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Abstract

The entropy is one of the most applicable uncertainty measures in many statistical and en-
gineering problems. In statistical literature, the entropy is used in calculation of the Kullback-
Leibler (KL) information which is a powerful mean for performing goodness of fit tests. Ranked
Set Sampling (RSS) seems to provide improved estimators of many parameters of the popu-
lation in the huge studied problems in the literature. It is developed for situations where the
variable of interest is difficult or expensive to measure, but where ranking in small sub-samples
is easy. In This paper, we introduced two estimators for the entropy and compare them with
each other and the estimator of the entropy in Simple Random Sampling (SRS) in the sense
of bias and Root of Mean Square Errors (RMSE). It is observed that the RSS scheme would
improve this estimator. The best estimator of the entropy is used along with the estimator of
the mean and two biased and unbiased estimators of variance based on RSS scheme, to esti-
mate the KL information and perform goodness of fit tests for exponentiality and normality.
The desired critical values and powers are calculated. It is also observed that RSS estimators
would increase powers.
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Exponential; Normal; Uniform

1 Introduction

Suppose a continuous random variable X has cumulative distribution function (cdf) F(z) and a
probability density function (pdf) f(z). The differential entropy H(f) of the random variable X
is defined to be

- " f()log f(2)de. 1)
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The entropy is one of the most applicable uncertainty measures in many statistical and engineering
problems. In statistical literature, the entropy is used in calculation of the Kullback-Leibler (KL)
information which is a powerful mean for performing goodness of fit tests. The Kullback-Leibler
(K-L) information of f(x) against fo(z) is defined in [7] to be
R b f(x)

103 = [ f@)ios Lde. )
Since I(f; fo) has the property that I(f; fo) > 0, and the equality holds if only if f = fo, the
estimate of the K-L information has also been considered as a goodness of fit test statistic by
some authors including [2] and [5]. It has been shown in the aforementioned papers that the
test statistics based on the K-L information perform very well for testing exponentiality [5] as
compared, in terms of power, with some leading test statistics.

Ranked Set Sampling (RSS) has been developed by McIntyre (1952). This method is applied
for situations in which measuring a variable is costly or difficult, but where ranking in small subsets
is easy. In this method, we first subdivide a sample of size n = k2 randomly into k subsamples
of size k, rank each subsample visually or using any simple or cheap method and then in the 7"
subsample, measure and record only the unit of rank r which is denoted by Xy,z (r=1,...,k).
()

k

Since the subsamples are independent, X ./ ’s are independent random variables. Also the marginal

th order statistic from a sample of size k of X, i.e.

distribution of Xr(rlz is the same as that of r
X,.k. As it was proved by Mclntyre, mean of this sample is an unbiased estimator of the mean of
Y with an efficiency slightly less than %(k + 1), relative to the mean of a Simple Random Sample
(SRS) of size k. Thus “ranked set sampling should be useful when the quantification of an element
is difficult but the elements of a set are easily drawn and ranked by judgment.” (Dell and Clutter

1972).

This method was also extended to estimating variance (Stokes 1980a), correlation coefficient
(Stokes 1980b) and the situations in which the sample is subdivided into subsamples of different
sizes.

In This paper, we introduced two estimators for the entropy and compare them with each other
and the estimator of the entropy in Simple Random Sampling (SRS) in the sense of bias and Root
of Mean Square Errors (RMSE). It is observed that the RSS scheme would improve this estimator.
The best estimator of the entropy is used along with the estimator of the mean and two biased and
unbiased estimators of variance based on RSS scheme, to estimate the KL information and perform
goodness of fit tests for exponentiality and normality. The desired critical values and powers are
calculated. It is also observed that RSS estimators would increase powers.

2 Entropy estimation

The nonparametric estimation of the entropy

H— /01 log (dF;i;(p)) dp. 3)



Table 1: Simulated Minimum RMSE (MRMSE) and Minimum Absolute Bias (MAB) of H},, and
H2 _ and optimal m for k = 10 and three distributions with different values of r.
r
2 3
L 02 L H?
U(0,1) MRMSE (optimal m*)  0.062(8) 0.081(5) 0.045(11-13) 0.073(5)
MAB(optimal m*)  0.030(10)  0.047(5)  0.021(15)  0.048(5)
e(1) MRMSE (optimal m*)  0.157(5)  0.168(4)  0.125(6)  0.140(4)
MAB (optimal m*) 0.001(6)  0.0137(5)  0.004(7)  0.014(5)
(5)
(5)

N(0,1) MRMSE (optimal m*) 0.184(5,10)  0.246(5) 0.138(7,8)  0.233(5
MAB (optimal m*) 0.113(10) 0.205(5) 0.062(12) 0.206(5
*m = 1(1)k/2 for H2,, and m = 1(1)rk/2 for H},,

An estimate of @) can be constructed by replacing the distribution function F' by the empirical
distribution F},. The derivative of F~1(i/n) is estimated by (@i w:m — Ti—w:n)n/(2w). The estimate
of H is then

H(m,n) = % i log (%(I'H»m:n - Izem:n)) ) (4)

where the window size m is a positive integer, which is less than n/2, and x;.,, = x1., for i < 1,
and z;., = Tp., for i > n.

Ebrahimi et al. (1994) proposed a modified sample entropy as
_ - n
HC(TL, m) =n1 Z 1og %(X(H-m) — X(i—m)) (5)
i=1 ¢

where ]
1+2L if1<i<m
ci = 2 ifm+1<i<n—m
1422 ifn—m+1<i<n

To estimate the entropy in RSS scheme, we may note that the estimator of F~!(i/n) must be
positive for log function to be well-defined. So we have to order the ranked set sample. There are
two ways to order this sample. First way is to order each replication, derive the estimator and
then take the average as the main estimator. The second way is to order the whole sample of size
rk. This two methods yield two estimators as follows

1 & n
H' ==Y log — (Xpipm — X 6
mn n ; og cim( [i+m] [@ m]) ( )
and
R k
2 _
Hmn - E ;:1 ;:1 log d;m (X[i-l-m]j - X[i—m]j); (7)



Table 2: Monte Carlo biases and RMSE for H,,, in three distributions for n = 10, 20
U(0,1) e(1) N(0,1)
| SRS RSS SRS RSS SRS RSS
n m Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
10 1 | -0.381 0.451  -0.259 0.326 | -0.392 0.561 -0.298 0.398 | -0.452  0.458 -0.342 0.428
2 |-0.222 0.293 -0.108 0.168 | -0.222 0.436 -0.142 0.266 | -0.342 0.441 -0.227 0.311
3 |-0.159 0.228 -0.070 0.124 | -0.174 0.405 -0.078  0.241 -0.301 0.408  -0.207  0.289
4 | -0.140 0.224 -0.056 0.110 | -0.114 0.382 -0.031 0.236 | -0.305 0.394 -0.209  0.285
5 | -0.131 0.212  -0.050 0.107 | -0.064 0.371 0.012 0.249 | -0.289 0.389  -0.204 0.279
20 1 |-0.328 0.358 -0.274 0.302 | -0.335 0424 -0.290 0.340 | -0.373 0.427 -0.313  0.358
2 |-0.176  0.203 -0.121  0.147 | -0.179 0.299 -0.139  0.206 | -0.221 0.288  -0.178  0.232
3 |-0.125 0.155 -0.076  0.103 | -0.151 0.280 -0.083 0.169 | -0.179  0.252  -0.141 0.200
4 | -0.104 0.134 -0.056 0.084 | -0.098 0.264 -0.052 0.161 -0.176  0.255  -0.124  0.189
5 | -0.088 0.119 -0.046 0.074 | -0.062 0.253 -0.024 0.157 | -0.167 0.245 -0.117 0.184
6 | -0.079 0.117 -0.040 0.067 | -0.047 0.244 0.001 0.165 | -0.156  0.232 -0.116  0.185
7 | -0.076  0.111  -0.035 0.063 | -0.020  0.263 0.025 0.173 | -0.150 0.231 -0.116  0.185
8 | -0.068 0.109 -0.034 0.062 0.010 0.264 0.051 0.188 | -0.157 0.239 -0.114 0.185
9 | -0.064 0.108 -0.032 0.063 0.032 0.260 0.078 0.203 | -0.158 0.241 -0.116  0.188
10 | -0.061 0.106  -0.030  0.063 0.044 0.268 0.102 0.225 | -0.152 0.234 -0.113 0.184

*

n = 10r cases are observed by RSS scheme with 10 samples and r replication.



Table 3: Monte Carlo biases and RMSE for H},, in three distributions for n = 30

U(0,1) e(1) N(0,1)
| SRS RSS SRS RSS SRS RSS
n m Bias RMSE  Bias RMSE Bias RMSE  Bias RMSE Bias RMSE  Bias RMSE

30 1 |-0.312 0337 -0.273 0.290 | -0.293 0.363 -0.286  0.318 | -0.328 0.370  -0.300  0.331
2 |1-0.158 0.174 -0.125 0.141 -0.156  0.248  -0.136  0.181 -0.198  0.245 -0.160  0.199
3 |-0.110 0.129 -0.080 0.096 | -0.115 0.219 -0.084 0.145 | -0.158 0.209 -0.118 0.164
4 |-0.090 0.110 -0.058 0.075 | -0.078 0.206 -0.052 0.129 | -0.135 0.196 -0.099  0.150
5 | -0.071 0.092 -0.046 0.065 | -0.059 0.202 -0.034 0.126 | -0.113 0.184  -0.088 0.144
6 | -0.069 0.090 -0.039 0.058 | -0.045 0.198 -0.013 0.125 | -0.106 0.181 -0.082  0.142
7 |-0.061 0.083 -0.034 0.054 | -0.023 0.206 0.004 0.129 | -0.098 0.174 -0.073  0.138
8 1-0.066 0.0v9 -0.030 0.050 | -0.007 0.194 0.021 0.135 | -0.106  0.175  -0.069  0.138
9 |-0.02 0.076 -0.028 0.048 0.015 0.192 0.039 0.145 | -0.086  0.174  -0.067  0.140
10 | -0.050  0.075  -0.027  0.046 0.027 0.195 0.057 0.155 | -0.091 0.175  -0.067  0.141
11 | -0.048 0.075 -0.025  0.045 0.050 0.211 0.073 0.167 | -0.091 0.171  -0.065 0.141
12 | -0.041  0.071  -0.024  0.045 0.075 0.225 0.098 0.185 | -0.090 0.171 -0.062  0.141
13 | -0.042 0.074  -0.023  0.045 0.089 0.231 0.117 0.201 | -0.089 0.175 -0.065  0.144
14 | -0.043 0.073  -0.022  0.046 0.100 0.248 0.132 0.214 | -0.090 0.174 -0.066  0.143
15 | -0.037  0.069 -0.021  0.046 0.124 0.255 0.150 0.231 -0.094 0.177  -0.064 0.143

*

n = 10r cases are observed by RSS scheme with 10 samples and r replication.



where )
1+ if1<i<m
d; = 2 ifm+1<i<k—m
I+ ffk—m+1<i<k

Table [ shows the values of simulated Minimum RMSE (MRMSE) and Minimum Absolute Bias
(MAB) of H},, and H2,, and optimal m for k = 10 and three famous distributions with different
values of r. From this values one can conclude that H}  is better estimator in the sense of RMSE
and bias. Tables Bl and [B] show the values of Monte Carlo biases and RMSE for H}

distributions for n = 10,20 and 30. This values present a distinct improvement of the estimator
in RSS scheme relative to SRS scheme.

in three

3 Goodness of fit tests

Park, S. and D. (2003) derived the nonparametric distribution function of H.(n,m) as

(2) 0 ifx<m or x>n,41
c xTr) = _ . - 9
g lm+11—m ifng; <z <my1,i=1,...n
where
Em+1 = e =T (E(m+k) — (1)) ifl<i<m
M= o (T T+ Tipmo) fm+lsisn-m+tl

En—m+1 + Yjmnmi2 mrmirT (E) — Th-m-1) Hn-m+2<i<n+1
They used it to correct the moments of the distribution which are used in goodness of fit tests.

In the exponentiality test, the aforementioned nonparametric distribution is used to estimate
the mean and ..

Hosh)= [ ooy %dz ®)

T. = 1+10g5‘c_Hc(n7m) (9)

The following alternatives of the exponentiality null hypothesis have been considered to estimate
the powers.

1. Gamma distribution with pdf

a—1 _
f(x;a)—%zg(x) a>0,2>0 (10)
2. Weibull distribution with pdf
f(a;B) = B’ texp(—a”) B>0,2>0 (11)



3. Log-normal distribution with pdf

1
flza) = exp(—5—(logz)®) o >0,2>0 (12)
ovV2mx 20
4. Uniform distribution with pdf
flxy=1 0<z<1 (13)

As mentioned by Arizono and Ohta (1989), an estimate for I(f, fo), when fy is the normal pdf
with known parameters p and o is obtained as

g

n o 2
Ly = log(V2702) + % 3 (”” “) — H(n,m). (14)
=1

3

When both y and ¢ are unknown, we place their estimates, that is, i = X and & = % S 1 (Xi—
X)? in ([29) and derive the test statistic as

T =log(V2n62%) + 0.5 — H(n,m) (15)

Park, S. and D. replaced the estimates H(n,m) and & with their corrected estimators H.(n,m)
and &, and derived the test statistic

T, = log(+/2762) + 0.5 — H.(n,m) (16)
In the normality test the following alternatives are considered to estimate the powers

1. Uniform distribution with pdf

flxy=1 0<z<1 (17)
2. Chi-square distribution with pdf
flrya) = ;(l)o‘ﬂx(o‘ﬂ)_l exp(—lx) a>0,z>0 (18)
’ T(a/2) 2 2 ’
3. t-student distribution with pdf
r 1)/2 1 1
f(z;v) = (v +1)/2) v>2 —oco<x<oo (19)

T(v/2) \/Zmr) (1+ 22)(+D/2
4. Exponential distribution with pdf

fz; A) = dexp(=Az), A >0, z>0. (20)



Table 4: Critical values for different values of n, m and «

Exponentiality Normality
@ @
n m 0.1 0.05 0.025  0.01 0.1 0.05 0.025  0.01
10 1 0.5357 0.6318 0.7297 0.8617 | 0.5898 0.7027 0.8034 0.9215
2 0.2898 0.3546 0.4213 0.5099 | 0.3765 0.4404 0.5113 0.6005
3 0.2095 0.2645 0.3243 0.3944 | 0.3214 0.3712 0.4182 0.4667
4 0.1619 0.2154 0.2596 0.3293 | 0.3001 0.3221 0.3593 0.3987
5 0.1416 0.1916 0.2487 0.3122 | 0.2903 0.3091 0.3311 0.3544
20% 1 0.4455 0.5091 0.5695 0.6373 | 0.4775 0.5405 0.6025 0.6587
2 0.2391 0.2822 0.3305 0.3813 | 0.2824 0.3264 0.3621 0.4092
3 0.1707 0.2089 0.2450 0.2939 | 0.2296 0.2614 0.2940 0.3460
4 0.1389 0.1738 0.2064 0.2498 | 0.2073 0.2339 0.2671 0.3112
5 0.1117 0.1445 0.1772 0.2173 | 0.2000 0.2287 0.2549 0.2875
6 0.0964 0.1269 0.1569 0.1918 | 0.1977 0.2255 0.2501 0.2802
7 0.0779 0.1114 0.1441 0.1741 | 0.1968 0.2223 0.2463 0.2695
8 0.0643 0.0983 0.1250 0.1754 | 0.2013 0.2225 0.2407 0.2612
9 0.0495 0.0915 0.1188 0.1604 | 0.2023 0.2213 0.2375 0.2569
10 0.0368 0.0797 0.1167 0.1543 | 0.2008 0.2175 0.2391 0.2512
30 1 0.4100 0.4567 0.4961 0.5656 | 0.4273 0.4729 0.5155 0.5768
2 0.2171  0.2498 0.2796 0.3156 | 0.2443 0.2776 0.3028 0.3451
3 0.1516 0.1819 0.2122 0.2402 | 0.1891 0.2145 0.2408 0.2777
4 0.1202 0.1481 0.1693 0.2065 | 0.1649 0.1855 0.2099 0.2407
5 0.0979 0.1210 0.1503 0.1860 | 0.1498 0.1739 0.1912 0.2300
6 0.0825 0.1102 0.1361 0.1559 | 0.1454 0.1658 0.1879 0.2208
7 0.0722 0.0950 0.1212 0.1501 | 0.1433 0.1660 0.1891 0.2134
8 0.0574 0.0849 0.1061 0.1449 | 0.1425 0.1663 0.1848 0.2082
9 0.0574 0.0849 0.0960 0.1270 | 0.1453 0.1631 0.1833 0.2046
10 0.0379 0.0635 0.0878 0.1162 | 0.1428 0.1654 0.1838 0.2039
11 0.0280 0.0545 0.0760 0.1097 | 0.1468 0.1661 0.1838 0.2056
12 0.0151 0.0447 0.0706 0.1030 | 0.1489 0.1697 0.1875 0.2049
13 0.0043 0.0354 0.0640 0.0927 | 0.1502 0.1719 0.1891 0.2072
14 -0.0046 0.0274 0.0612 0.0882 | 0.1527 0.1720 0.1857 0.2073
15 -0.0190 0.0182 0.0505 0.0813 | 0.1492 0.1716 0.1871 0.2091

cases are observed by RSS scheme with 10 samples and r replication.

*n =10r



Stokes (1980) proposed the sample variance as an estimator of the population variance as follows

r k
= Tkl_l > (X — i)’ (21)

i=1 j=1

Q>
N

This estimator is asymptotically unbiased and asymptotically more efficient than the sample vari-
ance in SRS. MacEachern et al. (2002) proposed an unbiased estimator of the variance as follows

5 = - (k ~ MST + (rk —  + 1)MSE, (22)
T
where )
2
MST = 7= YD X - - Z Z il ~ (23)
g
MSE = —— r—1 ZZ (Xpi — X;50)° (24)
and

(L = ZZX[J]l/Tk (26)

If we use our entropy estimator for estimation of Kullback-Leibler distance between an unknown
pdf and the pdf of the normal distribution, we derive

1 n
Kopn = log( 27TU2 % Z (

i=1

)2 - H?,. (27)

In goodness of fit test of normality when p and o are unknown we can place their estimators in
the RSS scheme, i.e. (i in ([26) and the Stokes estimator, [21]) to derive the test statistic as

KL}, =log(V2r52) +0.5— H2,,. (28)

If we place the MacEachern et al. estimator of variance in ([27]), we derive another test statistic as

1 n i — AN 2
KL% =log(V2r52) + o > (%) —H2,,. (29)
=1

Table Ml contains critical values of exponentiality and normality tests for different values of n,
m and a.

Table Bl propose a comparison of powers in RSS and SRS schemes, for exponentiality and
normality tests. The SRS values of powers are given from Park. S. and D. with the modified
sample entropy of Ebrahimi et al. and their modified estimators of moments. We used the similar
window size m for the comparison although our maximum powers may be obtained for different



Table 5: Power comparison of 0.05 tests against some alternatives in SRS and RSS schemes

Exponentiality
n
20* 50*
(m = 4) (m = 6)
Alternatives SRS RSS SRS RSS
Gamma (1.5) 0.2176 0.2740 0.3480 0.4193
Lognormal (1)  0.2685 0.1908 0.6613 0.4156
Weibull (1.5) 0.4639 0.6199 0.7752 0.9056
Gamma (2) 0.4862 0.6218 0.8281 0.9050
Gamma (3) 0.8816 0.9693 0.9993 0.9999
Uniform 0.8021 0.9979 0.9989 1.0000
Weibull (2) 0.9138 0.9896 0.9995 1.0000
Lognormal (0.5) 0.9967 0.9994 1.0000 1.0000
Average power  0.6288 0.7078 0.8263 0.8307
Normality
n

20* 50*

(m = 3) (m = 4)

Alternatives SRS RSS SRS RSS
KL%, KLY, KL%, KL.,
t(5) 0.1069 0.0847 0.0865 0.2395 0.1515 0.1497
t(3) 0.1989 0.1761 0.1748 0.5132 0.4009 0.3868
Uniform 0.3851 0.4801 0.4897 0.8850 0.9843 0.9800
X3 0.5058 0.5704 0.5739 0.9326 0.9709 0.9710
X3 (Exponential) 0.8656 0.9574  0.9650 0.9997 1.0000 1.0000
3 0.9934 0.9999 0.9999 1.0000 1.0000 1.0000
Average power  0.5093 0.5448 0.5483 0.5713 0.7513 0.7479

*n = 10r cases are observed by RSS scheme with 10 samples and r replication.
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Table 6: Maximum powers (maximal m) of 0.05 tests against some alternatives of the null hypothesis
distributions

Exponentiality
n
10 20%* 30* 40* 50%*
Alternatives

Gamma (1.5) 0.5760(5) 0.3761(8) 0.4126(12) 0.4371(14) 0.4569(7)

Lognormal (1)  0.1333(2) 0.2140(3) 0.3133(3) 0.4143(4) 0.5174(3)

Weibull (1.5) 0.5999(5) 0.7600(8) 0.8365(15) 0.8725(8) 0.9099(7)

Gamma (2) 0.5638(4) 0.7216(8) 0.7939(7) 0.8570(8) 0.9153(7)
Gamma (3) 0.9023(5) 0.9745(5) 0.9956(5) 0.9997(5) 1.0000(3-5)
Uniform 0.9201(5) 1.0000(8,10) 1.0000(3-15) 1.0000(2-20) 1.0000(2-25)
Weibull (2) 0.9659(5) 0.9963(8) 0.9998(8,12) 1.0000(4-12) 1.0000(3-12)
Lognormal (0.5) 0.9815(4) 0.9995(3) 1.0000(2-6) 1.0000(2-9)  1.0000(2-12)

Normality
n
10 20* 30* 40* 50*
Alternatives

t(5) 0.0813(4)  0.0865(3) 0.1133(3) 0.1427(2) 0.1615(2)

t(3) 0.1335(4)  0.1846(2) 0.2820(2) 0.3514(3) 0.4260(3)
Uniform 0.1523(2) 0.5805(10) 0.9036(11) 0.9875(16)  0.9992(16,20)

X3 0.3462(4)  0.6164(4) 0.8305(6) 0.9334(6) 0.9781(5)
2 (Exponential)  0.6926(4)  0.9670(4) 0.9992(4) 1.0000(3-8)  1.0000(1-14)
3 0.9492(3)  0.9999(3-5) 1.0000(1-12) 1.0000(1-17)  1.0000(1-22)

*n = 10r cases are observed by RSS scheme with 10 samples and r replication.

values of m. For normality test two test statistics KLl ~and KL?2  are compared in the sense
of power. For n = 20, using the statistic K L2, cause less powers than KL. .. Although the
average of powers of K L2 gets larger than the average power of KLl = when n increases to 50,
but the difference between this powers is ignorable. Since obtaining the statistic K L2
complicated than KL . we prefer to use KL! = for the remaining of the study.

n 1S MOTE

Table [6] shows the maximum powers and the maximal window size, m for e = 0.05 of exponen-
tiality and normality tests. Ebrahimi et al. (1992) used such maximality to obtain some optimal
window size m for each n. Table [6] shows that here this values of optimal m differs distinctly
for different alternatives. In fact choosing an optimal m depends very closely to the alternative
which is unknown. So in this paper we use the average of powers for considered alternatives as a
measure to decide about the optimal m. The values of average powers are tabulated in Table [7
The authors believe that this values are more useful for the experimenter who wants to perform a
test, since he is not aware about the alternative. Table B shows the optimal m and the maximum
average powers for different values of n of exponentiality and normality tests.
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Table 7: Average powers a = 0.05 for different alternatives and different values of n and m

Exponentiality
nom AP nom AP nom AP nom AP nom AP
10 1 0.2905 30* 1 0.5470 40* 1 0.6156 40* 16 0.7692 50* 11 0.7997
2 0.5138 2 0.6851 2 0.7325 17 0.7643 12 0.7950
3 0.6281 3 0.7364 3 0.7786 18 0.7634 13 0.7872
4 0.6939 4  0.7564 4 0.8026 19 0.7647 14 0.7866
5 0.7009 5 0.7759 5 0.8067 20 0.7551 15 0.7836
20% 1 0.4477 6 0.7640 6 0.8056 50* 1 0.6509 16 0.7802
2 0.6245 7 0.7685 7 0.7972 2 0.7628 17 0.7772
3 0.6845 8 0.7630 8 0.7970 3 0.8207 18  0.7749
4 0.7078 9 0.7447 9 0.7872 4 0.8334 19 0.7755
5 0.7277 10 0.7634 10 0.7838 5 0.8392 20 0.7725
6 0.7342 11 0.7598 11 0.7786 6 0.8307 21 0.7696
7 0.7382 12 0.7591 12 0.7732 7 0.8308 22 0.7672
8  0.7406 13 0.7553 13 0.7766 8 0.8184 23 0.7722
9 0.7321 14 0.7521 14 0.7732 9 0.8142 24 0.7709
10 0.7259 15  0.7504 15 0.7662 10 0.8042 25 0.7660
Normality
nom AP nom AP nom AP nom AP nom AP
10 1 02765 30* 1 0.5229 40* 1 0.5776 40* 16 0.6098 50* 11 0.6746
2 0.3470 2 0.6154 2 0.6811 17 0.5960 12 0.6702
3 0.3622 3 0.6547 3  0.7130 18 0.5808 13 0.6647
4 0.3876 4  0.6628 4 0.7173 19  0.5702 14 0.6583
5 0.3520 5 0.6559 5 0.7072 20 0.5540 15 0.6517
20% 1 0.4276 6 0.6518 6 06995 50* 1 0.6375 16 0.6457
2 0.5141 7 0.6361 7 0.6911 2 0.7269 17 0.6385
3 0.5483 8 0.6219 8 0.6786 3 0.7482 18 0.6325
4 0.5586 9 0.6226 9 0.6689 4 0.7479 19 0.6227
5 0.5418 10 0.6104 10 0.6598 5 0.7415 20 0.6160
6 0.5294 11 0.5983 11 0.6521 6 0.7283 21 0.6090
7 0.5230 12 0.5799 12 0.6425 7 0.7148 22 0.5952
8 0.5078 13 0.5631 13 0.6363 8 0.7043 23 0.5858
9 0.4891 14  0.5505 14  0.6258 9 0.6903 24 0.5713
10 0.4744 15 0.5291 15 0.6168 10 0.6827 25 0.5592

*
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n = 10r cases are observed by RSS scheme with 10 samples and r replication.



Table 8: Values of the window size m with largest average of powers against alternatives
Optimal m(max average power)

n Exponentiality Normality
10 5(0.7009) 4(0.3876)
20 8(0.7406) 4(0.5586)
30 5(0.7759) 4(0.6628)
40 5(0.8067) 4(0.7173)
50 5(0.8392) 3(0.7482)
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