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Abstract. A general notion of bootstrapped φ-divergences estimates constructed

by exchangeably weighting sample is introduced. Asymptotic properties of these

generalized bootstrapped φ-divergences estimates are obtained by using the empir-

ical process theory. Some of practical problems are discussed. Simulation results

are used to illustrate the finite sample performance of the proposed estimators.
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1. Introduction

The φ-divergence modeling has proved to be a flexible and provided a powerful

statistical modeling framework in a variety of applied and theoretical contexts [see

Broniatowski and Keziou (2009), Pardo (2006) and Liese and Vajda (2006, 1987)].

Unfortunately, in general, the limiting distribution of the estimators or their func-

tionals based on φ-divergences depend crucially on the unknown distribution which

is a serious problem in practice. To circumvent this matter, we shall propose, in

this work, a general bootstrap of φ-divergence based estimators and study some of

its properties by mean of a sophisticated empirical process techniques.

A major application for an estimator is in the calculation of confidence intervals.

By far the most favored confidence interval is the standard confidence interval based

on a normal or a Student t-distribution. Such standard intervals are useful tools,

but they are based on an approximation that can be quite inaccurate in practice.

Bootstrap procedures are an attractive alternative. One way to look at them is as

procedures for handling data when one is not willing to make assumptions about the

parameters of the populations from which one sampled. The most that one is willing

to assume is that the data are a reasonable representation of the population from
1
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which they came. One then resamples from the data and draws inferences about

the corresponding population and its parameters. The resulting confidence intervals

have received the most theoretical study of any topic in the bootstrap analysis.

Our main findings, which are analogous to that of Cheng and Huang (2010), are

summarized as follows. The φ-divergence estimator α̂φ(θ) and the bootstrap φ-

divergence estimator α̂∗φ(θ) are obtained by optimizing the objective function h(θ,α)

based on the independent and identically distributed [i.i.d.] observations X1, . . . , Xn

and the bootstrap sample X∗1 , . . . , X
∗
n, respectively,

α̂φ(θ) := arg sup
α∈Θ

1

n

n∑
i=1

h(θ,α, Xi), (1.1)

α̂∗φ(θ) := arg sup
α∈Θ

1

n

n∑
i=1

h(θ,α, X∗i ), (1.2)

where X∗1 , . . . , X
∗
n are independent draws with replacement from the original sample.

We shall mention that α̂∗φ(θ) can alternatively be expressed as

α̂∗φ(θ) = arg sup
α∈Θ

1

n

n∑
i=1

Wnih(θ,α, Xi) (1.3)

where the bootstrap weights

(Wn1, . . . ,Wnn) ∼ Multinomial(n;n−1, . . . , n−1).

In this paper, we shall consider the more general exchangeable bootstrap weight-

ing scheme that includes Efron’s bootstrap [Efron (1979) and Efron and Tibshirani

(1993)]. The general resampling scheme was first proposed in Rubin (1981) and ex-

tensively studied by Bickel and Freedman (1981), who suggested the name “weighted

bootstrap”, e.g., Bayesian Bootstrap when (Wn1, . . . ,Wnn) = (Dn1, . . . , Dnn) is equal

in distribution to the vector of n spacings of n − 1 ordered uniform (0, 1) random

variables, that is

(Dn1, . . . , Dnn) ∼ Dirichlet(n; 1, . . . , 1).

The interested reader may refer to Lo (1993). The case

(Dn1, . . . , Dnn) ∼ Dirichlet(n; 4, . . . , 4)
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was considered in Weng (1989, Remark 2.3) and Zheng and Tu (1988, Remrak 5.)

The Bickel and Freedman result concerning the empirical process has been subse-

quently generalized for empirical processes based on observations in Rd, d > 1 as

well as in very general sample spaces and for various set and function-indexed ran-

dom objects [see, for example Beran (1984), Beran and Millar (1986), Beran et al.

(1987), Gaenssler (1992), Lohse (1987)]. In this setting, Csörgő and Mason (1989)

developed similar results for a variety of other statistical functions. This line of

research was continued in the work of Giné and Zinn (1989, 1990). There is a huge

literature on the application of the bootstrap methodology to nonparametric kernel

density and regression estimation, among other statistical procedures, and it is not

the purpose of this paper to survey this extensive literature. This being said, it is

worthwhile mentioning that the bootstrap as per Efron’s original formulation (see

Efron (1979)) presents some drawbacks. Namely, some observations may be used

more than once while others are not sampled at all. To overcome this difficulty,

a more general formulation of the bootstrap has been devised: the weighted (or

smooth) bootstrap, which has also been shown to be computationally more efficient

in several applications. We may refer to Mason and Newton (1992), Præstgaard

and Wellner (1993) and del Barrio and Matrán (2000). Holmes and Reinert (2004)

provided new proofs for many known results about the convergence in law of the

bootstrap distribution to the true distribution of smooth statistics employing the

techniques based on Stein’s method for empirical processes. Note that other vari-

ations of Efron’s bootstrap are studied in Chatterjee and Bose (2005) using the

term “generalized bootstrap”. The practical usefulness of the more general scheme

is well-documented in the literature. For a survey of further results on weighted

bootstrap the reader is referred to Barbe and Bertail (1995).

The remainder on this paper is organized as follows. In the forthcoming section

we recall the estimation procedure based on φ-divergences and its bootstrap is intro-

duced in details. The asymptotic properties of bootstrapped estimators are given.

In section 3, we illustrate how to apply our results in the context of right censor-

ing. Section 4 provides simulation results in order to illustrate the performance

of the proposed estimators. To avoid interrupting the flow of the presentation, all

mathematical developments are relegated to the Appendix.
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2. Dual divergences based estimates

The class of dual divergences estimators has been recently introduced by Keziou

(2003) and Broniatowski and Keziou (2009). Recall that the φ-divergence between

a bounded signed measure Q, and a probability P on D , when Q is absolutely

continuous with respect to P, is defined by

Dφ(Q,P) :=

∫
D

φ

(
dQ
dP

)
dP,

where φ is a convex function from ] − ∞,∞[ to [0,∞] with φ(1) = 0. We will

consider only φ-divergences for which the function φ is strictly convex and satisfies:

the domain of φ, domφ := {x ∈ R : φ(x) < ∞} is an interval with end points

aφ < 1 < bφ, φ(aφ) = limx↓aφ φ(x) and φ(aφ) = limx↑bφ φ(x). The Kullback-Leibler,

modified Kullback-Leibler, χ2, modified χ2 and Hellinger divergences are examples

of φ-divergences; they are obtained respectively for φ(x) = x log x − x + 1, φ(x) =

− log x + x − 1, φ(x) = 1
2
(x − 1)2, φ(x) = 1

2
(x−1)2
x

and φ(x) = 2(
√
x − 1)2. We

extend the definition of these divergences on the whole space of all bounded signed

measures via the extension of the definition of the corresponding φ functions on the

whole real space R as follows: when φ is not well defined on R− or well defined but

not convex on R, we set φ(x) = +∞ for all x < 0. Observe for the χ2-divergence, the

corresponding φ function is defined on whole R and strictly convex. All the above

examples are particular cases of the so-called “power divergences”, introduced by

Cressie and Read (1984) (see also Liese and Vajda (1987, Chapter 2)), which are

defined through the class of convex real valued functions

x ∈ R∗+ → φγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)

for γ in R\ {0, 1}, φ0(x) := − log x + x − 1 and φ1(x) := x log x − x + 1. (For all

γ ∈ R, we define φγ(0) := limx↓0 φγ(x)). So, the KL-divergence is associated to φ1,

the KLm to φ0, the χ2 to φ2, the χ2
m to φ−1 and the Hellinger distance to φ1/2. In

the monograph by Liese and Vajda (1987) the reader may find detailed ingredients

of the modeling theory as well as surveys of the commonly used divergences.

Let {Pθ : θ ∈ Θ} be some identifiable parametric model with Θ a compact subset of

Rd. Consider the problem of estimation of the unknown true value of the parameter

θ0 on the basis of an i.i.d. sample X1, . . . , Xn. We shall assume that the observed
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data are from the probability space (X ,A,Pθ0). Let φ be a function of class C2,
strictly convex such that∫ ∣∣∣∣φ′(dPθ(x)

dPα(x)

)∣∣∣∣ dPθ(x) <∞, ∀α ∈ Θ. (2.1)

Under assumption (2.1), using Fenchel duality technique, the divergence Dφ(θ,θ0)

can be represented as resulting from an optimization procedure, this result was el-

egantly proved in, Keziou (2003), Liese and Vajda (2006) and Broniatowski and

Keziou (2009). Broniatowski and Keziou (2006) called it the dual form of a diver-

gence, due to its connection with convex analysis. According to Liese and Vajda

(2006), under the strict convexity and the differentiability of the function φ, it holds

φ(t) ≥ φ(s) + φ′(s)(t− s), (2.2)

where the equality holds only for s = t. Let θ and θ0 be fixed and put t =

dPθ(x)/dPθ0(x) and s = dPθ(x)/dPα(x) in (2.2) and then integrate with respect to

Pθ0 . This gives

Dφ(θ,θ0) :=

∫
φ

(
dPθ

dPθ0

)
dPθ0 = sup

α∈Θ

∫
h(θ,α) dPθ0 , (2.3)

where h(θ,α, ·) : x 7→ h(θ,α, x) and

h(θ,α, x) :=

∫
φ′
(

dPθ

dPα

)
dPθ −

[
dPθ(x)

dPα(x)
φ′
(

dPθ(x)

dPα(x)

)
− φ

(
dPθ(x)

dPα(x)

)]
. (2.4)

Furthermore, the supremum in this display (2.3) is unique and reached in α = θ0,

independently upon the value of θ. Naturally, a class of estimators of θ0, called

“dual φ-divergence estimators” (DφDE’s), is defined by

α̂φ(θ) := arg sup
α∈Θ

Pnh(θ,α), θ ∈ Θ, (2.5)

where h(θ,α) is the function defined in (2.4) and, for a measurable function f , Pnf
denotes n−1

∑n
i=1 f(Xi). The class of estimators α̂φ(θ) satisfies

Pn
∂

∂α
h(θ, α̂φ(θ)) = 0. (2.6)

Formula (2.5) defines a family of M -estimators indexed by the function φ specifying

the divergence and by some instrumental value of the parameter θ.
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In this section, we shall establish the consistency of bootstrapping under general

conditions in the framework of dual divergence estimation. Define, for a measurable

function f ,

P∗nf :=
1

n

n∑
i=1

Wnif(Xi),

where Wni’s are the bootstrap weights defined on the probability space (W ,Ω,PW ).

In view of (2.5), the bootstrap estimator can be rewritten as

α̂∗φ(θ) := arg sup
α∈Θ

P∗nh(θ,α). (2.7)

The definition of α̂∗φ(θ), i.e., (2.7), implies that

P∗n
∂

∂α
h(θ, α̂∗φ(θ)) = 0. (2.8)

The bootstrap weights Wni’s are assumed to belong to the class of exchangeable

bootstrap weights introduced in Præstgaard and Wellner (1993). To be precise, we

shall assume the following conditions.

W.1 The vector Wn = (Wn1, . . . ,Wnn)′ is exchangeable for all n = 1, 2, . . ., i.e.,

for any permutation π = (π1, . . . , πn) of (1, 2, . . . , n), the joint distribution

of π(Wn) = (Wnπ1 , . . . ,Wnπn)′ is the same as that of Wn.

W.2 Wni ≥ 0 for all n, i and
∑n

i=1Wni = n for all n.

W.3 lim supn→∞ ‖Wn1‖2,1 ≤ C <∞, where ‖Wn1‖2,1 =
∫∞
0

√
PW (Wn1 ≥ u)du.

W.4 limλ→∞ lim supn→∞ supt≥λ t
2PW (Wn1 > t) = 0.

W.5 (1/n)
∑n

i=1(Wni − 1)2
PW−→ c2 > 0.

In Efron’s nonparametric bootstrap, the bootstrap sample is drawn from the non-

parametric estimate of the true distribution, i.e., empirical distribution. Thus, it is

easy to show that Wn ∼ Multinomial(n;n−1, . . . , n−1) and conditions W.1–W.5 are

satisfied. In general, conditions W.3-W.5 are easily satisfied under some moment

conditions on Wni, see Præstgaard and Wellner (1993, Lemma 3.1). In addition

to Efron’s nonparametric boostrap, the sampling schemes that satisfy conditions

W.1–W.5 include Bayesian bootstrap, Multiplier bootstrap, Double bootstrap, and

Urn boostrap. This list is sufficiently long to indicate that conditions W.1–W.5 are

not unduely restrictive. Notice that the value of c in W.5 is independent of n and

depends on the resampling method, e.g., c = 1 for the nonparametric bootstrap and

Bayesian bootstrap, and c =
√

2 for the double bootstrap. A more precise discussion
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of this general formulation of the bootstrap can be found in Præstgaard and Wellner

(1993), van der Vaart and Wellner (1996) and Kosorok (2008).

There exist two sources of randomness for the bootstrapped quantity, i.e., α̂∗φ(θ):

the first comes from the observed data and the second is due to the resampling

done by the bootstrap, i.e., random Wni’s. Therefore, in order to rigorously state

our main theoretical results for the general bootstrap of φ-divergence estimates, we

need to specify relevant probability spaces and define stochastic orders with respect

to relevant probability measures. We shall view Xi as the i-th coordinate projection

from the canonical probability space (X∞,A∞,P∞θ0
) onto the i-th copy of X . For

the joint randomness involved, the product probability space is defined as

(X∞,A∞,P∞θ0
)× (W ,Ω,PW ) = (X∞ ×W ,A∞ × Ω,P∞θ0

× PW ).

Throughout the paper, we assume that the bootstrap weights Wni’s are independent

of the data Xi’s, thus

PXW = Pθ0 × PW .

Given a real-valued function ∆n defined on the above product probability space, e.g.

α̂∗φ(θ), we say that ∆n is of an order ooPW (1) in Pθ0-probability if for any ε, η > 0,

Pθ0{P o
W |X(|∆n| > ε) > η} −→ 0 (2.9)

as n → 0, and that ∆n is of an order Oo
PW (1) in Pθ0-probability if for any η > 0,

there exists a 0 < M <∞ such that

Pθ0{P o
W |X(|∆n| ≥M) > η} −→ 0 (2.10)

as n → ∞, where the superscript “o” denotes the outer probability. For more

details on the subject the interested reader may refer to Cheng and Huang (2010),

in particular, Lemma 3 of the cited reference.

To establish the consistency of α̂∗φ(θ), the following conditions are assumed in our

analysis.

(A.1)

Pθ0h(θ,θ0) > sup
α 6∈N(θ0)

Pθ0h(θ,α) (2.11)

for any open set N(θ0) ⊂ Θ containing θ0.
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(A.2)

sup
α∈Θ
|P∗nh(θ,α)− Pθ0h(θ,α)|

PoXW−→ 0. (2.12)

The following theorem gives the consistency of the bootstrapped estimates α̂∗φ(θ).

Theorem 2.1. Assume that conditions (A.1) and (A.2) hold. Then α̂∗φ(θ) is a

consistent estimate of θ0. That is α̂∗φ(θ)
PoW−→ θ0 in Pθ0-probability.

The proof of Theorem 2.1 is postponed until §5.

Remark 2.1. • Condition (A.1) is the “well separated” condition, compact-

ness of the parameter space Θ and the continuity of divergence imply that

the optimum is well-separated, provided the parametric model is identified,

see van der Vaart (1998, Theorem 5.7).

• Condition (A.2) holds if the class {h(θ,α) : α ∈ Θ} is shown to be P -

Glivenko-Cantelli, by applying van der Vaart and Wellner (1996, Lemma

3.6.16) and Cheng and Huang (2010, Lemma A.1).

For any fixed δn > 0, define the class of functions Hn and Ḣn as

Hn :=

{
∂

∂α
h(θ,α) : ‖α− θ0‖ ≤ δn

}
(2.13)

and

Ḣn :=

{
∂2

∂α2
h(θ,α) : ‖α− θ0‖ ≤ δn

}
. (2.14)

We shall say a class of functions H ∈ M(Pθ0) if H possesses enough measurability

for randomization with i.i.d. multipliers to be possible, i.e., Pn can be random-

ized, in other word, we can replace (δXi − Pθ0) by (Wni − 1)δXi . It is known that

H ∈ M(Pθ0), e.g., if H is countable, or if {Pn}∞n are stochastically separable in H,

or if H is image admissible Suslin; see Giné and Zinn (1990, pages 853 and 854).

To state our result concerning the asymptotic normality, we shall assume the fol-

lowing additional conditions.

(A.3) The matrices V := Pθ0

∂

∂α
h(θ,θ0)

∂

∂α
h(θ,θ0)

> and S := −Pθ0

∂2

∂α2
h(θ,θ0)

are non singular.

(A.4) The class Hn ∈M(Pθ0) ∩ L2(Pθ0) and is P-Donsker.

(A.5) The class Ḣn ∈M(Pθ0) ∩ L2(Pθ0) and is P-Donsker.
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Conditions (A.4) and (A.5) ensure that the “size” of the function classes Hn and

Ḣn are reasonable so that the bootstrapped empirical processes G∗n ≡
√
n(P∗n − Pn)

indexed, respectively by Hn and Ḣn, have a limiting process conditional on the

original observations; see Præstgaard and Wellner (1993, Theorem 2.2). The main

result to be proved here may now be stated precisely as follows.

Theorem 2.2. Assume that α̂φ(θ) and α̂∗φ(θ) fullfil (2.6) and (2.8), respectively.

In addition suppose that α̂φ(θ)
Pθ0−→ θ0 and α̂∗φ(θ)

PoW−→ θ0 in Pθ0-probability. Assume

that conditions (A.3–5) and W.1–W.5 hold. Then we have

‖α̂∗φ(θ)− θ0‖ = Oo
PW (n−1/2) (2.15)

in Pθ0-probability. Furthermore,

√
n(α̂∗φ(θ)− α̂φ(θ)) = −S−1G∗n

∂

∂α
h(θ,θ0) + ooPW (1) (2.16)

in Pθ0-probability. Consequently,

sup
x∈Rd

∣∣PW |Xn((
√
n/c)(α̂∗φ(θ)− α̂φ(θ)) ≤ x)− P(N(0,Σ) ≤ x)

∣∣ = oPθ0
(1), (2.17)

where “ ≤ ” is taken componentwise and c is given in W.5, whose value depends

on the used sampling scheme, and Σ ≡ S−1V (S−1)> where S and V are given in

condition (A.3). Thus, we have

sup
x∈Rd

∣∣PW |Xn((
√
n/c)(α̂∗φ(θ)− α̂φ(θ)) ≤ x)− Pθ0(

√
n(α̂φ(θ)− θ0) ≤ x)

∣∣ Pθ0−→ 0(2.18)

The proof of Theorem 2.1 is postponed until §5.

Remark 2.2. Note that an appropriate choice of the the bootstrap weights Wni’s

implicates a smaller limit variance, that is, c2 is smaller than 1. For instance,

typical examples are i.i.d.-weighted bootstraps and the multivariate hypergeometric

bootstrap, refer to Præstgaard and Wellner (1993, Examples 3.1 and 3.4).

Following Cheng and Huang (2010), we shall illustrate how to apply our results

to construct the confidence sets. A lower ε-th quantile of bootstrap distribution is

defined to be any q∗nε ∈ Rd fulfilling

q∗nε := inf{x : PW |Xn(α̂∗φ(θ) ≤ x) ≥ ε},



10 SALIM BOUZEBDA AND MOHAMED CHERFI

where x is an infimum over the given set only if there does not exist a x1 < x in Rd

such that

PW |Xn(α̂∗φ(θ) ≤ x1) ≥ ε.

Keep in mind the assumed regularity conditions on the criterion function, that is,

h(θ,α) in the present framework, we can, without loss of generality, suppose that

PW |Xn(α̂∗φ(θ) ≤ q∗nε) = ε.

Making use the distribution consistency result given in (2.18), we can approximate

the ε-th quantile of the distribution of (α̂φ(θ)− θ0) by (q∗nε − α̂φ(θ))/c. Therefore,

we define the percentile-type bootstrap confidence set as

C(ε) :=

[
α̂φ(θ) +

q∗n(ε/2) − α̂φ(θ)

c
, α̂φ(θ) +

q∗n(1−ε/2) − α̂φ(θ)

c

]
. (2.19)

In a similar manner, the ε-th quantile of
√
n(α̂φ(θ) − θ0) can be approximated by

q̃∗nε, where q̃∗nε is the ε-th quantile of the hybrid quantity (
√
n/c)(α̂∗φ(θ) − α̂φ(θ)),

i.e.,

PW |Xn((
√
n/c)(α̂∗φ(θ)− α̂φ(θ)) ≤ q̃∗nε) = ε.

Note that q̃∗nε = (
√
n/c)(q∗nε − α̂φ(θ)). Thus, the hybrid -type bootstrap confidence

set would be defined as follows

C̃(ε) :=

[
α̂φ(θ)−

q̃∗n(1−ε/2)√
n

, α̂φ(θ)−
q̃∗n(ε/2)√

n

]
. (2.20)

Note that q∗nε and q̃∗nε are not unique by the fact that we assume θ is a vector. Recall

that, for any x ∈ Rd,

Pθ0(
√
n(α̂φ(θ)− θ0) ≤ x) −→ Ψ(x),

PW |Xn((
√
n/c)(α̂∗φ(θ)− α̂φ(θ)) ≤ x)

Pθ0−→ Ψ(x),

where Ψ(x) = P(N(0,Σ) ≤ x). According to the quantile convergence Theorem,

i.e., van der Vaart (1998, Lemma 21.1), we have, almost surely,

q̃∗nε
PXW−→ Ψ−1(ε).

When applying quantile convergence theorem, we use the almost sure representa-

tion, that is, van der Vaart (1998, Theorem 2.19), and argue along subsequences.
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Considering the Slutsky’s Theorem which ensures that
√
n(α̂φ(θ) − θ0) − q̃∗n(ε/2)

weakly converges to N(0,Σ)−Ψ−1(ε/2), we further have

PXW
(
θ0 ≤ α̂φ(θ)−

q̃∗n(ε/2)√
n

)
= PXW

(√
n(α̂φ(θ)− θ0) ≥ q̃∗n(ε/2)

)
−→ PXW

(
N(0,Σ) ≥ Ψ−1(ε/2)

)
= 1− ε/2.

The above arguments prove the consistency of the hybrid-type bootstrap confidence

set, i.e., (2.22), and can also be applied to the percentile-type bootstrap confidence

set, i.e., (2.21). For an in-depth study and more rigorous proof, we may refer to

van der Vaart (1998, Lemma 23.3). The above discussion may be summarized as

follows.

Corollary 2.3. Under the conditions in Theorem 2.2, we have, as n→∞,

PXW

(
α̂φ(θ) +

q∗n(ε/2) − α̂φ(θ)

c
≤ θ0 ≤ α̂φ(θ) +

q∗n(1−ε/2) − α̂φ(θ)

c

)
−→ 1− ε,

(2.21)

PXW
(
α̂φ(θ)−

q̃∗n(1−ε/2)√
n
≤ θ0 ≤ α̂φ(θ)−

q̃∗n(ε/2)√
n

)
−→ 1− ε. (2.22)

It is well known that the above bootstrap confidence sets can be obtained easily

through routine bootstrap sampling.

Remark 2.3. Notice that the choice of weights depends on the problem at hand :

accuracy of the the estimation of the entire distribution of the statistic, accuracy of

a confidence interval, accuracy in large deviation sense, accuracy for a finite sample

size. Barbe and Bertail (1995) indicate that the area where the weighted bootstrap

clearly performs better than the classical bootstrap is in term of coverage accuracy.

3. Random right censoring

Let T1, . . . , Tn be i.i.d. survival times with continuous survival function F (·) = 1−
F (·) and C1, . . . , Cn be independent censoring times with d.f. G(·). In the censoring

set-up, we observe only the pair Yi = min(Ti, Ci) and δi = 1{Ti ≤ Ci}, which designs

whether an observation has been censored or not. Let (Y1, δ1), . . . , (Yn, δn) denote

the observed data points and t(1) < t(2) < · · · < t(k) be the k distinct death times.

Now define the death set and risk set as follows for j = 1, . . . , k:

D(j) := {i : yi = t(j), δi = 1}
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and

R(j) := {i : yi ≥ t(j)}.

The Kaplan and Meier (1958)’s estimator of F (·) may be written as follows

F n(t) :=
k∏
j=1

(
1−

∑
q∈D(j) 1∑
q∈R(j) 1

)1{T(j)≤t}

.

One may define a generally exchangeable weighted bootstrap scheme for the Kaplan-

Meier estimator and related functionals as follows, cf. James (1997, p. 1598),

1− F ∗n(t) := F
∗
n(t) =

k∏
j=1

(
1−

∑
q∈D(j)Wnq∑
q∈R(j)Wnq

)1{T (j)≤t}

.

Let ψ be F -integrable and put

Ψn :=

∫
ψ(u)dF ∗n(u) =

k∑
j=1

Υjnψ(T(j)),

where

Υjn :=

(∑
q∈D(j)Wnq∑
q∈R(j)Wnq

)
j−1∏
k=1

(∑
q∈D(k)Wnq∑
q∈R(k)Wnq

)
.

Note that we have used the following fact. Let ai, i = 1, . . . , k, bi, i = 1, . . . , k, be

real numbers
k∏
i=1

ai −
k∏
i=1

bi =
k∑
i=1

(ai − bi)
i−1∏
j=1

bj

k∏
h=1+i

ah.

In the similar way, we define a more appropriate representation, that will be used

in the sequel, as follows

Ψn =

∫
ψ(u)dF ∗n(u) =

n∑
j=1

πjnψ(Yj:n),

where

πjn := δj:n

(∑
q∈D(j)Wnq∑
q∈R(j)Wnq

)
j−1∏
k=1

(∑
q∈D(k)Wnq∑
q∈R(k)Wnq

)δk:n

.

Here, Y1:n ≤ · · · ≤ Yn:n are ordered Y -values and δi:n denotes the concomitant asso-

ciated with Yi:n. For the right censoring situation, the bootstrap “dual φ-divergence

estimators” (DφE’s), is defined by replacing Pn in (2.5) by P̂ ∗n , that is

α̂n(θ) := arg sup
α∈Θ

∫
h(θ,α)dP̂ ∗n , θ ∈ Θ. (3.1)
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The corresponding estimating equation for the unknown parameter is then given by∫
∂

∂α
h(θ,α)dP̂ ∗n = 0. (3.2)

Formula (3.1) defines a family of M -estimator for censored data. For more details

about dual φ-divergence estimators in right censoring we refer to Cherfi (2011), we

leave this study open for future research.

4. Simulations

In this section, series of experiments were conducted in order to examine the

performance of the proposed random weighted bootstrap procedure of the dual φ-

divergence estimators (DφDE), defined in (2.7). We provide numerical illustrations

regarding the mean squared error and the coverage probabilities. The computing

program codes were implemented in R.

The values of γ are chosen to be −1, 0, 0.5, 1, 2, which corresponds, as indicated

above, to the well known standard divergences: χ2
m−divergence, KLm, the Hellinger

distance, KL and the χ2−divergence respectively. The samples of sizes considered

in our simulations are 25, 50, 75, 100, 150, 200 and the estimates, DφDE’s α̂φ(θ),

are obtained from 500 independent runs. The value of escort parameter θ is taken to

be the MLE, which under the model is a consistent estimate of θ0, and the limit dis-

tribution of the DφDE α̂φ(θ0), in this case, has variance which indeed coincides with

the MLE, for more details on this subject, we refer to Keziou (2003, Theorem 2.2,

(1) (b)). The bootstrap weights are chosen (Wn1, . . . ,Wnn) ∼ Dirichlet(n; 1, . . . , 1).

In Figure 1, we plot the densities of the different estimates, it shows that the

proposed estimators perform reasonably well.

Table 2 provides the MSE of various estimates under the Normal model N(θ0 = 0, 1).

Here, we mention that the KL based estimator (γ = 1) is more efficient than the

others competitors.

Table 4 provides the MSE of various estimates under the Exponential model exp(θ0 =

1). As expected, the MLE produces most efficient estimators in the . A close look

at the results of the simulations show that the DφDE’s performs well under the

model. For large sample size n = 200, the estimator based on the Hellinger distance

is equivalent to that of the MLE. Indeed in terms of empirical MSE the DφDE’s
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Figure 1. Densities of the estimates.

with γ = 0.5 produces the same MSE as the MLE, while the performance of the

other estimators is comparable.

Table 1. MSE of the estimates for the Normal distribution, B=500

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

1 0.0687 0.0419 0.0288 0.0210 0.0135 0.0107

2 0.0647 0.0373 0.0255 0.0192 0.0127 0.0101

3 0.0668 0.0379 0.0257 0.0194 0.0128 0.0101

4 0.0419 0.0217 0.0143 0.0108 0.0070 0.0057

5 0.0931 0.0514 0.0331 0.0238 0.0148 0.0112

Tables 6 and 8, provide the empirical coverage probabilities of the correspond-

ing 0.95 weighted bootstrap confidence intervals based on B = 500, 1000 weighted

bootstrap estimators. Notice that the empirical coverage probabilities as in any

other inferential context, the greater the sample size, the better. From the results

reported in these tables, we find that for large values of the sample size n, the the

empirical coverage probabilities are all close to the nominal level. One can see that
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Table 2. MSE of the estimates for the Normal distribution, B=1000

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

γ

-1 0.0716 0.0432 0.0285 0.0224 0.0147 0.0099

0 0.0670 0.0385 0.0255 0.0202 0.0136 0.0093

0.5 0.0684 0.0391 0.0258 0.0203 0.0137 0.0093

1 0.0441 0.0230 0.0143 0.0116 0.0078 0.0049

2 0.0900 0.0522 0.0335 0.0246 0.0156 0.0103

Table 3. MSE of the estimates for the Exponential distribution, B=500

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

1 0.0729 0.0435 0.0313 0.0215 0.0146 0.0117

2 0.0708 0.0405 0.0280 0.0195 0.0131 0.0104

3 0.0727 0.0415 0.0282 0.0197 0.0131 0.0105

4 0.0786 0.0446 0.0296 0.0207 0.0136 0.0108

5 0.1109 0.0664 0.0424 0.0289 0.0178 0.0132

Table 4. MSE of the estimates for the Exponential distribution, B=1000

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

γ

-1 0.0670 0.0444 0.0295 0.0243 0.0146 0.0111

0 0.0659 0.0417 0.0269 0.0216 0.0133 0.0102

0.5 0.0677 0.0427 0.0272 0.0216 0.0135 0.0102

1 0.0735 0.0458 0.0287 0.0225 0.0140 0.0106

2 0.1074 0.0697 0.0429 0.0306 0.0183 0.0133

the DφDE’s with γ = 2 have the best empirical coverage probability which is near

the assigned nominal level.

5. Appendix

This section is devoted to the proofs of our results.
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Table 5. Empirical coverage probabilities for the Normal distribu-

tion, B=500

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

1 0.88 0.91 0.93 0.92 0.95 0.92

2 0.91 0.92 0.94 0.94 0.94 0.93

3 0.94 0.94 0.94 0.96 0.94 0.93

4 0.44 0.47 0.54 0.46 0.48 0.51

5 0.97 0.97 0.96 0.97 0.95 0.95

Table 6. Empirical coverage probabilities for the Normal distribu-

tion, B=1000

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

γ

-1 0.87 0.90 0.93 0.92 0.93 0.96

0 0.91 0.94 0.94 0.93 0.94 0.96

0.5 0.93 0.93 0.95 0.93 0.94 0.96

1 0.46 0.45 0.48 0.46 0.45 0.50

2 0.96 0.97 0.96 0.95 0.96 0.96

Table 7. Empirical coverage probabilities for the Exponential distri-

bution, B=500

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

1 0.67 0.83 0.87 0.91 0.93 0.92

2 0.73 0.87 0.91 0.93 0.96 0.93

3 0.76 0.88 0.91 0.94 0.96 0.93

4 0.76 0.88 0.90 0.95 0.97 0.93

5 0.76 0.89 0.91 0.96 0.96 0.94

5.1. Proof of Theorem 2.1. Proceeding as van der Vaart and Wellner (1996) in

their proof of Corollary 3.2.3, it is straightforward to show the consistency of α̂∗φ(θ).

�
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Table 8. Empirical coverage probabilities for the Exponential distri-

bution, B=1000

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200

γ

-1 0.70 0.79 0.90 0.91 0.92 0.91

0 0.76 0.84 0.91 0.92 0.93 0.92

0.5 0.78 0.85 0.93 0.94 0.94 0.93

1 0.78 0.87 0.94 0.94 0.95 0.94

2 0.78 0.88 0.95 0.95 0.96 0.95

Remark 5.1. Note that the proof techniques of Theorem 2.2 are largely inspired

from that of Cheng and Huang (2010) and changes have been made in order to

adapt them to our purpose.

5.2. Proof of Theorem 2.2. Keep in mind the following definitions

Gn :=
√
n(Pn − Pθ0)

and

G∗n :=
√
n(P∗n − Pn).

In view of the fact that Pθ0

∂

∂α
h(θ,θ0) = 0, then a little calculation shows that

G∗n
∂

∂α
h(θ,θ0) + Gn

∂

∂α
h(θ,θ0) +

√
nPθ0

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]
= G∗n

[
∂

∂α
h(θ,θ0)−

∂

∂α
h(θ, α̂∗)

]
+ Gn

[
∂

∂α
h(θ,θ0)−

∂

∂α
h(θ, α̂∗)

]
+
√
nP∗n

∂

∂α
h(θ, α̂∗).
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Consequently, we have following inequality∥∥∥∥√nPθ0

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]∥∥∥∥
≤

∥∥∥∥G∗n ∂

∂α
h(θ,θ0)

∥∥∥∥+

∥∥∥∥Gn
∂

∂α
h(θ,θ0)

∥∥∥∥
+

∥∥∥∥G∗n [ ∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]∥∥∥∥
+

∥∥∥∥Gn

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]∥∥∥∥
+

∥∥∥∥√nP∗n ∂

∂α
h(θ, α̂∗)

∥∥∥∥
:= G1 +G2 +G3 +G4 +G5. (5.1)

According to Theorem 2.2 in Præstgaard and Wellner (1993), under condition (A.4),

we have G1 = Oo
PW (1) in Pθ0-probability. In view of the CLT, we have G2 = OPθ0

(1).

By applying a Taylor series expansion, we have

G∗n
[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]
= (α̂∗ − θ0)

>G∗n
∂2

∂α2
h(θ,α), (5.2)

where α is between α̂∗ and θ0. By condition (A.5) and Theorem 2.2 in Præst-

gaard and Wellner (1993), we conclude that the right term in (5.2) is of order

Oo
PW (‖α̂∗ − θ0‖) in Pθ0-probability. The fact that α̂∗ is assumed to be consistent,

then, we have G3 = ooPW (1) in Pθ0-probability. An analogous argument yields

Gn

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]
is of order OPθ0

(‖α̂∗ − θ0‖), by the consistency of α̂∗, we have G4 = ooPW (1) in

Pθ0-probability. Finally, G5 = 0 based on (2.8). In summary, (5.1) can be rewritten

as follows ∥∥∥∥√nPθ0(
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0))

∥∥∥∥ ≤ Oo
PW (1) +Oo

Pθ0
(1) (5.3)

in Pθ0-probability. On the other hand, by a Taylor series expansion, we can write

Pθ0

[
∂

∂α
h(θ,α)− ∂

∂α
h(θ,θ0)

]
= −(α− θ0)

>S +O
(
‖α− θ0‖2

)
. (5.4)
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Clearly it is straightforward to combine (5.4) with (5.3) to infer the following

√
n ‖S‖α̂∗ − θ0‖‖ ≤ Oo

PW (1) +Oo
Pθ0

(1) +Oo
PW

(√
n‖α̂∗ − θ0‖2

)
(5.5)

in Pθ0-probability. By considering again the consistency of α̂∗ and condition (A.3)

and making use (5.5) to complete the proof of (2.15).

We next prove (2.16). Introduce

H1 := −G∗n
[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]
,

H2 := Gn

[
∂

∂α
h(θ, α̂)− ∂

∂α
h(θ,θ0)

]
,

H3 := −Gn

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]
,

H4 :=
√
nP∗n

∂

∂α
h(θ, α̂∗)−

√
nPn

∂

∂α
h(θ, α̂).

By some algebra, we obtain

√
nPθ0

(
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ, α̂)

)
+ G∗n

∂

∂α
h(θ,θ0) =

4∑
j=1

Hj.

Obviously, H1 = Oo
PW (n−1/2) in Pθ0-probability and H2 = OPθ0

(n−1/2). We also

know that the order of H3 is Oo
PW (n−1/2) in Pθ0-probability. Using (2.6) and (2.8)

we obtain that H4 = 0.

Therefore, we have established

√
nPθ0

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ, α̂)

]
= −G∗n

∂

∂α
h(θ,θ0) + oPθ0

(1) + ooPW (1) (5.6)

in Pθ0-probability. To analyze the left hand side of (5.6), we rewrite it as

√
nPθ0

[
∂

∂α
h(θ, α̂∗)− ∂

∂α
h(θ,θ0)

]
−
√
nPθ0

[
∂

∂α
h(θ, α̂)− ∂

∂α
h(θ,θ0)

]
.

By a Taylor expansion, we obtain

√
nS(α̂∗φ(θ)− α̂φ(θ))

= G∗n
∂

∂α
h(θ,θ0) + oPθ0

(1) + ooPW (1) +OPθ0
(n−1/2) +Oo

PW (n−1/2)

= G∗n
∂

∂α
h(θ,θ0) + oPθ0

(1) + ooPW (1) (5.7)
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in Pθ0-probability. Keep in mind that, under condition (A.3), the matrix S is non-

singular. Multiply both sides of (5.7) by S−1 to obtain (2.16). An application of

Præstgaard and Wellner (1993, Lemma 4.6), under the bootstrap weight conditions,

thus implies (2.17). Using Broniatowski and Keziou (2009, Theorem 3.2) and van der

Vaart (1998, Lemma 2.11), it easily follows that

sup
x∈Rd

∣∣Pθ0(
√
n(α̂φ(θ)− θ0) ≤ x)− P(N(0,Σ) ≤ x)

∣∣ = oPθ0
(1). (5.8)

By combining (2.17) and (5.8), we readily obtain the desired conclusion (2.18).

�
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