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Abstract

We show how to control the generalization error of time series models wherein past
values of the outcome are used to predict future values. The results are based on a
generalization of standard IID concentration inequalities to dependent data. We show
how these concentration inequalities behave under different versions of dependence to
provide some intuition for our methods.

1 Introduction

Much of the literature in machine learning focuses on studying the behavior of predictions
constructed based on a training set (X1, Y1), . . . , (Xn, Yn) where one wishes to construct
a mapping from X to Y . This training set may consist of n IID draws from a common
distribution, or it may have some dependence property such as ergodicity or mixing behavior
[8, 4, 7]. It may even be generated by an adversary intent on deceiving us about the
relationship [2, 10].

Time series data are different. We observe only a single sequence of random variables
Yn

1 = (Y1, . . . , Yn) taking values in a measurable space Y and wish to learn a function
which takes the past observations as inputs and predicts the future. Suppose, given data
from time 1 to time n, we wish to predict time n + h for some h ∈ N. Then for some loss
function ℓ : Y × Y → R

+, and some predictor g : Yn → Y, we define the prediction risk, or
generalization error, as

R(g) := E[ℓ(Yn+h, g(Y
n
1 )]. (1)

Here we assume that the data series is stationary, a notion to be defined more precisely
later. But this allows us to have some hope of controlling the generalization error defined
in (1). Absent this sort of behavior, the past and future could be unrelated.

Since the true distribution is unknown, so is R(g), but we can attempt to estimate it
based on only our observed data. In situations with predictors X and responses Y , there is
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the obvious estimator

R̃n(g) :=
1

n

n∑

i=1

ℓ(Yi, g(Xi)).

However, in this case, we may use some or all of the past to generate predictions, and
similarly, it may be that we have not observed Yi+h for some i. To ease notation for the
remainder of the paper, assume that we have observed some sequence of data Y1, . . . , Yn+j

for j ∈ N such that it is possible to evaluate the quantity ℓ(Yi+h, g(Y1, . . . , Yi)) for each
i ∈ {1, . . . , n}. For time series prediction, we define the training error as

R̂n(g) :=
1

n

n∑

i=1

ℓ(Yi+h, g(Y
i
1). (2)

Here g is some function chosen out of a class of possible functions G.
Choosing a particular prediction function ĝ as the minimizer of R̂n over G is “empirical

risk minimization” (ERM); this often gives poor results because the choice of ĝ adapts to
the training data, causing the training error to be an over-optimistic estimate of the true
risk. Additionally, training error must shrink as model complexity grows so that ERM will
tend to overfit the data and give poor out-of-sample predictions.

While R̂n(ĝ) converges toR(ĝ) for many algorithms, one can show that when ĝ minimizes
(2), E[R̂n(ĝ)] ≤ R(ĝ). There are a number of ways to mitigate this issue. The first is to
restrict the class G. The second is to change the optimization problem, penalizing model
complexity. Rather than attempting to estimate R(g), we provide bounds on it which hold
with high probability across all possible prediction functions g ∈ G. A typical result in this
literature is a confidence bound on the risk which says that with probability at least 1− δ,

R(ĝ) ≤ R̂n(ĝ) + Γ(C(G), n, δ),

where C(·) measures the complexity of the model class G, and Γ(·) is a function of the
complexity, the confidence level, and the number of observed data points.

In §2, we provide some background material necessary to characterize our results, in-
cluding some concentration inequalities for dependent data. Section 3 derives risk bounds
for time series and gives a novel proof that the standard Rademacher complexity charac-
terizes the flexibility of G. Section 4 supplies some straightforward examples showing how
dependence affects the quality of bounds. Section 5 concludes and provides some ideas
about the future of these results.

2 Time series, complexity, and concentration of measure

In this section, we introduce some of the math necessary to develop our results: stationarity
is a prerequisite for control of generalization error; Rademacher complexity measures the
flexibility of the model space G; dependence modifies concentration inequalities.

Throughout what follows, Y = {Yt}
∞
t=−∞ will be a sequence of random variables, i.e.,

each Yt is a measurable mapping from some probability space (Ω,F ,P) into a measurable
space Y. A block of the random sequence will be written Y

j
i ≡ {Yt}

j
t=i, where either limit

may go to infinity. The σ-field generated by a particular block Y
j
i will be given by F j

i .
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2.1 Time series

The dependent data setting we investigate is based on stationary time series input data.
We first remind the reader of the notion of (strict or strong) stationarity.

Definition 2.1 (Stationarity). A sequence of random variables Y is stationary when all

its finite-dimensional distributions are invariant over time: for all t and all non-negative

integers i and j, the random vectors Yt+i
t and Y

t+i+j
t+j have the same distribution.

Stationarity does not imply that the random variables Yt are independent across time
t, only that the distribution of Yt is constant over time.

2.2 Rademacher complexity

Statistical learning theory provides several ways of measuring the complexity of a class of
predictive models. The results we use rely on Rademacher complexity (see, e.g., [1]), which
measures how well the model can (seem to) fit white noise.

Definition 2.2 (Rademacher Complexity). Let Yn
1 be a time series drawn according to a

joint distribution ν. The empirical Rademacher complexity is

R̂n(G) := 2Eσ

[
sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

σig(Y
i
1)

∣∣∣∣∣ | Yn
1

]
,

where σi are a sequence of random variables, independent of each other and everything else,

and equal to +1 or −1 with equal probability. The Rademacher complexity is

Rn(G) := Eν

[
R̂n(G)

]

where the expectation is over sample paths Yn
1 generated by ν.

The term inside the supremum,
∣∣ 1
n

∑n
i=1 σig(Y

i
1)
∣∣, is the sample covariance between the

noise σ and the predictions of a particular model g. The Rademacher complexity takes the
largest value of this sample covariance over all models in the class (mimicking empirical risk
minimization), then averages over realizations of the noise.

Intuitively, Rademacher complexity measures how well our models could seem to fit
outcomes which were really just noise, giving a baseline against which to assess the risk
of over-fitting or failing to generalize. As the sample size n grows, for any given g the
sample covariance

∣∣ 1
n

∑n
i=1 σig(Y

i
1)
∣∣ → 0, by the ergodic theorem; the overall Rademacher

complexity should also shrink, though more slowly, unless the model class is so flexible that
it can fit absolutely anything, in which case one can conclude nothing about how well it
will predict in the future from the fact that it performed well in the past.

2.3 Concentration inequalities

For IID data, the main tools for developing risk bounds are the inequalities of Hoeffding [3]
and McDiarmid [6]. Instead, we will use dependent versions of each which generalize the
IID results. These inequalities are derived in van de Geer [12]. They rely on constructing
predictable bounds for random variables based on past behavior, rather than assuming a

priori knowledge of the distribution.
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Theorem 2.3 (van de Geer [12] Theorem 2.5). Consider a random sequence Yn
1 where

Li ≤ Yi ≤ Ui a.s. for all i ≥ 1,

where Li < Ui are F i−1
1 -measurable random variables, i ≥ 1. Define

C2
n =

n∑

i=1

(Ui − Li)
2,

with the convention C2
0 = 0. Then for all ǫ > 0, c > 0,

P

(
n∑

i=1

Yi ≥ ǫ and C2
n ≤ c2 for some n

)
≤ exp

{
−
2ǫ2

c2

}
.

Of course if Li and Ui are non-random, this returns the usual Hoeffding inequality. Here
however, they must only be forecastable given past values of the random sequence.

Theorem 2.4 (van de Geer [12] Theorem 2.6). Fix n ≥ 1. Let Zn be Fn
1 -measurable such

that

Li ≤ E[Zn | F i
1] ≤ Ui, a.s.

where Li < Ui are F i−1
1 -measurable. Define C2

n as above. Then for all ǫ > 0, c > 0,

P
(
Zn − E[Zn] ≥ ǫ and C2

n ≤ c2
)
≤ exp

{
−
2ǫ2

c2

}
.

To see how this generalizes McDiarmid’s inequality, we provide the following corollary.

Corollary 2.5. Let g(Y1, . . . , Yn) be some real valued function on Yn such that

∣∣∣∣E[g(Y1, . . . , Yn) | F
i
1]− E[g(Y1, . . . , Yn) | F

i−1
1 ]

∣∣∣∣ ≤ ki (3)

where ki is F i−1
1 -measurable. Then,

P

(
g(Y1, . . . , Yn)− E[g(Y1, . . . , Yn)] > ǫ and

∑

i

k2i < c2

)
< exp

{
−
2ǫ2

c2

}
.

In particular, this gives a couple of immediate consequences. Suppose that g is bounded.
Then, we have that

ki ≤ sup
Y

n

i

sup
Y

n′

i

|g(Y1, . . . , Yi−1, Yi, . . . , Yn)− g(Y1, . . . , Yi−1, Y
′
i , . . . , Y

′
n)| = bi.

This contrasts with the bounded differences inequality in the IID case, wherein one only
needs to be concerned with one point that is different. For IID data, we have starting from
(3),

ki ≤ sup
Yi,Y

′

i

|g(Y1, . . . , Yi−1, Yi, . . . , Yn)− g(Y1, . . . , Yi−1, Y
′
i , . . . , Yn)| = di,

if g satisfies bounded differences with constants di. In other words, Theorem 2.4 conflates
dependence with nice functional behavior.
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3 Risk bounds

Generalization error bounds follow from deriving high probability upper bounds on the
quantity

Qn(H) := sup
h∈H

(
R(h)− R̂n(h)

)
,

which is the worst case difference between the true risk R(h) and the empirical risk R̂n(h)
over all functions in the class of losses H = {h = ℓ(·, g(·)) : g ∈ G} defined over a particular
class of prediction functions G. In the case of time series, Qn(h) is Fn-measurable, so we
can get risk bounds from Theorem 2.4 if we can find suitable Li and Ui sequences.

Theorem 3.1. Suppose that Qn(H) satisfies the forecastable boundedness condition of The-

orem 2.4. Then,

P

(
R(h) < R̂n(h) + E[Qn(H)] + c

√
log 1/δ

2
or C2

n > c

)
≤ 1− δ.

In many cases (as in the examples below), C2
n will be deterministic, in which case, the

result above is greatly simplified. Essentially, the theorem says that as long as each new
Yi gives us additional control on the conditional expectation of Qn, we can ensure that
with high probability, our forecasts of the future will have only small losses. The proof is
straightforward: simply set the right hand side of Theorem 2.4 to δ and use DeMorgan’s
law.

Since E[Qn(H)] is a complicated and unintuitive object, we upper bound it with the
Rademacher complexity. The standard symmetrization argument for the IID case does not
work, but, for time series prediction (as opposed to the more general dependent data case
or the online learning case), Rademacher bounds are still available. We provide this result
now.

Theorem 3.2. For a time series prediction problem based on a sequence Yn
1 ,

E[Qn(H)] ≤ Rn(H). (4)

The standard way of proving this result in the IID case is through introduction of a
“ghost sample” Ỹn

1 which has the same distribution as Yn
1 . Taking empirical expectations

over the ghost sample is then the same as taking expectations with respect to the distribution
of Yn

1 . Randomly exchanging Yi with Ỹi by using Rademacher variables allows for control
of E[Qn(H)] and leads to the factor of 2 in Definition 2.2. However, in the dependent data
setting, this is not quite so easy.

For dependent data, both the ghost sample and the introduction of Rademacher variables
arise differently. A similar situation also occurs in the more complex cases of online learning
with a (perhaps constrained) adversary choosing the data sequence. It is covered in depth
in Rakhlin et al. [10, 11]. With dependent data we need a different version of the “ghost
sample” than that used in the IID case. First, we rewrite the left side of (4):

EY[Qn(H)] = EY

[
sup
h∈H

(
Rn(h)− R̂n(h)

)]

= EY

[
sup
g∈G

(
EYn+h

[ℓ(Yn+h, g(Y
n
1 ))]−

1

n

n∑

i=1

ℓ(Yi+1, g(Y
i
1))

)]
. (5)
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Figure 1: This figure displays the tree structures for Z(σ) and Z′(σ). The path along each
tree is determined by one ǫ sequence, interleaving the “past” between paths.

Here, we define zi = (Yi+h,Y
i
1) so that h(zi) = ℓ(Yi+h, g(Y

i
1)) for some g ∈ G. At this point,

following [10, 11], we introduce a “tangent sequence” Z′ rather than the ghost sample. We
construct it recursively as follows. Let,

L(Y ′
1) = L(Y1) and L(Y ′

i |Y1, . . . , Yi−1) = L(Yi|Y1, . . . , Yi−1),

where L denotes the probability law. Then, let Z = (z1, . . . , zn) and Z′ = (z′1, . . . , z
′
n).

Proof of Theorem 3.2. Starting from (5) we have

E[Qn(H)] = EZ

[
sup
h∈H

(
EZ

[
1

n

n∑

i=1

h(zi)

]
−

1

n

n∑

i=1

h(zi)

)]

= EZ

[
sup
h∈H

(
EZ′

[
1

n

n∑

i=1

h(z′i)

]
−

1

n

n∑

i=1

h(zi)

)]
. (6)

Here we have constructed Z′ as a tangent sequence to Z as discussed above. Then,

(6) ≤ EZ,Z′

[
sup
h∈H

1

n

n∑

i=1

h(z′i)− h(zi)

]
(Jensen)

= Ez1
z′1

Ez2|z1
z′
2
|z′

1

· · ·Ezn|zn−1,...,z1
z′n|z

′

n−1
,...,z′

1

[
sup
h∈H

1

n

n∑

i=1

h(z′i)− h(zi)

]
(7)

Now, due to dependence, Rademacher variables must be introduced carefully as in the
adversarial case. Rademacher variables create two tree structures, one associated to the Z

sequence, and one associated to the Z′ sequence (see [10, 11] for a thorough treatment).
We write these trees as Z(σ) and Z′(σ), where σ is a particular sequence of Rademacher
variables (e.g. (1,−1,−1, 1, . . . , 1)) which creates a path along each tree. For example,
consider σ = 1. Then, Z(σ) = (z1, . . . , zn) and Z′(σ) = (z′1, . . . , z

′
n), the “right” path of

both tree structures. For σ = −1. Then, Z(σ) = (z′1, . . . , z
′
n) and Z′(σ) = (z1, . . . , zn),

the “left” path of both tree structures. Changing ǫi from +1 to −1 exchanges zi for z′i in
both trees and chooses the left child of zi−1 and z′i−1 rather than the right child. Figure 1
displays both trees. In order to talk about the probability of zi conditional on the “past”
in the tree, we need to know the path taken so far. For this, we define a selector function

χ(σ) := χ(σ, ρ, ̺) =

{
ρ σ = 1

̺ σ = −1.

6



Distributions over these trees then become the objects of interest.
In the time series case, as opposed to the online learning scenario, the dependence

between future and past means the adversary is not free to change predictors and responses
separately. Once a branch of the tree is chosen, the distribution of future data points is
fixed, and depends only on the preceding sequence. Because of this, the joint distribution
of any path along the tree is the same as any other path, i.e. for any two paths σ,σ′

L(Z(σ)) = L(Z(σ′)) and L(Z′(σ)) = L(Z′(σ′)).

Similarly, due to the construction of the tangent sequence, we have that L(Z(σ)) = L(Z′(σ)).
This equivalence between paths allows us to introduce Rademacher variables swapping zi
for z′i as well as the ability to combine terms below:

(7) = Ez1
z′
1

Eσ1
Ez2|χ(σ1,z1,z

′

1
)

z′
2
|χ(σ1,z

′

1
,z1)

Eσ2
· · ·Ezn|χ(σn−1),...,χ(σ1)

z′n|χ(σn−1),...,χ(σ1)

Eσn

[
sup
h∈H

1

n

n∑

i=1

σi(h(z
′
i)− h(zi))

]

= EZ,Z′,σ

[
sup
h∈H

1

n

n∑

i=1

σi(h(z
′
i)− h(zi))

]

≤ EZ,σ

[
sup
h∈H

1

n

n∑

i=1

σih(zi)

]
+ EZ′,σ

[
sup
h∈H

1

n

n∑

i=1

σih(z
′
i)

]

= 2EZ,σ

[
sup
h∈H

1

n

n∑

i=1

σih(zi)

]

= Rn(H).

Good control of E[Qn(H)] through the Rademacher complexity therefore implies good
control of the generalization error. Rademacher complexity is easy to handle for wide ranges
of learning algorithms using results in [1] and elsewhere. Support vector machines, kernel
methods, and neural networks all have known Rademacher complexities. Furthermore, Lip-
schitz composition arguments in [5] allow us to deal only with the Rademacher complexity
of the function class G rather than the induced loss class H. For loss functions ℓ which are
φ-Lipschitz in their second argument, R(H) ≤ 2φR(G).

The main issue then in the application of Theorem 3.1 is the determination of the
forecastable bounds Li and Ui from the data generating process. In the next section, we
provide a few simple examples to aid intuition.

4 Examples

We consider three different examples which should aid the reader in understanding the
nature of the forecastable bounds. Here we present two extreme cases — independence and
complete dependence — as well as an intermediate case. It is important to note that C2

n is
deterministic in all three cases, though this need not be the case.

4.1 Independence

For IID data, we simply recover IID concentration results. As noted in Corollary 2.5, for
IID data, bounded differences yields good control. Similarly, Theorem 2.3 gives the same
results as Hoeffding’s inequality for IID data. Dependence is more interesting.
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4.2 Complete dependence

Let Yn
1 be generated as follows:

Y1 ∼ U(a, b), b > a Yi = Yi−1, i ≥ 2.

Consider trying to predict the mean 1
n

∑n
i=1 Yi. Then, given no observations, the almost

sure upper bound U1 = b while the lower bound L1 = a. So (U1 − L1)
2 = (b − a)2. For

i > 1, conditional on F i−1
1 (and therefore F1), Ui = Li. Thus, C2

n = (b − a)2 giving the
entirely useless result:

P

(
1

n

n∑

i=1

Yi − (b+ a)/2 ≥ ǫ

)
< exp

{
−

2ǫ2

(b− a)2

}
.

The right side is independent of n implying that we essentially observed one data point
regardless of n.

4.3 Partial dependence

Let Yn
1 be generated as follows:

Y0 = 0, Yi = θYi−1 + ηi i ≥ 2,

where θ ∈ (0, 1) and ηi
iid
∼ U(a, b) with b > a. Again, consider trying to predict the mean

1
n

∑n
i=1 Yi. We can define Li and Ui as follows:

Li =
a

n

1− θn−i

1− θ
+

1

n

i−1∑

k=1

Yk + θYi−1, Ui =
b

n

1− θn−i

1− θ
+

1

n

i−1∑

k=1

Yk + θYi−1.

From this, we have that

C2
n =

n∑

i=1

(b− a)2

n2(1− θ)2
(
1− θn−i

)2

=
(b− a)2

n2(1− θ)2(θ2 − 1)

(
θ2n − 2θn+1 − 2θn + nθ2 + 2θ − n+ 1

)

<
(b− a)2

n(1− θ)2
.

Therefore, by Theorem 2.4,

P

(
1

n

n∑

i=1

Yi − (b+ a)/2 > ǫ

)
< exp

{
−
2nǫ2(1− θ)2

(b− a)2

}
.

For comparison, if everything was IID, Hoeffding’s inequality gives

P

(
1

n

n∑

i=1

Yi − (b+ a)/2 > ǫ

)
< exp

{
−

2nǫ2

(b− a)2

}
.

Therefore, the dependence in Yn
1 reduces the effective sample size by (1 − θ)2. If θ = 1/2,

then each additional datapoint decreases the probability of a bad event by only a 1/4 relative
to the IID scenario.
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5 Discussion

In this paper, we have demonstrated how to control the generalization of time series predic-
tion algorithms. These methods use some or all of the observed past to predict future values
of the same series. In order to handle the complicated Rademacher complexity bound for
the expectation, we have followed the approach used in the online learning case pioneered
by Rakhlin et al. [10, 11], but we show that in our particular case, much of the structure
needed to deal with the adversary is unnecessary. This results in clean risk bounds which
have a form similar to the IID case.

The main issue with risk bounds for dependent data is that they rely on complete
knowledge of the dependence for application. This is certainly true in our case in that we
need to know how to choose Ui and Li such that we almost surely control E[Qn(H)]. For the
standard case of bounded loss, there are trivial bounds, but these will not give the necessary
dependence on n which would imply learnability of good predictors. More knowledge of the
dependence structure of the process is required, though this is in some sense undesirable.
However, previous results in the dependent data setting, such as those presented in [8, 4, 7,
9], also have this requirement.1 They rely on precise knowledge of the mixing behavior of the
data which is unavailable. At the same time, mixing characterizations are often unintuitive
conditions based on infinite dimensional joint distributions. Our version depends only on
the ability to forecastably bound expectations given increasing amounts of data.
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