rise to three parameter family of equations

ψ12 = ψ + a ln pu−qv
qu−pv

+ (p2 − q2)
[

b uv
qu−pv

− c 1
pu−qv

]

(23)

As we have said in the introduction choice of parameters b = 0 = c leads to equation H30 (10) whereas
choice of parameters either a = 0 = b or a = 0 = c leads to equation A10 (11). Every such potential
representation of the Idea system we refer to as idolon of the Idea systems. To the end let us write another
idolon that can be written in explicit form. Namely, a = 0 yields equation

ψ2−ψ1

ψ12−ψ
= p2+q2

p2−q2
− pq

p2−q2

(

u
v
+ v

u

)

(24)

where u and v are solutions of the following quadratic equations

p(bu2 + c) = (ψ1 + ψ)u
q(bv2 + c) = (ψ2 + ψ)v.

(25)

3.4 Extension to multidimension, multidimensional consistency of idolons of

IIII

The system (16) can be extended to multidimension. We denote by si (mind superscript!) function given
on edges in i-th direction of Zn lattice, by subscript we denote forward shift in indicated direction. The
extension reads

(IIII) sij = sj
pisi − pjsj

pjsi − pisj
i, j = 1, . . . , n, i 6= j (26)

where pi is given function and can depend only on i-th independent variable.
The crucial fact is the system is compatible

sijk = sikj . (27)

Moreover, we have

(Tj + 1)

[

a ln si + pi(bsi + c
1

si
)

]

= (Ti + 1)

[

a ln sj + pi(bsj + c
1

si
)

]

(28)

It means that three exists scalar function ψ such that

a ln si + pi(bsi + c
1

si
) = ψi + ψ, i = 1, . . . , n (29)
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In terms of function ψ system (26) reads

ψij = ψ + a ln pisi−pjsj

pjsi−pisj
+ [(pi)2 − (pj)2]

[

b sisj

pjsi−pisj
− c 1

pisi−pjsj

]

i, j = 1, . . . , n, i 6= j (30)

where si and sj are given implicitly by means of (29). Due to (27) the system (30) is multidimensionaly
consistent (compatible).

We refer to the system (26) as to n-dimensional Idea system III and that is why we have denoted it by
IIII .

4 Maps

As we have already mentioned our inspiration was survey on Yang-Baxter maps. Our goal now is to relate
our findings to some results of the papers [12, 13] and justify why it makes sense to talk about the Idea
systems

sij = sj
pisi − pjsj

pjsi − pisj
i = 1, . . . , n (31)

associated with maps of type III rather than single Idea system. The Idea systems are related by point
transformation.

Indeed, first we perform a cosmetic point transformation

si = pivi, pi
2
→ pi

We get

vij =
vj

pi
pivi − pjvj

vi − vj
(32)

which in two-dimensional case after identification analogous to the one showed on the Figure 1 yields FIII
map of paper [12]

(FIII) : U =
v

p

pu− qv

u− v
, V =

u

q

pu− qv

u− v
(33)

In fact by FIII we understand equivalence class of Yang-Baxter maps (c.f. [13]) the equations (31) and
(33) belongs to.

Now after point transformation vi = ui(−1)m1+...+mn we get

uij = −
uj

pi
piui − pjuj

ui − uj
(34)

associated 2D map of which is

(cHA
III) : U = − v

p
pu−qv
u−v

, V = −u
q
pu−qv
u−v (35)

After another point transformation ui = wi
(−1)m1+...+mn

pi
1
2
[(−1)m1+...+mn

−1]
we obtain

wij = −
1

wj
wi − wj

piwi − pjwj
(36)
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Table 1: Basic identities of the maps that leads to existence of potentials of the Idea system

Type of the map Example of the map Identities

U = v
p
pu−qv
u−v

U
V

= qv
pu

FIII pU − qV = −(pu− qv)
V = u

q
pu−qv
u−v

1
U
− 1

V
= −

(

1
u
− 1

v

)

U = − v
p
pu−qv
u−v

U
V

= qv
pu

cHA
III pU − qV = pu− qv

V = −u
q
pu−qv
u−v

1
U
− 1

V
= 1

u
− 1

v

U = 1
v

u−v
qv−pu

U
V

= u
v

cHB
III pU + 1

U
− qV − 1

V
= pu+ 1

u
− qv − 1

v

V = 1
u

u−v
qv−pu

pU − 1
U
− qV + 1

V
= −(pu− 1

u
− qv + 1

v
)

U = v(pu+qv)
p(u+v)

U
V

= qv
pu

HA
III pU + qV = pu+ qv

V = u(pu+qv)
q(u+v)

1
U
+ 1

V
= 1

u
+ 1

v

U = v quv+1
puv+1 UV = uv

HB
III pU + qV + 1

U
+ 1

V
= pu+ qv + 1

u
+ 1

v

V = u puv+1
quv+1 pU − qV − 1

U
+ 1

V
= −(pu− qv − 1

u
+ 1

v
)

and its associated map

(cHB
III) : U = −

1

v

u− v

pu− qv
, V = −

1

u

u− v

pu− qv
(37)

Maps (35) and (37) are not Yang-Baxter maps but they are companions (if f : (u, v) 7→ (U, V ) is involutive
map then the map (u, V ) 7→ (U, v) we refer to as companion of map f c.f. [12]) of Yang-Baxter maps
HA
III , H

B
III of paper [13]. The maps HA

III , H
B
III can be obtained in two-dimensional case by the point

transformation u1 = x u2 = −y and w1 = x w2 = − 1
qy

respectively

x2 =
y

p

px+ qy

x+ y
y1 =

x

q

px+ qy

x+ y
(38)

x2 = y
qxy + 1

pxy + 1
y1 = x

pxy + 1

qxy + 1
(39)

and then by mentioned identification (see Figure 1)

(HA
III) : U = v

p
pu−qv
u−v

, V = u
q
pu−qv
u−v (40)

(HB
III) : U = v quv+1

puv+1 , V = u quv+1
puv+1 (41)

Idea systems (HA
III) and (HB

III) cannot be extended to multidimension (in the sense of paper [25]).
Finally, we list in the table 4 basic identities of the maps that leads to existence of potentials of the

Idea systems to illustrate how the basis changes when one changes a map.
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5 Hirota’s KdV lattice equation

As the second example we consider Hirota’s KdV lattice equation [5]

x12 − x = κ(
1

x2
−

1

x1
)

By the substitution u = x1x, v = x2x, we get

u2 = v + κ
(

1−
v

u

)

, v1 = u+ κ
(

−1 +
u

v

)

. (42)

On applying identification (17)

u = u(m,n), v = v(m,n), U = u(m,n+ 1), V = v(m+ 1, n) (43)

we obtain an involutive mapping associated to system (42)

U = v + κ
(

1−
v

u

)

, V = u+ κ
(

−1 +
u

v

)

. (44)

Mapping (44) satisfies (this is the outcome of searching for such functions F and G that F (U) +G(V ) =
f(u) + g(v) as described in previous section):

U

V
=
v

u

(U − κ)(V + κ) = (u − κ)(v + κ)

V (U − κ)

U(V + κ)
=
v(u − κ)

u(v + κ)

(45)

hence (coming back to lattice variables (43)) we can introduce the potentials x, y and z

u = x1x, v = x2x

u− κ = y1/y, v + κ = y/y2

u− κ

u
= z1/z,

v + κ

v
= z2/z.

(46)

Eliminating u and v from (42) we arrive at the following lattice equations

x12 − x = κ(1/x2 − 1/x1)

y1y − y12y1 = κ(y12y + y1y2)

z12z + z1z2 = z12z2 + z12z1

(47)

One can treat the equations as representatives of three-parameter family of equations on φ

φ12φ
φ1φ2

= [(u− κ)(v + κ) + κ2]a(−1)m+n+1
−bub−cvb+c

φ1

φ
= ua(−1)m+n

−b(u− κ)b+c

φ2

φ
= va(−1)m+n

−b(v + κ)b−c

(48)
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corresponding to choice of parameters b = 0 = c, a = 0 = b and a = 0 = c respectively.
What more important is that from (46) we infer

z1
z

=
y1
x1xy

,
z2
z

=
y

y2x2x
(49)

Compatibility condition that guarantees existence of function z reads

(

x2
x1

)2

=

(

y12y

y1y2

)2

, (50)

from where we get
x = τ12τ

τ1τ2

y = τ2
τ1

z = τ
τ12

(51)

Eliminating x, y and z from (46) we arrive at compatible pair of bilinear forms of Hirota’s KdV (cf. [19])

τ112τ − κτ11τ2 = τ12τ1
τ122τ + κτ22τ1 = τ12τ2

(52)

6 Bäcklund transformations between idolons

In both presented examples one can find Bäcklund transformation between idolons. For instance eliminating
u and v from first two lines of (46) one gets Bäcklund transformation between first two equations of (47)

y1
y

= x1x− k
y

y2
= x2x+ k.

Similarly in the case of IIII one can obtain Bäcklund transformation (12).

Acknowledgements: We would like to thank organizers of SIDE - 9 conference in Varna for their
hospitality and financial support. Special thanks to Georgi Grahovski for showing us the other side of
Varna. M.N. thanks Frank Nijhoff for pointing papers [20, 21].
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[21] F.W. Nijhoff. Discrete Painlevé equations and symmetry reduction onthe lattice. In A.I. Bobenko and
R. Seiler, editors, Discrete Integrable Geometry and Physics, pages 209–234. Oxford Univ. Press, 1999.

[22] F.W. Nijhoff. A higher-rank version of the q3 equation. arXiv:1104.1166.

12



[23] F.W. Nijhoff and A.J. Walker. The discrete and continuous Painlevé VI hierarchy and the Garnier
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