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Abstract

This paper addresses the problem of inferring sparse causalnetworks modeled by multivariate auto-regressive (MAR) processes.
Conditions are derived under which the Group Lasso (gLasso)procedure consistently estimates sparse network structure. The key
condition involves a “false connection score”ψ. In particular, we show that consistent recovery is possible even when the number
of observations of the network is far less than the number of parameters describing the network, provided thatψ < 1. The false
connection score is also demonstrated to be a useful metric of recovery in non-asymptotic regimes. The conditions suggest a
modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of
causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate
the effectiveness of the approach.

I. I NTRODUCTION

The problem of inferring networks of causal relationships arises in biology, sociology, cognitive science and engineering.
Specifically, suppose that we are able to observe the dynamical behaviors ofN individual components of a system and that
some, but not necessarily all, of the components may be causally influencing each other. We will refer to such a system as a
causal network. To emphasize the network-centric viewpoint, we will use the terms node and network, instead of component
and system, respectively. Causal network inference is the process of identifying the significant causal influences by observing
the time-series at the nodes. For example, in electrocorticography (ECoG) the electrical signals in the brain are recorded directly
and a goal is to identify the direction of information flow from one brain region to another.

One common tool for modeling causal influences is the multivariate autoregressive (MAR) model [1]–[3]. MAR models
assume that the current measurement at a given node is a linear combination of the previousp measurements at allN nodes,
plus an innovation noise:

x(t) =

p∑

r=1

Arx(t− r) + u(t) (1)

where x(t) =
[
x1(t) x2(t) . . . xN (t)

]T
is a vector of signal measurements across allN nodes at timet, matrices

Ar = {ai,j(r)} contain autoregressive coefficients describing the influence of nodej on nodei at a delay ofr time samples,
andu(t) =

[
u1(t) u2(t) . . . uN(t)

]T ∼ N (0,Σ) is innovation noise. The MAR model is especially conducive to the
assessment of Granger Causality, where time seriesxj is said to Granger-causexi if knowledge of the past ofxj improves
the prediction ofxi compared to using only the past ofxi [4].

The MAR model in Eq. (1) allows for the possibility of a fully connected network in which every node causally influences
every other node. This flexibility is somewhat unrealistic and leads to practical challenges. In many networks each nodeis
directly influenced by only a small subset of other nodes. TheMAR model is overparameterized in such cases. This leads to
serious practical problems. It may be impossible to reliably infer the network from noisy, finite-length time-series because of the
large number of unknown coefficients in overparameterized models. We define the Sparse MAR Time-series (SMART) model
to have the same form as Eq. (1) but include an extra parameterSactive denoting the index pairs of non-zero causal influences
to eliminate overparameterization. For example, if nodej influences nodei, then (i, j) ∈ Sactive, otherwise(i, j) 6∈ Sactive and
ai,j(r) = 0 for all time indicesr. The SMART model for nodei is given by:

xi(t) = ui(t) +
∑

j:(i,j)∈Sactive

p∑

r=1

ai,j(r)xj(t− r) (2)

Applying Eq. (2) to each nodei = 1, 2, . . . , N in turn gives the SMART model for the whole network.
If the cardinality of the active set, denoted|Sactive|, is equal toN2, then the SMART model is equivalent to the MAR model.

We are primarily interested in networks for which|Sactive| ≤ mN , for some constantm > 1. In such cases, the main inference
challenge is reliably identifying the setSactive, since once this is done the task of estimating the SMART coefficients is a simple

This work supported in part by the NIBIB under NIH awards EB005473, EB009749 and by the AFOSR award FA9550-09-1-0140.
This work is sponsored by the department of the Air Force under contract FA8721-05-C-0002. Opinions, interpretations,conclusions and recommendations

are those of the author and are not necessarily endorsed by the United States Government.

http://arxiv.org/abs/1106.0762v1


2

and classical problem. In general, the amount of data required to reliably estimate SMART coefficients decreases as|Sactive|
decreases.

IdentifyingSactive is a subset selection problem. Simple subset selection problems can be solved using the well-known Lasso
procedure. The Lasso mixes anℓ2 norm on the residual error with anℓ1 norm penalty on the regression coefficients favoring
a solution in which most coefficients are zero [5]. However, ordinary Lasso does not capture the group structure of sparse
connections in the SMART model. The Group Lasso (gLasso) procedure was first proposed by [6] in a general setting to
promote group-structured sparsity patterns. gLasso penalties have recently been proposed for source localization inmagneto-
/electroencephalography (M/EEG) [7]–[12], as well as for identifying interaction patterns in the human brain [13] andin gene
regulatory networks [14]. In both [13] and [14] the gLasso iseffectively applied to SMART model estimation by penalizing
the sum ofℓ2 norms of the coefficients of each network link (ℓ1 norm of ℓ2 norms). We study estimation consistency of this
technique which we term the SMART gLasso or SG.

Our main contribution is a novel characterization of the special conditions needed for consistency of the SG. These conditions
are described in Section III. Existing gLasso consistency results do not apply to the temporal structure in the SMART model.
The SG consistency conditions are similar in spirit to the standard “incoherence” conditions encountered in the analysis of
Lasso and its variants [15], but are fundamentally different because of the autoregressive structure of our model. We define
the “false connection score” and show that it yields a condition for consistent estimation of the underlying SMART sparsity.
If this score is below one, then the network connectivity pattern can be recovered with high probability in the limit as the
size of the network and the number of samples tends to infinity(although the number of samples can grow much slower than
the network size). Conversely, if this score is above one, than an estimate that identifies all the correct connections will also
include at least one false positive with high probability.

We also propose a variant of the SG in Section II which does notpenalize self-connections (i.e., each node is free to
influence itself). We call this variant Self-Connected SMART gLasso (SCSG) and show that it typically results in a lower false
connection score for SMART models. We provide some example networks as well as their false connection scores for the
SMART gLasso and SCSG approaches in Sec. V. We demonstrate the effectiveness of our results by simulating a variety of
networks in Sec. VI. We also apply our results to a realistic brain network in Sec. VII by simulating the sparse connectivity
pattern observed in the macaque brain.

II. GRAPH INFERENCE WITHLASSO-TYPE PROCEDURES

In this section we introduce the Lasso, gLasso, SG, and SCSG,and discuss previous consistency results.

A. Lasso and gLasso

Tibshirani first proposed the Least Absolute Shrinkage and Selection Operator (Lasso) in 1996 to “retain the good features of
both subset selection and ridge regression” [5]. Although originally stated as anℓ1 norm constrained least squares optimization,
the Lasso can also be stated as an unconstrained mixed-norm minimization. We consider the unconstrained problem throughout:

âLasso = argmin
α

1

n
‖y −Xα‖22 + λ‖α‖1 (3)

Here it is assumed that measured lengthn vectory is the result of a sparse linear combination of columns ofX; i.e.y = Xa for
sparse vectora. The first term of (3) penalizes solutions which do not fit the measured data well, while the second term favors
solution which are sparse. Yuan and Lin [6] introduced the Group Lasso (gLasso) extension to Tibshirani’s Lasso in 2006.
While the Lasso penalizes theℓ1 norm of the coefficient vector, the gLasso divides the coefficient vector into predetermined
sub-vectors and penalizes the sum of theℓ2 norms of the sub-vectors; i.e., theℓ1 norm of ℓ2 norms:

âgLasso = argmin
α

1

n

∥∥∥∥∥∥∥
y −X



α1

...
αN




∥∥∥∥∥∥∥

2

2

+ λ

N∑

i=1

‖αi‖2 (4)

Such a penalty is beneficial when each group of coefficients isbelieved to be either all zero or all non-zero, and the solution
contains only a small number of nonzero coefficient groups, e.g., [7]–[12].

Solving the SMART model subset selection problem with the gLasso leads to the SG estimate:

âSG
i = argmin

ai

1

n
‖yi −Xai‖22 + λ

N∑

j=1

‖ai,j‖2 (5)

where we define:
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yi =
[
xi(t) xi(t− 1) . . . xi(t− n+ 1)

]T

Xi =




xi(t− 1) . . . xi(t− p)
xi(t− 2) . . . xi(t− p− 1)

...
. . .

...
xi(t− n) . . . xi(t− p− n+ 1)




X =
[
X1 X2 . . . XN

]

ai,j =
[
ai,j(1) ai,j(2) . . . ai,j(p)

]T

ai =
[
ai,1 ai,2 . . . ai,N

]T

The SCSG removes the penalty for self-connections, that is,each node’s own past values are allowed to predict its current
value without a penalty:

âSCSG
i = argmin

ai

1

n
‖yi −Xai‖22 + λ

∑

j 6=i

‖ai,j‖2 (6)

This represents the expectation of sparse connectivity between nodes.
The gLasso optimization falls into a class of well-studied convex optimization problems. Many algorithms have been proposed

for solving this sort of problem (see [16] for a description and comparison of several approaches). Greedy procedures, such as
group orthogonal matching pursuit, have been proposed as well [17]. The choice of optimization algorithm is not an important
concern in this paper; rather the main contribution of this paper is to characterize the behavior and consistency of the solution
of Eqs. (5) and (6).

B. Graphical Model Identification

Lasso-like algorithms have found application in high dimensional graphical model identification. The seminal work in this
area was done by Meinshausen and Bühlmann [18] who considerestimating the structure of sparse Gaussian graphical models
by identifying the nonzero entries of the inverse covariance matrix. They consider an undirected graph where each vertex
represents a variable and edges represent conditional dependence between two variables given all other variables. Conditionally
independent variables do not share an edge and correspond toa zero entry in the inverse covariance matrix. Identifying the edge
set, or nonzero entries in the inverse covariance matrix, isachieved by writing independent samples of one variable as asparse,
but unknown linear combination of the corresponding samples of the other variables, then using the Lasso. Meinshausen and
Bühlmann [18] show that this procedure consistently identifies the edge set even when the number of variables (vertices) grows
faster than the number of samples. Ravikumar, et al., [19] propose an alternative Lasso like approach to the same problem
by maximizing theℓ1 norm penalized log-likelihood function. In this case the first term of Eq. (3) is replaced with an inner
product and log-determinant of the covariance matrix. The graphical lasso technique solves this type of problem efficiently for
very large problems [20].

(a) SMART Model Temporal Depiction (b) SMART Model Network
Depiction

Fig. 1. Two graphical depictions of a two node, second order SMART model. (a) Explicit time dependence structure. (b) Shorthand depiction of (a)
suppressing time and self-connections.

The SMART model is a graphical model involving causal relationships and consequently, an element of time. The resulting
model is a directed graph, and each node can be represented bymultiple vertices: one for the current value, and potentially
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infinitely many for past values at that node as shown in Fig. 1(a). To ease visualization, we suppress time dependence and
illustrate causal influence with a single arrow linking one vertex per node as shown in Fig. 1(b). Here we have not shown
self-connections. Nodes which have a causal influence are termed “parent nodes” (node 2 in Fig. 1) and the nodes they influence
“child nodes” (node 1 in Fig. 1). Given that graphs representing MAR models are directed, the existing analyses by Ravikumar,
et al., [19] and Meinshausen and Bühlmann [18] are insufficient. The additional notions of causality and a temporal element
place the SMART model in the realm of graphical Granger models [14], [21].

C. Existing Lasso and gLasso Consistency Results

There are many existing results on consistency of the Lasso (e.g., [18], [22]) and extensions of these to the gLasso or closely
related problems (e.g., [17], [23]–[30]). An important concept in all these results is mutual incoherence, the maximumabsolute
inner product between two columns ofX. Mutual incoherence is extended to grouped variables by using the maximum singular
value ofXT

i Xj in place of the vector inner product. Analyzing mutual coherence in the SMART model setting is challenging
due to the strong statistical dependence between columns ofX. Both Lasso and gLasso have recently been successfully applied
to SMART networks (e.g. [13], [14], [31], [32]), but consistency was not considered. In independent work, the consistency
of first-order AR models (a special case of the general problem considered here) is investigated in [33]. We identify novel
incoherence conditions tailored specifically to the SMART model, and show how the network structure of the model affects
these conditions. Thus these incoherence conditions provide unique insight into the capabilities and limitations of SG model
identification.

III. A SYMPTOTIC CONSISTENCY OFSMART GLASSO

In this section we provide sufficient conditions for the asymptotic consistency of the SG estimate assuming the data are
generated by a SMART model. Our general approach is similar to the style of argument used in the analysis of gLasso
consistency [30] and other graph inference methods based onsparse regression [18]. An important distinction in SG is the
MAR structure of the design matrixX.

Let Si = {j ∈ {1, . . . , N} : (i, j) ∈ Sactive}, i = 1, . . . , N indicate the subset of nodes that causally influence nodei. Define
XSi

andXSC
i

to be submatrices ofX composed of the matricesXj , j ∈ Si andXj , j 6∈ Si, respectively. An oracle that
knows Si does not need to solve the subset selection problem but only aregression problem with design matrixXSi

and
parametersai,j , j ∈ Si.

Our main result makes use of a regression problem with the same design matrix. Consider a nodej with j 6∈ Si. The
optimal linear predictor ofXj given XSi

is
∑

k∈Si
XkΨj,k where theΨj,k minimize E[‖Xj −

∑
k∈Si

XkΨj,k‖2F ]. If we
stack{Ψj,k}k∈Si

to form a matrixΨj,Si
, then we can write

∑
k∈Si

XkΨj,k = XT
Si
Ψj,Si

. Using standard matrix calculus it
is not difficult to verify that

Ψj,Si
= R−1

Si,Si
E[XT

Si
Xj ]

where the covariance matrix
RSi,Si

= E[XT
Si
XSi

].

Recall the following variables:N , the number of nodes in the network;m, the maximum number of parent nodes;p, the
SMART model order; andn, the number of observations. The main result concerning theconsistency of SMART gLasso is

Theorem 1:LetCpower , Ccon, Cmin, Cmax, andCfcs be non-negative constants. Assume entries inyi and the corresponding
row of eachXj matrix come from independent realizations of the SMART model. Assume the following conditions hold:

1) Scaling: N , m, andp areO(nc), while λ is Θ(n−c) for different c > 0 with mλ2 = o(1) and p
nλ2 = o(1).

2) Signal Power:
max

i∈{1,...,N}
σ2
i = E[x2i (t)] ≤ Cpower <∞

3) Connection Strength: min(i,j)∈Sactive
‖ai,j‖2 ≥ Ccon > 0

4) Minimum Power: maxi ‖R−1
Si,Si

‖2 ≤ C−1
min <∞

5) Maximum Cross Correlation:
max

i
‖RSi,SC

i
‖2 ≤ Cmax <∞

where
RSi,SC

i
= E[XT

Si
XSC

i
]

6) False Connection Score: For all (i, j) ∈ SC
active

ψFC
j→i :=

∥∥∥∥∥
∑

k∈Si

ΨT
j,k

ai,k

‖ai,k‖2

∥∥∥∥∥
2

≤ Cfcs < 1 (7)
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Then for alln sufficiently large, the set of links identified by SG satisfiesŜ = Sactive with probability greater than1−exp(−Θ(n));
i.e., zero and nonzero links identified by SG agree with thoseof the underlying true model.

Proof: The proof is presented in Appendix A.
Note we have used the following notation:f(n) = O(g(n)) implies |f(n)| ≤ k|g(n)| for somek > 0 and largen,

f(n) = Θ(g(n)) impliesk1|g(n)| ≤ |f(n)| ≤ k2|g(n)| for some positive constantsk1 andk2 and largen, andf(n) = o(g(n))
implies |f(n)| ≤ k|g(n)| for all k > 0 and largen.

Assumption 1 specifies how network parameters grow as a function of the number of observationsn. It may be possible to
allow some or all of the constantsCpower, Ccon, Cmin, Cmax, andCfcs to depend onn, but for the purposes of this paper we
will take these to be constants. The number of nodes in the network N can grow at any polynomial rate, including both faster
or slower than the number of observationsn, or remain fixed. Assumptions 2–5 are rather mild. They are used to show that
there will be no false negatives for sufficiently smallλ. In practice, signals are often normalized to have equal power across
nodes, which automatically achieves 2, though only this weaker assumption is necessary here. The effect of normalization on
the other assumptions, particularly 6, is an interesting open question. Assumption 4 essentially says that each time sample in
the active set contains some independent information. Assumption 5 ensures that any influence due to the nodes inSi cannot
be easily generated using nodes inSc

i instead.
Assumption 6 is the most restrictive and most informative. In the proof of the theorem, Assumption 6 is used to show that

the probability of declaring a nonzero connection when noneexists (i.e. a false connection or false alarm) goes to zero for large
n. In order to understand the implications of the assumption,we point out a more restrictive, but less complicated alternative:∑

k∈Si
‖Ψj,k‖2 ≤ Cfcs < 1. If this inequality holds, Assumption 6 follows from simplenorm bounds. The inequality also

suggests the following interpretation of Assumption 6. Nodes that do not directly drive the node of interest (i.e., nodes in SC
i )

cannot be easily predicted from nodes that are directly driving the node of interest. In Section V we provide example networks
that do and do not satisfy Assumption 6 to gain insight into the nature of which networks can be recovered. We show next
that Assumption 6 is necessary for a large class of networks,including those of fixed size.

Theorem 2:Suppose Assumptions 2–5 of Theorem 1 hold, butψFC
j→i ≥ 1 + c for some pair(i, j) and constantc > 0.

Suppose also thatm2p < n for largen. Then with probability exceeding1− exp (−Θ(n)), the connections recovered by SG
will not be the true connections.

Proof: A proof is given in Appendix B.
Theorem 2 suggests that the false connection score is extremely important in sparse network recovery, especially in finite

parameter networks, which are discussed below in Sec. IV-A.
The SCSG (6) assumes that each node is driven by its own past. The conditions of Theorem 1, with minor modification,

still govern the ability to recover the correct connectivity pattern using SCSG:
Corollary 1: Suppose Assumptions 1–5 of Theorem 1 hold for alll. In place of Assumption 6, assume:

ψ̃FC
j→i =

∥∥∥∥∥∥

∑

k∈Si,k 6=i

ΨT
j,k

ai,k

‖ai,k‖2

∥∥∥∥∥∥
2

≤ Cfcs < 1. (8)

Then with probability exceeding1− exp (−Θ(n)), the connections recovered by SCSG (6) will be the true connections.
Proof: See Appendix C.

As we will show in the next section,̃ψFC
j→i is typically lower thanψFC

j→i, though cancellation between the self-connection
term and other terms in the sum of (7) is possible.

IV. N ETWORK RECOVERY

In Section III we established conditions which guarantee high probability recovery of SMART networks asymptotically,
allowing the network size to grow faster than the number of samples. Next we explore the differences between the asymptotic
setting and finite sample regimes.

A. Recovery of Finite Parameter Networks

In practice, the network parameters are typically fixed, andwe are interested in performance as the number of measurements
n grows. The results of Theorems 1 and 2 still apply. In the finite network case,m, p, andN are fixed, so(m2p)/n tends to
zero and Assumption 1 is satisfied as long asλ2 = O(n−c) with 0 < c < 1. Also, Assumptions 2–5 are automatically satisfied
as long as there is driving noise in each node. Assumption 6 isthe only one that does not necessarily hold. This implies the
following corollary, which follows immediately from the proof of Theorem 1.

Corollary 2: For a SMART model with fixed parameters, (5) will recover the correct network structure with probability
greater than1− exp (−Θ(n)) if ψFC

j→i < 1 for all pairs(i, j) ∈ SC
active. If ψFC

j→i > 1 for some(i, j) ∈ SC
active, then (5) will fail to

recover the correct structure with probability exceeding1− exp (−Θ(n)). The same result holds for (6) using̃ψFC
j→i.
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B. Recovery of Known Networks

Given Corollary 2 it is easy to check whether a given SMART model structure can be recovered via (5) or (6). Define
Γ(τ) = E[x(t)xT (t − τ)], and recallΣ is the driving noiseu(t) covariance matrix. If we define the collection of MAR
coefficientsA andΣ̃ as:

A =

[
A1 A2 . . . Ap

IN(p−1) 0N(p−1),N

]
,

Σ̃ =

[
Σ 0(p−1)N

0(p−1)N 0(p−1)N

]
,

thenΓ(τ) can be calculated via (see e.g. [4])

Γ = AΓAT + Σ̃ (9)

where

Γ =




Γ(0) Γ(1) . . . Γ(p− 1)
Γ(−1) Γ(0) . . . Γ(p− 2)

...
...

. . .
...

Γ(1− p) Γ(2− p) . . . Γ(0)


 .

Using properties of Kronecker products, (9) can be solved inclosed form:

vec (Γ) = (I−A⊗A)−1vec
(
Σ̃
)
. (10)

Given this closed form expression forΓ, matricesRSi,Si
andRSi,SC

i
are formed for each nodei by selecting the appropriate

entries from covariance matrixΓ and subsequently used to calculateΨj,Si
. GivenΨj,Si

andai,k for all k ∈ Si, ψFC
j→i or ψ̃FC

j→i

can be calculated and compared to one via Eq. (7) or (8), respectively.

C. Challenges in Realistic Networks

The theoretical basis for SMART model recovery relies on independent data samples and asymptotic probability concentration
arguments. We now consider consequences of more realistic data sets.

Our analysis focuses on the dependence accross columns ofX and the corresponding entry ofyi induced by the SMART
model. To prove Theorems 1 and 2, we assumed each row ofX and the corresponding entry ofyi to be independent from
other rows. This is not true in realistic networks where eachXi is actually Toeplitz; however, rows ofX andyi decorrelate
as the time lag between them grows (E[x(t)xT (t − τ)] ≈ 0). The simulations in Secs. VI and VII use correlated rows and
reveal that the false alarm score has a more significant impact on performance than the row dependence. The effect of row
dependence has been consider in the special case of first order (p = 1) AR models in [33], which yields a lower bound on the
required number of observations.

An additional challenge – and motivation for group sparse approaches – is the limited number of data samples available.
Specific connectivity patterns in a SMART model of a real network may change over time, which limits the number of samples
for which the network is approximately stationary. Analysis of the performance of (5) or (6) is difficult for limited datacases
(finite n); however, the asymptotic theory and the simulations presented in Section VI suggest that whenψFC

j→i is small,
connectivity estimation is easier. Also, weak connections(for which ‖ai,j‖2 is small) are more difficult to recover with limited
data. For small enoughλ and large enoughn, all connections will probably be recovered. Whenn is limited, the probability
of recovering all connections, particularly weak ones, is decreased.

Although Theorem 1 indicates howλ should scale withn, selectingλ for non-asymptotic regimes can be difficult. As seen
in Section VI,λ balances missed connections (Type II errors) with false positives (Type I errors). Ideally, one would select
λ to achieve a specified famlywise error rate or false discovery rate; however, calculating p-values of each connection for a
givenλ is an open problem.

Due to the difficulty of selecting an appropriate regularization parameter, it can be beneficial to consider the family of
solutions achieved by varyingλ. The expectation-maximization (EM) algorithm described in [12] efficiently solves the SG or,
with slight modification, SCSG problem over a range ofλ, successively adding connections asλ decreases. In that work, a
heuristic is used to select a singleλ from the family of possible solutions [12]. In Sec. VI we use tenfold cross-validation
to select theλ which performs best on held out data. Another possibility isto apply a Wald test for Granger-causality [4]
successively to the last connection which enters the model and stop when a connection passes the test. A recently proposed
stability selection technique combines lasso and randomized subsampling to provide subset selection with false discovery rate
bounds [34]. This technique could potentially be applied tothe SMART model at the expense of additional computation.
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D. Normalization

Measurements from each node are often normalized to have equal power [18], [35]. We can account for normalization in any
SMART model as follows. Equal power in all channels means thediagonal ofΓ consists of all ones. Thus we can transform
Γ to a normalized model using a diagonal matrixD−1/2 to obtainΓ̃ = D− 1

2ΓD− 1

2 . Eq. (9) implies:

Γ̃ = D− 1

2AD
1

2

(
D− 1

2ΓD− 1

2

)
D

1

2ATD− 1

2

+D− 1

2 Σ̃D− 1

2

= ÃΓ̃ÃT + Σ̃∗

where:

D =




D1 0 . . . 0

0 D2 . . . 0
...

...
. . .

...
0 0 . . . DN




HereDi = σ2
i Ip whereσ2

i is the power in each node before normalization.
The effect of normalization on the ability of group sparse approaches to recover network structures is complicated. We have

found that normalization tends to decreaseψmax = max(i,j)∈SC
active

ψj→i, indicating an improvement in asymptotic recoverability
(for fixedm, p, andN at least). On the other hand, normalization clearly alters connection strength, meaning some connections
may be weakened due to normalization and difficult to recoverin the finite sample case.

V. EXAMPLE MAR NETWORKS

The false connection scoresψFC
j→i and ψ̃FC

j→i are the key quantities that determine whether SG or SCSG willrecover the
connections which influence nodei. We consider four example networks in this section to develop insight on the nature of
identifiable topologies. Figure 2 depicts circular and parallel topologies constructed for this paper while Fig. 3 depicts networks
that have been studied in previous literature (see [3], [13]1). We compute the false connection scores for both the original
network and after normalization (Sec. IV-D) to determine whether the network is identifiable asn → ∞ for SG and SCSG.
The maximum false connection scores for each network are listed in Table I.

(a) Circle Network (b) Parallel Network

Fig. 2. Contrasting example MAR topologies, self-connections not shown.

Each node in the “Circle Network” shown in Fig. 2(a) is drivenby it’s own past as well as one other node forming the
topology of a large feedback loop. We chose MAR orderp = 4 and drew MAR coefficients from a normal distribution
(N (0, 0.04I)). The first realization which resulted in a stable network isselected. The maximum false connection scores for
this network areψFC

j→i = 0.47 and ψ̃FC
j→i = 0.43. Since these are less than one, the network connectivity canbe recovered (as

n→ ∞) using both SG and SCSG.
The parallel network (Fig. 2(b)) connectivity structure and coefficients were selected deliberately to confound groupsparse

approaches. We chosea2→2 = [ .2 .2 .2 .2 ]T and ai→i = [ .05 .05 .05 .05 ]T for i 6= 2. All other connections shown are given
by ai→j = [ .15 .15 .15 .15 ]T . This network highlights several important aspects of SCSG, so we explore it in some detail. The
false connection scores for this network are summarized in Table II.

1In [13] the direction of causal influence is unclear. The network structure is described by a matrix of ones and zeros, but it is unclear whether a one in
the (i, j)th position represents a connection fromi to j or vice versa. We show one possibility here and note that the other possible network (not shown)
has similar properties.
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(a) Winterhalder Network (b) Haufe Network

Fig. 3. MAR network topologies from existing literature.

TABLE I
MAXIMUM FALSE CONNECTION SCORES.

Network Original Normalized

ψFC
max ψ̃FC

max ψFC
max ψ̃FC

max

Circle 0.47 0.43 0.47 0.43
Parallel 1.93 1.06 1.04 1.03

Winterhalder 0.46 0.29 0.24 0.15
Haufe 0.83 0.56 0.71 0.57

No matter which approach is used, a false connection from node 2 to node1 will be established with high probability as
n→ ∞. This is due to the fact that there are four parallel paths connecting node2 to node1. Since node2 has such a strong
combined influence on node1, group sparse approaches are likely to identify a direct link. False connections from node1
to nodes3–6 are also likely for largen when SG is used. On the other hand, the probability of linking1 to 3–6 goes to
zero asn increases if SCSG is used. This illustrates an important characteristic of SCSG: the asymptotic likelihood of false
connections from a child to a parent tends to be reduced when self-connections are not penalized. Proving this is always true
seems difficult, but we provide some rationale. The difference betweenψFC

j→i and ψ̃FC
j→i is the termΨT

j,i
ai,i

‖ai,i‖2

, whose norm
lies between the singular values of the square matrixΨj,i. While it is difficult to verify that vectorai,i lines up with a strong
left singular vector ofΨj,i, we can expect thatΨj,i will be “large” relative to otherΨj,k since there is a connection fromi
to j.

The false connection score from node1 to node2 in Fig. 2(b) highlights another important (and related) feature of SCSG.
The probability of falsely identifying connections to any node i which is only influenced by its own past goes to zero asn
goes to∞ sinceψ̃FC

j→i is always zero.
The parallel network example also indicates that additional, unconnected nodes (i.e., node7) do not change the false

TABLE II
FALSE CONNECTION SCORES FORPARALLEL NETWORK.

Connection Original Normalized

ψFC
i→j ψ̃FC

i→j ψFC
i→j ψ̃FC

i→j

1 → 2 1.41 0 0.74 0
2 → 1 1.06 1.06 1.04 1.03
1 → 3

1.93 0.71 1.00 0.371 → 4
1 → 5
1 → 6
3 → 2

0.61 0 0.63 04 → 2
5 → 2
6 → 2
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connection scores of connected nodes. The chance of a false connection will increase in the finiten case, but asymptotically
such additional nodes do not matter since, asn grows, the estimated correlation between two unconnected nodes will go to
zero.

The network in Fig. 3(a) (see [3]) is not only group sparse, but sparse as well; every connection but one (self-connection
of node4) consists of only one coefficient at one time lag, as shown by:

x1(t) = 0.8x1(t− 1) + 0.65x2(t− 4) + u1(t)

x2(t) = 0.6x2(t− 1) + 0.6x4(t− 5) + u2(t)

x3(t) = 0.5x3(t− 3)− 0.6x1(t− 1) + 0.4x2(t− 4)

+u3(t)

x4(t) = 1.2x4(t− 1)− 0.7x4(t− 2) + u4(t)

As shown in Table I, this network is recoverable by either method.
The structure of the network shown in Fig. 3(b) is taken from Fig. 1 of [13]. As in [13], we draw coefficients from a

N (0, 0.04I) distribution and check for stability. This network, which includes multiple paths of influence and feedback loops,
can be recovered via both SG and SCSG with high probability asn increases.

VI. SIMULATIONS

We now simulate the circle and parallel networks depicted inFig. 2 to illustrate SG and SCSG network recovery performance
with finite n. (Simulations of the Haufe and Winterhalder networks performed similarly to the circle network and are omitted for
space.) Signals were simulated via (1) with the initial condition for each simulation determined from the steady state distribution
and with white driving noise of equal power in each node. The expectation-maximization (EM) algorithm described in [12]is
used to solve the SG and SCSG optimization problems forλ ∈ [0.05λmax, λmax], whereλmax is the minimumλ such that
âi = 0. A specificλ is selected separately for each node via tenfold cross validation using prediction error on held out data.
We assume the correct model orderp is known. Thirty realizations of each network are generatedwith n = 150 time samples.
We count the percentage of the 30 trials in which the true connections are correctly identified as well as the percentage of
trials in which nonexistent connections are incorrectly identified.

The results for SG and SCSG applied to the circle network are illustrated graphically in Fig. 4. The true connections are
identified in most of the cases for the circle network. The strength of the four connections are given by‖a2,1‖2 = 0.46,
‖a3,2‖2 = 0.30, ‖a4,3‖2 = 0.37, and‖a1,4‖2 = 0.28. The two true connections that are most often missed are the weakest
connections of the four (2 → 3 and 4 → 1). The SCSG approach identifies the connection from2 → 3 considerably more
often, however. The most common false connection with SG wasfrom node1 to node4 and occurred in only 2 of 30 trials,
while a false connection from node 4 to node 3 was identified in4 of 30 trials using SCSG. Qualitatively similar results are
obtained forn = 50 andn = 100 with the performance improving for most connections as the number of samples increases.
A noticeable improvement in ability to identify true connections results as the number of samples increases fromn = 50 to
n = 150.

(a) Circle Network (b) Circle Network

Fig. 4. Inferring the circle network using SG and SCSG with cross validation fromn = 150 time samples. Black lines and numbers illustrate true connections
and the percentage of 30 trials in which they are correctly identified. Red dotted lines and text identify the most common false connection and percentage of
occurrence over 30 trials.
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(a) Parallel Network (b) Parallel Network

Fig. 5. Inferring the parallel network using SC and SCSG withcross validation fromn = 150 time samples. Black lines and numbers illustrate true
connections and the the percentage of 30 trials in which theyare correctly identified. Red dotted lines and text identifythe most common false connection
and percentage of occurrence over 30 trials.

As predicted by the theoretical arguments of Sec. IV-A, the SG approach does not perform as well on the parallel network
(Fig. 5). In particular, the true connections from nodes 3, 4, 5, and 6 to node 1 are never identified, the true connections from
node 2 to nodes 3, 4, 5, and 6 are identified about half of the time, and the connection from node 1 to 6 is incorrectly identified
in all cases. The next most common false connections (not shown in Fig. 5) are from node1 to nodes3–5 with probabilities of
93%, 83%, and 87%, respectively. These four false connections (from node1 to its parents) have the highest false connection
score (ψFC

1→j = 1.93, j = 3, 4, 5, 6) for this scenario, according to Table II. The false connection from node1 to node2 is
the next most common, occurring in 80% of the trials. The false connection score for this link is 1.41. Notice these five most
common false connections reverse the true direction of causal influence.

The SCSG approach performs considerably better for the parallel network, consistent with the improvement in the false
connection scores given in Table II. The connections from node 2 to nodes3–6 are almost always discovered, although the
true connections from nodes3–6 to node1 are missed more frequently. However, SCSG identifies a connection directly from
node2 to node1 in 70% of the trials. A possible explanation for this error isthat a single connection from node2 to node1
is a sparser solution than connecting nodes3–6 to node1 and accounts for much of the variance at node1. The connection
from node2 to node1 has the highest false connection score (see Table II).

When using SG on the parallel network, none of the true connections to node1 are identified. While these connections might
be recovered by allowing a greater range ofλ in the cross validation selection procedure, their absencereveals a downside to
penalizing self-connections. Asλ is decreased belowλ∗, the first connection identified is the self-connection. When SCSG is
used, self-connections are always present, so decreasingλ belowλ∗ activates a connection from a different node. In a sense,
the SCSG approach has a “head start” in detecting connections.

Simulations withn = 50 and n = 100 time samples (not shown) reveal that the ability of SCSG to recover the true
connections improves as the number of samples increases. However, the number of trials in which false connections were
made between nodes1 and2 (both directions) also increases as the number of samples increases. This behavior is consistent
with the asymptotic result of Cor. 2 which indicates that theprobability of identifying the wrong network goes to one as the
number of samples increases.

VII. M ACAQUE BRAIN SIMULATION

Lasso-type procedures have recently been applied to MAR model estimation of brain activity [13], [31], [36], [37]. In
this section we simulate electrocorticogram (ECoG) recordings with a SMART model using a realistic network topology
obtained from tract-tracing studies of a macaque brain [38], [39]. A matrix representing connectivity in the macaque brain –
the “macaque71” data set, consisting of 71 nodes and 746 connections – is shown in Fig. 6(a). Each node is an area of the
cortex. A connection between areas exists if neuronal axonsphysically connect respective areas. Figure 6(a) suggestsa sparse
connectivity structure in the macaque. Including self-connections, there are an average of 11.5 out of 71 possible parents for
each node.

We simulate two networks based on this physical connectivity structure. First we assume that every physical connection
in the macaque71 data set is actively conveying information. It is unrealistic to model every physical connection as active at
a given time, so we also simulate a model in which up to ten randomly selected parents (including the self-connection) are
active for each node. For simulation purposes, we choose a model order of six and draw coefficients for nonzero entries of the
Ai matrices independently from aN (0, 0.04I) distribution for the full model and aN (0, 0.16I) model for the subset model.
The first realization for each model that results in a stable network is used.
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(a) Full Network (b) Subset Network

Fig. 6. Connectivity matrices of the simulated macaque brain networks: (a) all physical connections are active and (b) up to ten parent nodes are active. A
connection from nodei to nodej exists if the entry in theith row andjth column is black.

Given these stable SMART models based on physical connections in the macaque brain, we generate time series using Eq. 1
with initial conditionsxi(0) = 0 and driving noiseui(t) distributed i.i.d.N (0, 1) over all channels and all time samples. The
data are normalized, as described in Sec. IV-D using the estimated power at each node.

Normalization reduces the worst case SCSG false connectionscore of the full network from 1.73 to 1.25. Hence the SCSG
estimate will be inconsistent as the number of samples increases. Note however, that SCSG can still consistently recover the
parents of nodesi for which ψFC

j→i < 1 for all j ∈ SC
i . In this example, only four nodesi haveψFC

j→i > 1, meaning that the
parents of 67 of the nodes can be recovered accurately. Interestingly the neighborhoods of the four nodes which violate the
false connection score condition exhibit a topology very similar to the parallel network described in Sec. V. Each of these four
nodes has many parent nodes which provide an indirect link tothe same “grandparent” node. If only some of these paths are
active at a given time, the network may be recoverable. This is indeed the case in the subset model where the false connection
score is reduced from 4.07 to 0.54 by normalization.

We illustrate the performance of several network estimation techniques in Fig. 7 using receiver operating characteristic
(ROC) curves. We simulate the SCSG approach, the standard Lasso which promotes sparse coefficients as opposed to sparse
connections (see Sec. V), least squares estimation (Yule-Walker equations forn > pN ), ridge regression, and an approach for
estimating sparse non-causal networks described in [18] which we call the Meinshausen and Bühlmann (M&B) approach. The
poor performance of the M&B approach illustrates that it is not appropriate for causal network inference2. The performance
of the SG technique is similar to that of the SCSG for these networks, so we do not include it here.

Using ROC curves to evaluate performance removes the difficult task of selecting regularization parameters (which relate,
sometimes directly, to significance level) for different techniques. The ROC curve is obtained for the SCSG, Lasso, and M&B
approaches by varying the penalty weightλ (using the same solver with group size of one when necessary). A detection
occurs when a nonzero estimateâi,j coincides with a true connection from nodej to nodei, while a miss occurs when
âi,j = 0 despite a true connection fromj to i. False postives and true negatives are similarly defined. For least squares
and ridge regression approaches, we use the simultaneous inference method proposed in [13] which makes use of adjusted
p-values [40]; however, we threshold the normalized test statistics directly (rather than the p-values) to produce ROCcurves
in order to avoid compuationally intensive Monte Carlo sampling of multivariate integrals. This yields the same curve due
to the monotonic ralationship between test statistic and associated p-value. Since SCSG has additional knowledge thatall
self-connections are non-zero, we do not include self-connections when calculating ROC curves for any method. The ROC is
defined as the percentage of true connections detected versus the percentage of false positive connections.

We simulate bothn = 300 and n = 900 time samples from all 71 nodes. In the first case we have fewer samples
(300 × 71 = 21300) than coefficients (6 × 712 = 30246), so enforcing a sparse solution is essential. This is clearly seen in
Figs. 7(a) and 7(c) where SCSG and Lasso clearly outperform the other methods. In fact, least squares, ridge regression,and
the Meinshausen and Bühlmann approach perform similarly to coin flipping. The SCSG performs better than the Lasso because
the group assumption of the gLasso better matches the true model. In the second case withn = 900 time samples for each
node, we have a few more than two samples for every coefficient. The results are shown in Figs. 7(b) and 7(d). Both SCSG

2Readers familiar with [18] will observe that the M&B technique is not meant to recover nonzero connections as defined here, but rather nonzero entries in
the inverse covariance matrix. We point out that although the MAR networks presented here are sparse in the number of parent nodes, the inverse covariance
matrices are not sparse.
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(a) Full Network,T = 300
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(b) Full Network,T = 900
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(c) Subset Network,T = 300
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(d) Subset Network,T = 900

Fig. 7. Fraction of connections identified vs. fraction of zero valuedai,j misidentified as nonzero (ROC curve) in simulated macaque brain networks. Top
row: all physical connections active. Bottom row: subset ofconnections active.

and Lasso perform better with more samples, as expected. Theother methods still perform similarly to coin flipping. In the
case of least squares and ridge regression, there are still too few samples to reliably estimate the covariance matrices.

VIII. C ONCLUSION

We have analyzed application of the Group Lasso to the SMART model and proposed a modified gLasso for SMART model
estimation. The gLasso groups together allp coefficients which comprise a connection from one node to another and penalizes
the sum of theℓ2 norm of these coefficient groups. Such an approach tends to yield estimated networks with only a few
nonzero connections. Our proposed SCSG removes the penaltyfor self-connections so that a node’s own past is always used
to predict its next state. We have shown that both the SG and SCSG approaches are capable of recovering the true network
structure under certain conditions, the most crucial of which we term the false connection score,ψmax. MAR networks are
identifiable whenψmax < 1, but not whenψmax > 1. To our knowledge, this is the first attempt to quantify the characteristics
of MAR networks that result in gLasso based recovery.

The false connection score condition (and to some degree Assumption 4) implies that the network under study must be not
only sparse, but also have the property that each node in the network is independent enough from other nodes (thenΨi,j will be
small). Clearly, a network with only self-connections satisfies this condition, but these are not very interesting or realistic. On
the other hand, small world networks [41] have the type of structure that seems likely to meet the false connection condition
(again depending on the connection coefficients). In small world networks, each node is connected to most of its nearest
neighbors, but also has a few long range connections (short path lengths). It has been shown that such networks efficiently
transmit information to all nodes [41], [42] and suggested that the brain may have a small-world network structure. In fact,
the structural connectivity pattern of the macaque brain used for simulations in Sec. VI represents a small-world network [39],
[43]. Small-world networks have sparse structure, though each node may have a somewhat large number of local connections.

The false connection score indicates whether a false positive connection is likely to occur. False negatives or missed
connections are also of concern. Our analysis shows that, for fixed parameter networks (m, p, andN constant), the penalty
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weight λ can be set small enough that false negatives are improbable.The false connection score determines whether this
small λ will avoid false positives. Our experience suggests that misses are more likely to occur for weak connections. Our
examples indicate that the SCSG approach is effective at recovering network structure and that the false connection score is
a an informative indicator of recovery performance for evenrelatively small sample sizesn. Finally, note that the result of
Theorems 1 and 2 apply to any gLasso application which satisfy the assumptions. In a generic application the false connection
score may be interpreted as a statistical property of theX matrix.

APPENDIX A
PROOF OF ASYMPTOTIC CONSISTENCY

To prove Theorem 1, we consider applying gLasso (5) to a single node (without loss of generality, node1), and use the
union bound to achieve the desired result. We restate Assumption 1 in terms of positive constantsc1 – c4 to facilitate the proof:
number of nodesN = O(nc1), maximum number of parent nodesm = O(nc2), model orderp = O(nc3), and regularization
parameterλ = Θ(n−c4/2) with c2 < c4 andc3 + c4 < 1.

KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions for a solution to (5) follow from the theory of subgradients. The subgradient
of ‖v‖2 is any vector whoseℓ2-norm is less than one forv = 0, while it is simply the gradient v

‖v‖2

whenv 6= 0. Thus the
KKT conditions are given by:

XT
i (y1 −Xâ1) =

λnâ1,i
2‖â1,i‖2

∀ i s.t. â1,i 6= 0 (11)

‖XT
i (y1 −Xâ1)‖2 ≤ λn

2
∀ i s.t. â1,i = 0. (12)

For convenience, we definêz1 = [ ẑT1,1 ... ẑT
1,N ]T with ẑ1,i =

2
λnX

T
i (y1 −Xâ1). The vector̂z1 restricted to the active set is

denoted̂zS1
. We assume without loss of generality thatS1 = {1, 2, . . . ,m}.

Limiting False Negatives

We start with conditions assuring that all nonzero coefficients are estimated as nonzero. To do so, we follow the arguments
used by [28]. We consider the “oracle” solution; e.g., we consider the solution to the group sparse penalized estimator if the
active set were known:

â∗1(λ) = arg min
α:α

SC
1

=0

1

n
‖y1 −Xα1‖2 +

λ

2

N∑

i=1

‖α1,i‖2

= argmin
αS1

1

n

∥∥∥∥y1 −
[
XS1

XSC
1

] [αS1

0

]∥∥∥∥
2

(13)

+
λ

2

∑

i∈S1

‖α1,i‖2.

(14)

We must ensure that all coefficient subvectors inS1 are nonzero in the oracle estimateâ∗1. Since all subvectorŝa∗1,i of â∗1 will
be zero for large enoughλ, this means we must make sure thatλ is not too big.

All nonzero blocks must satisfy (11), so we consider:

λn

2
ẑS1

= XT
S1
(y −Xâ∗)

= XT
S1
(XS1

aS1
+ u1 −XS1

â∗S1
)

= (XT
S1
XS1

(aS1
− â∗S1

) +XT
S1
u1 (15)

from which we obtain:

â∗S1
= aS1

− λn

2
(XT

S1
XS1

)−1ẑS1
+ (XT

S1
XS1

)−1XT
S1
u1 (16)

where the invertibility ofXT
S1
XS1

is assured for largen sincen grows faster thanmp by Assumption 1. At this point the
following notation is convenient. Let̂GS1

= n(XT
S1
XS1

)−1, with columns partitioned aŝGS1
= [ ĜS1,1

... ĜS1,m ], where each
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sub-matrix ismp x p. Sincen−1XT
S1
XS1

is an empirical covariance matrix (maximum likelihood estimate ofRS1,S1
), we

denote the true inverse covariance matrix of signals from the active set byGS1
= R−1

S1,S1
= [GS1,1

... GS1,m ].

To show that each subvectorâ∗1,i 6= 0 for i ∈ S1 in the limit, it suffices to show that‖ĜT
S1,i

(λ2 ẑS1
− 1

nX
T
S1
u1)‖2 < Ccon ≤

‖aS1,i
‖2. Applying the triangle inequality, we instead show that‖ĜT

S1
(λ2 ẑS1

− 1
nX

T
S1
u1)‖2 < Ccon with the following lemma.

Lemma 1:Given Assumptions 1–5,‖ĜT
S1
(λ2 ẑS1

− 1
nX

T
S1
u1)‖2 = O(max (n

c2−c4
2 , nc2+

c3−c4−1

2 , n− 1

2 )) with probability
exceeding1− exp (−Θ(n)).

Proof: Using ‖ĜT
S1
(λ2 ẑS1

− 1
nX

T
S1
u1)‖2 ≤ λ

2 ‖ĜT
S1
ẑS1

‖2 + 1
n‖ĜT

S1
XT

S1
u1‖2, we bound the two terms separately. First:

λ

2
‖ĜT

S1
ẑS1

‖2 ≤ λ

2
‖ĜS1

‖2‖ẑS1
‖2

≤ λ
√
m

2
‖ĜS1

‖2

≤ λ
√
m

2

(
‖GS1

‖2 + ‖ĜS1
−GS1

‖2
)

≤ λ
√
m

2

(
C−1

min + ‖GS1
‖2
∥∥∥∥∥

((
WTW

n

)−1

− I

)∥∥∥∥∥
2

)

<
λ
√
m

2

(
C−1

min +O
(√

mp

n

))

< O(n(c2−c4)/2) +O(nc2−c4/2+c3/2−1/2)

whereW ∼ N (0, I). The second inequality is simply the triangle inequality applied to ẑS1
since‖ẑ1,i‖2 = 1 for all i ∈ S1

and each node has no more thanm parents. The second to last inequality holds with probability greater than1− exp (−Θ(n))
[28]. Given the conditions on constantsc2–c4, the last line goes to zero.

Next, consider:

1

n
‖ĜT

S1
XT

S1
u1‖2 = ‖(XT

S1
XS1

)−1XT
S1
u1‖2

= ‖(X+
S1
)Tu1‖2

≤ σ2
1

n

∥∥∥ĜS1

∥∥∥
1/2

2
‖u1‖2 (17)

whereX+
S1

denotes the pseudoinverse andu1 ∼ N (0, σ2
1I) since we have assumed independent time samples. Inequality(17)

can be easily seen by considering the singular value decomposition ofXS1
. Obozinski et al. [28] provide the following bound

for the inverse sample covariance matrix:

P

(
‖ĜS1

‖2 ≤ 2C−1
min

)
≥ 1− 2 exp(−Θ(n))

and [44] provide a bound for the chi-square variate:

P

(
‖ũ1‖22 − n ≥ 2

√
nt+ 2t

)
≤ exp (−t)

which holds for anyt > 0. In particular,‖ũ1‖22 < 5n for t = n with probability exceeding1 − exp (−n). Combining these
bounds with (17) and Assumption 2 gives us:

1

n
‖ĜT

S1,i
XT

S1
u1‖2 <

Cpower√
n

√
10C−1

min = O
(

1√
n

)

with probability greater than1− 2 exp (−Θ(n)).

Since both terms of‖ĜT
S1
(λ2 ẑ1 − 1

nX
T
S1
u1)‖2 go to zero asn grows, their sum will be less thanCcon with high probability

for large n. This implies that each‖ĜT
S1,i

(λ2 ẑ1 − 1
nX

T
S1
u1)‖2, i ∈ S1 will also be less thanCcon, so for all i ∈ S1,

‖â∗1,i‖2 > ‖a1,i‖2 − Ccon ≥ 0.
We have shown that̂a∗1,i 6= 0 for eachi ∈ S1 with probability greater than1− exp (−Θ(n)). We next show that the oracle

solution is in fact the overall solution with high probability.
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Limiting False Positives

Assuming that the oracle solution from (15) has all nonzero subvectorsâ∗1,i, we must ensure that̂a∗ = [ (â∗

S1
)T 0

T ]T is a
solution to the full problem with high probability. In otherwords, we must show that2λn‖XT

j (y−Xâ∗)‖2 ≤ 1 for all j ∈ SC
1 .

To do so, we adopt a technique used in [18]. WriteXj =
∑

i∈S1
XiΨj,i +Vj , where

Ψj,S1
=



Ψj,1

...
Ψj,m


 = argminE



∥∥∥∥∥Xj −

∑

i∈S1

XiΨj,i

∥∥∥∥∥

2

F


 , (18)

andVj is a random variable representing the portion ofXj that can’t be predicted byXi, i ∈ S1. Now we have:

2

λn

∥∥XT
j (y1 −Xâ∗1)

∥∥
2

(19)

=
2

λn

∥∥∥∥∥∥

(
∑

i∈S1

XiΨj,i +Vj

)T

(y1 −Xâ∗1)

∥∥∥∥∥∥
2

=
2

λn

∥∥∥∥∥
∑

i∈S1

ΨT
j,iX

T
i (y1 −Xâ∗1) +VT

j (y1 −Xâ∗1)

∥∥∥∥∥
2

=

∥∥∥∥∥
∑

i∈Si

ΨT
j,i

â∗1,i
‖â∗1,i‖2

+
2

λn
VT

j (y1 −Xâ∗1)

∥∥∥∥∥
2

(20)

≤
∥∥∥∥∥
∑

i∈Si

ΨT
j,i

(
â∗1,i

‖â∗1,i‖2
−

a∗1,i
‖a∗1,i‖2

)∥∥∥∥∥
2

+

∥∥∥∥∥
∑

i∈S1

ΨT
j,i

a∗1,i
‖a∗1,i‖2

∥∥∥∥∥
2

+
2

λn

∥∥VT
j (y1 −Xâ∗1)

∥∥
2

(21)

where (20) follows from the KKT condition (11). The second term of (21) is less than one by Assumption 6. We bound the
remaining terms separately. In order to bound the first term,we use the following lemma:

Lemma 2:
∥∥∥ v

‖v‖ − w

‖w‖

∥∥∥ < 2‖v−w‖
‖w‖

Proof:

∥∥∥∥
v

‖v‖ − w

‖w‖

∥∥∥∥ ≤
∥∥∥∥

v

‖v‖ − v

‖w‖

∥∥∥∥+
∥∥∥∥

v

‖w‖ − w

‖w‖

∥∥∥∥

= ‖v‖
∣∣∣∣
1

‖v‖ − 1

‖w‖

∣∣∣∣+
‖v −w‖
‖w‖

≤ |(‖w‖ − ‖v‖)|
‖w‖ +

‖v −w‖
‖w‖

≤ 2‖v −w‖
‖w‖

We now bound the first term of (21):

∥∥∥∥∥
∑

i∈S1

ΨT
j,i

(
â∗1,i

‖â∗1,i‖2
− a1,i

‖a1,i‖2

)∥∥∥∥∥
2

≤ ‖Ψj,S1
‖2



∑

i∈S1

∥∥∥∥∥
â∗1,i

‖â∗1,i‖2
− a1,i

‖a1,i‖2

∥∥∥∥∥

2

2




1/2

≤ ‖Ψj,S1
‖2
(
∑

i∈S1

2
∥∥â∗1,i − a1,i

∥∥2
2

‖a1,i‖22

)1/2
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where we have applied Lemma 2. From Assumption 3 we have‖a1,i‖2 ≥ Ccon. Using this and‖Ψj,S1
‖2 = ‖R−1

S1,S1
E[XT

S1
Xj ]‖2 ≤

‖R−1
S1,S1

RS1,SC
1

‖2 ≤ CmaxC
−1
min, we have:

∥∥∥∥∥
∑

i∈S1

ΨT
j,i

(
â∗1,i

‖â∗1,i‖2
− a1,i

‖a1,i‖2

)∥∥∥∥∥
2

≤
√
2‖Ψj‖2C−1

con

(
∑

i∈S1

∥∥â∗1,i − a1,i
∥∥2
2

)1/2

≤
√
2

Cmax

CminCcon

∥∥â∗S1
− aS1

∥∥
2

= O(max (n
c2−c4

2 , nc2+
c3−c4−1

2 , n− 1

2 ))

where the last inequality follows from (16) and Lemma 1.
Finally, we show that the last term of (21) goes to zero fasterthanO(n(c3+c4−1)/2). Since they are linear combinations of

zero mean Gaussian random vectors, thep columns ofVj as well as vectory−Xâ∗ are Gaussian. Though thesep+1 vectors
will be correlated for most interesting networks, the entries in any one of these vectors are i.i.d. Gaussian with variance less
thanCpower. We establish the following lemma.

Lemma 3:Let V be ann by p random matrix andw an n dimensional random vector. For eachi = 1, 2, . . . , n, let the
ith row of V concatenated with theith entry ofw be i.i.d. Gaussian vectors with distributionN (0,C), for some covariance
matrix C whose maximum (diagonal) entry isCm. Then with probability exceeding1− p exp(−n), ‖VTw‖2 < Cm

√
5np.

Proof: The entries in any column ofV are i.i.d. Gaussian with variance less thanCm, as are the entries ofw. With this
in mind, we bound each entry ofz ≡ VTw by Cm times a chi-squared random variable withn degrees of freedom (denoted
z̃i ∼ χ2

n for i = 1, 2, . . . , p) and use the union bound:

P(‖z‖22 ≥ C2
m5np) ≤ P

(
‖z̃‖22 ≥ 5np

)

≤ pP
(
z̃21 ≥ 5n

)

≤ p exp(−n)
where we have used the same chi-squared bound as in Lemma 1. Thus with probability exceeding1−p exp(−n), ‖VTw‖2 <
Cm

√
5np.

Using Lemma 3, we have with probability exceeding1 − p exp(−n), ‖VT
j (y −Xâ∗)‖2 < Cpower

√
5np. Dividing by λn

and using Assumption 1, we have:

2

λn
‖VT

j (y −Xâ∗)‖2 <
Cpower

√
5p

λ
√
n

= O(n(c3+c4−1)/2). (22)

By (12), there will be no false positives if (21) is less than one. With high probability, the second term is less thanCfc < 1
by Assumption 6. The first and third terms go to zero with largen with high probability.

Union Bound

We have shown that (5) recovers the correct parents of node1 (setS1) with probability exceeding1 − exp (−Θ(n)). To
obtain the result for the whole network, we apply the union bound:

P

(
N⋃

i=1

Ŝi 6= Si

)
≤

N∑

i=1

P

(
Ŝi 6= Si

)

≤ N exp (−Θ(n))

≤ nc1 exp (−Θ(n))

≤ exp (c1 lnn−Θ(n))

≤ exp (−Θ(n))
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APPENDIX B
PROOF OFNECESSARYCONDITION

We must show that (5) will not recover the correct set of nonzeroa1,i when Assumptions 2–5 hold but
∥∥∥
∑

i∈S1
ΨT

j,i
a1,i

‖a1,i‖2

∥∥∥
2
>

1 + c. We do so by contradiction.
Supposeλ scales withn such that all the coefficient blocks inS1 of the oracle solution are nonzero and the probability of

false positives goes to zero asn grows. Then KKT condition (12) must hold with high probability for largen. This implies
the following bound must hold with high probability for allj ∈ SC

1 :

λ

2
≥ n−1‖XT

j (y1 −Xâ∗1)‖2

=
λ

2

∥∥∥∥∥
∑

i∈S1

ΨT
j,i

â∗1,i
‖â∗1,i‖2

+
2

λn
VT

j (y1 −Xa∗1)

∥∥∥∥∥
2

≥ λ

2

∥∥∥∥∥
∑

i∈S1

ΨT
j,i

a1,i

‖a1,i‖2

∥∥∥∥∥
2

− λ

2
‖ΨT

j w‖2

−n−1
∥∥VT

j (y1 −Xa∗1)
∥∥
2

>
λ

2
(1 + c)− λ

2

∥∥∥ΨT
j w

∥∥∥
2
− n−1

∥∥VT
j (y1 −Xa∗1)

∥∥
2

(23)

wherew = [w1...wm ]T andw1,i =
(

â
∗

1,i

‖â∗

1,i
‖ − a1,i

‖a1,i‖

)
. From Eq. (22) we haven−1

∥∥VT
j (y1 −Xa∗1)

∥∥
2
= O(

√
p/n), which

goes to zero sincep/n ≤ mp/n, which goes to zero asn goes to infinity by assumption. We have also shown that
∥∥∥ΨT

j w

∥∥∥
2

goes to zero; however, this term is now multiplied byλ
2 for some unknownλ scaling. To proceed, Eq. (23) implies:

cλ

2
<
λ

2

∥∥∥ΨT
j w

∥∥∥
2
+O(

√
p/n)

Since the second term goes to zero, this implies:

c < ‖ΨT
j w‖2 ≤ ‖Ψj‖2 ‖w‖2 ≤ Cmax

Cmin

√
mmax

i
‖wi‖2

where the last inequality follows from the definition ofΨj and the triangle inequality. This means there is at least onei ∈ S1

for which
∥∥∥ â

∗

1,i

‖â∗

1,i
‖2

− a1,i

‖a1,i‖2

∥∥∥
2
≥ cCmin√

mCmax
. Combining this with Lemma (2) implies that‖â1,i − a1,i‖2 ≥ cCmin‖a1,i‖2

2
√
mCmax

.

Now we use Assumption 3 and (16):

cCminCcon

2
√
mCmax

≤ cCmin‖a1,i‖2
2
√
mCmax

≤ ‖a1,i − â1,i‖2
=

∥∥∥∥Ĝ
T
S1,i

(
λ

2
ẑS1

− 1

n
XT

S1
u1

)∥∥∥∥
2

=

∥∥∥∥
[
Ip 0

]
ĜT

S1

(
λ

2
ẑS1

− 1

n
XT

S1
u1

)∥∥∥∥
2

≤
∥∥∥∥Ĝ

T
S1

(
λ

2
ẑS1

− 1

n
XT

S1
u1

)∥∥∥∥
2

<
λ
√
m

2

(
C−1

min +O
(√

mp

n

))

where the last inequality follows from the proof of Lemma 1. Sincemp/n goes to zero, we have the following lower bound
on λ:

λ >
cC2

minCcon

mCmax
(24)

Since â1,i 6= 0 for at least onei by assumption, KKT condition (11), repeated here for readability, must hold for at least
one i:
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XT
i (y1 −Xâ1) =

λnâ1,i
2‖â1,i‖2

∀ i s.t. â1,i 6= 0 (25)

Using Lemma 3 (withV = Xi andw = y1 −Xâ1), the norm of the left hand side of (25) is less thanCpower
√
5np with

high probability for largen. On the other hand, (24) implies that the norm of the right hand side of (25) isΩ(n/m). Given
that n grows faster thanm2p, this is a contradiction.

The scaling lawn > m2p for largen (equivalently2c2 + c3 < 1) was not required to prove asymptotic consistency. Other
proof techniques may result in matching scaling laws.

APPENDIX C
PROOF OFCOROLLARY 1

The proof is the same as that of Theorem 1 with a few minor changes. The KKT condition (11) forl = 1 becomes
XT

1 (y1 −Xâ1) = 0, which impliesẑ1,1 = 0. The results of Lemma 1 still apply withm replaced bym− 1 in the proof. In

App. A, ψFC
j→1 =

∥∥∥
∑

i∈S1
ΨT

j,i
â1,i

‖â1,i‖2

∥∥∥
2

is simply replaced with̃ψFC
j→1 =

∥∥∥
∑

i∈S1,i6=1 Ψ
T
j,i

â1,i

‖â1,i‖2

∥∥∥
2

sinceXT
1 (y1 −Xâ1) = 0

instead of λnâ1,1

2‖â1,1‖2

.
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