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Abstract. We study natural selection in complete financial markets, popu-

lated by heterogeneous agents. We allow for a rich structure of heterogeneity:

Individuals may differ in their beliefs concerning the economy, information

and learning mechanism, risk aversion, impatience (time preference rate) and

degree of habits. We develop new techniques for studying long run behavior of

such economies, based on the Strassen’s functional law of iterated logarithm.

In particular, we explicitly determine an agent’s survival index and show how

the latter depends on the agent’s characteristics. We use these results to study

the long run behavior of the equilibrium interest rate and the market price of

risk.

1. Introduction

An important area of financial economics is devoted to the study of equilibrium

asset pricing. By imposing the law of supply and demand, security prices, consump-

tion rules and other economic concepts are determined in terms of the underlying

variables of the model. These primitives are the characteristics of a set of agents,

who are assumed to be investing in a financial market and aiming to maximize their

utility functions. There is a major distinction between the so-called representative-

consumer models and models with heterogeneous agents. While representative-

consumer models enjoy a transparent solution due to the assumption that there

is only one type of agents, models with heterogeneous consumers are substantially

more complicated to analyze. The reason for this is the complexity of the equilib-

rium risk sharing generated by the agents’ heterogeneity.

There is a vast literature dedicated to the study of heterogeneous equilibrium

models (see, e.g., Chan and Kogan [6], Xiouros and Zapatero [28] and the references

therein). Numerous papers have studied the long run behavior of asset prices and

risk sharing rules in such economies. See, e.g., Blume and Easley [4], Cvitanić,
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Jouini, Malamud, and Napp [5], Nishide and Rogers [22], Sandroni [24], and Yan

[29, 30]. In particular, many papers are devoted to the natural selection hypothesis,

going back to the ideas of Friedman [13]. The natural selection hypothesis can be

stated informally as ”If you are so smart, why aren’t you rich?”. Formally, natural

selection in financial markets examines agents’ long run survival1 in equilibrium

models. Intuitively, this hypothesis is based on the idea that agents with inaccurate

forecasts will eventually be eliminated from the economy.

This naturally raises interesting and important theoretical questions: Can in-

vestors with irrational beliefs survive in the long run and have a fundamental im-

pact on the economy, or would they be driven out of the economy? Would investors

with a high level of risk aversion vanish in the long run or would they dominate

the market, in a growing economy? In this paper, we provide complete answers to

these questions for a large class of models.

We study natural selection and long run behavior of asset prices in complete fi-

nancial markets, populated by heterogeneous agents. We allow for a rich structure

of heterogeneity: Individuals may differ in their beliefs concerning the economy,

information and learning mechanism, risk aversion, impatience (time preference

rate) and degree of habits. Each individual in our model is represented by a gen-

eralized version of the catching-up-with-the-Jonses power utility function of Chan

and Kogan [6]. This model of preferences is sometimes referred to in the literature

as exogenous habit-formation, since it incorporates the impact of a certain given

stochastic process on individual’s consumption policy. Agents are assumed to pos-

sess only a partial information regarding the events associated with the evolution

of the market. More specifically, the stochastic dynamics of the mean growth-rate

of the economy2 is unobservable and the agents’ information set consists of the

aggregate endowment and a publicly observable signal. The agents are rational

in the sense that they use a standard Kalman filter to update their expectations

about the economy’s growth rate. However, agents may be irrational in the way

they interpret the public signal: Some of them may be over- (or, under-)confident

about the informativeness of the public signal. We use the standard way of model-

ing over-(or, under-)confidence, originated by Dumas, Kurshev, and Uppal [10] and

Scheinkman and Xiong [25]: We assume that agents’ beliefs concerning the instan-

taneous correlation of the public signal with the economy’s growth rate may differ

from the actual value of this correlation.3 The heterogeneous filtering rules yield

highly non-trivial dynamics for the individual consumption and the equilibrium

state price density, determined by the market clearing condition. In particular,

1An agent is said to survive in the long run if the ratio of his consumption to the aggregate

consumption stays positive with positive probability as time goes to infinity.
2We assume that the mean growth rate follows an Ornstein-Uhlenbeck process.
3This is a a realistic assumption as correlations are extremely difficult to estimate empirically.
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subjective probability densities describing agents’ beliefs give rise to multiple new

state variables, governing the dynamics of the economy.

As in Yan [29], we show that an agent’s long run survival is determined by a

single number, the survival index, and we explicitly calculate this index in terms of

an agent’s characteristics. We show that the agent with the lowest survival index

dominates the economy in the long run and all other agents vanish. We then show

that the interest rate and the market price of risk behave asymptotically as those

of an economy populated solely by the single surviving agent.

To derive our results, we develop new techniques based on ergodicity of certain

stochastic processes and Strassen’s functional law of iterated logarithm. To the best

of our knowledge, these methods have never been used in the general equilibrium

literature before.

We now discuss related articles. The most closely related to ours are the papers

by Yan [29] and Cvitanić, Jouini, Malamud, and Napp [5].4 Namely, these authors

consider a special case of our model corresponding to the case when there is no learn-

ing and agents having standard CRRA preferences without any habit formation.

In terms of modeling heterogeneous beliefs and learning, our model closely follows

the one of Dumas, Kurshev, and Uppal [10] and Scheinkman and Xiong [25], who

considered a special case of our model: A two-agent economy with standard CRRA

utility functions, and the public signal being a pure noise, uncorrelated with the

economy’s growth rate. Chan and Kogan [6] consider a special case of our model

with homogeneous catching-up-with-the-Joneses habit levels and a continuum of

agents with heterogeneous risk aversions. Xiouros and Zapatero [28] derive a closed

form expression for the equilibrium state price density in the Chan and Kogan [6]

model. Cvitanić and Malamud [7] study how long run risk sharing depends on

the presence of multiple agents with different levels of risk aversion. Kogan, Ross,

Wang and Westerfield [18] and Cvitanić and Malamud [8] study interaction of sur-

vival and price impact in economies where agents derive utility only from terminal

consumption. Fedyk, Heyerdahl-Larsen and Walden [12] extend the model of Yan

[29] by allowing for many assets. Kogan, Ross, Wang and Westerfield [19] study the

link between survival and price impact in the presence of intermediate consumption

and allow for general utilities with unbounded relative risk aversion and a general

dividend process. Another quite large direction of the complete market risk shar-

ing literature concentrates on the equilibrium effects of heterogeneous beliefs. With

CRRA agents differing only in their beliefs, the equilibrium state price density can

be derived in a closed form and thus many equilibrium properties can be analyzed

in detail. See, e.g., Basak [1, 2], Jouini and Napp [16, 17], Jouini, Martin and Napp

[15] and Xiong and Yan [27].

4Bhamra and Uppal [3], Dumas [9], and Wang [26] considered the same model, but only with

two agent types and heterogeneity coming only from risk aversion.
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The paper is organized as follows. In Section 2, we introduce the model and

provide some preliminary results that will be employed in subsequent sections.

Section 3 is devoted to a brief description of the equilibrium state price density in

homogeneous and heterogeneous settings, and to the derivation of formulas for the

interest rate and market price of risk. In Section 4, we present the main results of

the paper and discuss some special cases and corollaries. Section 5 deals with some

auxiliary results (limit theorems for certain stochastic processes) that are crucial

for the proof of the main result. In Section 6, we provide a proof for the main

result. Finally, in Section 7 we establish long run results for the interest rate and

the market price of risk. Some of the results appearing in Sections 5 and 7 are of

an independent mathematical interest.

2. Preliminaries

We consider a continuous-time Arrow-Debreu economy with an infinite hori-

zon, in which heterogeneous agents maximize their utility functions from consump-

tion. The uncertainty in our model is captured by a (complete) probability space

(Ω,F∞, P ) and a continuous filtration F := (Ft)t∈[0,∞), with F0 = {∅,Ω}. We fix

three standard and independent Wiener processes (W
(i)
t )t∈[0,∞), i = 1, 2, 3, adapted

to the filtration F . There are N different types of agents in the economy, labeled

by i = 1, ..., N. Each agent i is equipped with a non-negative endowment process(
eit
)
t∈[0,∞)

, which is adapted with respect to the filtration G (see (2.7)). We denote

by Dt :=
∑N

i=1 e
i
t the aggregate endowment process and assume that (Dt)t∈[0,∞)

satisfies

(2.1)
dDt

Dt
= µD

t dt+ σDdW
(1)
t , D0 = 1

or equivalently,

(2.2) Dt = exp

(∫ t

0

µD
s ds− 1

2
(σD)2t+ σDW

(1)
t

)
,

where the constant σD > 0 represents the volatility. Themean-growth rate (µD
t )t∈[0,∞)

is an Ornstein-Uhlenbeck process that solves uniquely the SDE:

(2.3) dµD
t = −ξ(µD

t − µ)dt+ σµdW
(2)
t ,

that is

(2.4) µD
t = µ+ (µ0 − µ) e−ξt + σµe−ξt

∫ t

0

eξsdW (2)
s ,

where µ, µ0 and σµ are some real numbers and ξ > 0. The numbers µ, µ0 will be

referred to as the average and initial mean-growth rate respectively.
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2.1. The Financial Market. We consider a financial market5 that consists of

at least two long-lived securities: A risky asset (St)t∈[0,+∞) and a bank account

(S0
t )t∈[0,+∞). In addition there are other (not explicitly modeled) assets guarantee-

ing that the market is dynamically complete.6 The bond is in zero net supply and

the stock is a claim to the total endowment of the economy (Dt)t∈[0,∞) and has

a net supply of one share. The risk-less bond is denoted by S0
t = e

∫
t
0
rsds, where

(rt)t∈[0,∞) is the risk-free rate process. We assume that there exists a unique posi-

tive state price density denoted by (Mt)t∈[0,∞), that is, a positive adapted process

that satisfies

Mt = E
[
e
∫

u
t

rsdsMu

∣∣Gt

]
,

for all u > t, and

St = E

[∫ ∞

t

Mu

Mt
Dudu

∣∣Gt

]
,

for all t > 0, where the filtration G := (Gt)t∈[0,∞) is defined in (2.7). Note that

our assumption excludes arbitrage opportunities in the model and implies that the

market is complete. The state price density as well as all other parameters are to

be derived endogenously in equilibrium.

2.2. Preferences and Equilibrium. Agent i is maximizing his intertemporal von

Neumann-Morgenstern expected utility

sup
(cit)t∈[0,∞)

EP i

[∫ ∞

0

e−ρitUi(cit)dt

]
,

from consumption, under the constraints that the consumption stream (cit)t∈[0,∞)

is a positive adapted process with respect to G (which is defined in (2.7)) and lies

in the budget set:

E

[∫ ∞

0

citMtdt

]
≤ E

[∫ ∞

0

ǫitMtdt

]
.

Here, EPi [·] stands for the expectation with respect to the subjective probability

measure Pi of agent i. The exact form of Pi is specified in (2.15). We assume that

5More precisely, the model (to be set below) can be implemented by a complete securities

market with a unique state price density derived in equilibrium. See Duffie and Huang (1986) for

a detailed exposition of this issue.
6Formally, as there will be only two Brownian motions driving the economy, one additional

asset can complete the market. However, since the price of this asset would be determined

endogenously, one would have to verify endogenous completeness. This can be done using the

techniques of Hugonnier, Malamud and Trubowitz [14]. Otherwise, we can just assume that there

are sufficiently many (derivative) assets, completing the market.
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all agents are represented by ’catching up with the Jonses7’ preferences:

Ui (cit) =
1

1− γi

(
cit
Hit

)1−γi

.

Here, (Hit)t∈[0,∞) is an exogenously given stochastic process that represents the sub-

jective index of ’standard of living’. We consider here a more general specification

for Hit than the one in Chan and Kogan [6]. Namely, we set Hit := Xβi

t = eβi·xt ,

for some βi > 0, where

(2.5) xt = e−λt ·
(
x0 + λ ·

∫ t

0

eλs · log(Ds)ds

)
,

or equivalently, (xt)t∈[0,∞) is the unique solution of the SDE:

dxt = λ(log(Dt)− xt)dt.

In this setting, the process (Xt)t∈[0,∞) is the index representing the ’standard of

living’ in the economy. For each agent i, the number βi measures the impact of

the index Xt on the agent; in particular, when βi = 0, the agent is not influenced

by the index at all. For large βi, the influence is somewhat heavy. In complete

markets, the optimal consumption stream can be easily derived as in the following

statement.

Proposition 2.1. The optimal consumption stream of agent i in a complete market

represented by a state price density (ξt)t∈[0,∞), is given by

cit = e
ρi
γi

t · ξ−
1
γi

t Z
1
γi

it ·H
γi−1

γi

it · ci0,

and

E

[∫ ∞

0

citξt

]
= E

[∫ ∞

0

ǫitξt

]
,

where the process (Zit)t∈[0,∞) is given in (2.15).

Proof of Proposition 2.1. The assertion follows by standard duality argu-

ments involving the first-order conditions. �

Finally, we introduce the notion of Arrow-Debreu equilibrium.

Definition 2.1. An equilibrium is a pair
(
(cit)t∈[0,∞), (ξt)t∈[0,∞)

)
such that:

a. Each stream (cit)t∈[0,∞) is the optimal consumption stream of agent i and

7This paradigm of a utility function was first introduced in Abel (1990), and is commonly re-

ferred to in the literature as a utility with exogenous habits. This specification describes a decision

maker who experiences an impact of the ”index of standard of living’ index. Our specification is

based on the now standard model of Chan and Kogan [6] for the standard of living in our economy.
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(Mt)t∈[0,∞) is the state price density that represents the market.

b. The market clearing condition is satisfied:

(2.6)

N∑

i=1

cit = Dt,

for all t > 0.

2.3. Diverse Beliefs and Learning. The are two processes in the economy that

are observable by all agents. The first one is the aggregate endowment process

(Dt)t∈[0,∞), and the second one is a certain public signal:

st = φW
(2)
t +

√
1− φ2W

(3)
t ,

for some φ ∈ [0, 1). That is, the public signal exhibits a non-negative correlation φ ∈
[0, 1) with the shock governing the mean growth-rate process. The corresponding

filtration is denoted by

(2.7) Gt := σ
(
{su;u ≤ t}

⋃
{Du;u ≤ t}

)
.

In contrast to this, the mean-growth rate process is unobservable. That is, neither

of the agents possesses an access to the data revealing the dynamics of the process

(µD
t )t∈[0,∞). Furthermore, agents may have diverse beliefs concerning the average

and initial mean growth-rate. More precisely, each agent i reckons that the initial

mean-growth rate is some µ0i ∈ R and that the average mean-growth rate is some

µi ∈ R. That is to say, before filtering, agent i assigns in his mind the following

model for µD
t :

(2.8) µi + (µi0 − µi) e
−ξt + σµe−ξt

∫ t

0

eξsdW (2)
s .

Furthermore, individuals may have irrational perception of the information supplied

by the signal. I.e., each agent i believes that the public signal (st)t∈[0,∞), has a

correlation φi ∈ [−1, 1) with (W
(2)
t )t∈[0,∞), when if fact, the correlation is φ ∈ [0, 1).

Therefore, under the belief of agent i, the following model is attributed to the signal

st:

(2.9) φiW
(2)
t +

√
1− φ2

iW
(3)
t .

We denote by Qi the measure corresponding to agent’s i−th beliefs regarding the

models in (2.8) and (2.9), where W
(1)
t ,W

(2)
t and W

(3)
t are independent Wiener

processes under Qi. Consequently, agents are in the process of learning and filtering

out the dynamics of the mean-growth rate, which is deduced by using the theory

of optimal filtering.

Definition 2.2. The process

µD
it := EQi

[
µi + (µi0 − µi) e

−ξt + σµe−ξt

∫ t

0

eξsdW (2)
s

∣∣Gt

]
,
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is called the subjective mean growth-rate of agent i.

Proposition 2.2. We have

(2.10) µD
it =

µi0

yit
+

ξµi

yit

∫ t

0

yiudu+
1

(σD)
2
yit

∫ t

0

νiuyiu
Du

dDu +
σµφi

yit

∫ t

0

yiudsu,

where

(2.11) yit = exp

(
ξt+

1

(σD)2

∫ t

0

νisds

)
,

and the variance process

νit := EQi

[(
µD
t − EQi [

µD
t

∣∣Gt

])2 ∣∣Gt

]
,

is deterministic and given by

(2.12) νit = αi2 · (σD)2 · e(αi2−αi1)t − 1

e(αi2−αi1)t − αi2/αi1
,

where

αi2 =
√
ξ2 + (σµ/σD)2 · (1− φ2

i )− ξ,

and

αi1 = −
√
ξ2 + (σµ/σD)2 · (1 − φ2

i )− ξ.

Proof of Proposition 2.2. Observe that Theorem 12.7 in Lipster and Shiryaev

[21] implies that
(
µD
it

)
t∈[0,∞)

satisfies the following SDE:

(2.13) dµD
it = −ξ

(
µD
it − µi

)
dt+

νit

(σD)
2

(
dDt

Dt
− µD

itdt

)
+ σµφidst,

where the variance process νit is detected through the following Riccatti ODE:

ν′it = −2ξνit + (σµ)
2 ·
(
1− φ2

i

)
− 1

(σD)2
· ν2it,

with νi0 = 0. One can solve the above equation and verify that νit is given by (2.12).

Now, we shall solve the SDE (2.13). By definition, we have y′it = (ξ + νit
(σD)2 )yit,

and yi0 = 1. Notice that the preceding observation combined with Ito’s formula

implies that

d
(
yitµ

D
it

)
= ξµiyitdt+

νit

(σD)
2 yit

dDt

Dt
+ σµφiyitdst,

completing the proof. �

Remark 2.1. Dumas et. al. [10] consider the static version of (2.10). That is, the

functions νit and yit are substituted by the corresponding asymptotic limits. This

can be justified by Lemma 5.3 of the current paper.
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We denote by i = 0 a fictional agent who is rational in the sense that he knows

the correct average and initial mean growth-rate, and the correlation parameter φ.

Let us denote by µD
0t := EP

[
µD
t

∣∣Gt

]
the estimated mean growth-rate of this agent.

As in Proposition 2.2, we have

µD
0t =

µ0

y0t
+

ξµ

y0t

∫ t

0

y0udu +
1

(σD)
2
y0t

∫ t

0

ν0uy0u
Du

dDu +
σµφ

y0t

∫ t

0

y0udsu,

where y0t and ν0t are defined similarly as in (2.11) and (2.12). It follows by Theorem

8.1 in Lipster and Shyraev [20] that W
(0)
t = W

(1)
t −

∫ t

0
µD
0s−µD

s

σD ds is a P−Brownian

motion with respect to the filtration G. We set

(2.14) δit :=
µD
it − µD

0t

σD
,

to be the i−th agent’s error in the mean-growth estimation. The dynamics of

(Dt)t∈[0,∞) from i−th agent’s perspective, admits the form

dDt

Dt
= µD

itdt+ σDdW
(0)
it ,

where,

dW
(0)
it = dW

(0)
t − δitdt

is a Brownian motion (by Girsanov’s theorem) under the equivalent probability

measure8 Pi and the filtration G, where

(2.15) Zit := E

[
dP i

dP

∣∣Gt

]
= exp

(∫ t

0

δisdW
(0)
s − 1

2

∫ t

0

δ2isds

)
.

3. The Equilibrium State Price Density

In the current section we briefly depict the structure of the equilibrium state

price density in both settings of homogeneous and heterogeneous economies.

3.1. Homogeneous Economy. Consider an economy where all agents are of the

same type i, and denote by (Mit)t∈[0,∞) the corresponding equilibrium state price

density. The homogeneity of the economy combined with the completeness of the

market allows to derive the corresponding state price density explicitly.

Lemma 3.1. The equilibrium state price density in a market populated by one

agent of type i is given by

(3.1) Mit = e−ρitD−γi

t ZitH
γi−1
it =

exp

(
−
∫ t

0

(
ρi + γi

(
µD
s − 1

2
(σD)2

)
+

1

2
δ2is

)
ds

)

exp

(
(γi − 1)βixt +

∫ t

0

δisdW
(0)
s − γiσ

DW
(1)
t

)
.

8One can check that the process (Zit)t∈[0,∞) is a true martingale by verifying Novikov’s con-

dition on a small interval and then applying a similar argument as the one in Example 3, page

233, Lipster and Shiryaev [20].
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Proof of Lemma 3.1. The assertion follows by employing the market clearing

condition and Lemma 2.1. �

We derive now the risk free-rate and the market price of risk in a homogeneous

economy.

Lemma 3.2. The risk free rate and the market price of risk in an economy popu-

lated by one agent of type i, are given respectively by

rit := ρi + γiµ
D
it −

1

2

(
σD
)2

γi (γi + 1)− βi (γi − 1) (xt − log (Dt)) ,

and

θit := γiσ
D − δit.

Proof of Lemma 3.2. Consider the process:

Yit := −
∫ t

0

(ρi+γi(µ
D
0s−

1

2
(σD)2)+

1

2
δ2is)ds+(γi − 1)βixt+

∫ t

0

(δis−γiσ
D)dW (0)

s .

The dynamics of Mit are given by

dMit

Mit
= dYit +

1

2
d〈Yi, Yi〉t.

where

dYit = −
(
ρi + γi

(
µD
t − 1

2
(σD)2

)
+

1

2
δ2it

)
dt+

βi(γi − 1) · (log(Dt)− xt)dt+
(
δit − γiσ

D
)
dW

(0)
t ,

and

d〈Yi, Yi〉t =
(
δit − γiσ

D
)2

dt.

The rest of the proof follows by the fact that the risk free rate and market price of

risk coincide with minus the drift and minus the volatility of the SPD respectively.

�

3.2. Heterogeneous Economy. Consider an economy populated by N different

types of agents. By Lemma 2.1, the optimal consumption stream of agent i is given

by

(3.2) cit = e
− ρi

γi
t ·M− 1

γi
t Z

1
γi

it ·H
γi−1

γi

it · ci0 = ci0

(
Mit

Mt

)1/γi

·Dt,

where (Mt)t∈[0,∞) stands for the corresponding heterogeneous equilibrium state

price density, and Mit is given by (3.1). Therefore, the market clearing condition

(2.6) admits the form

(3.3)
N∑

i=1

ci0 ·
(
Mit

Mt

)1/γi

= 1.
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Example 3.1. Consider a homogeneous risk aversion economy, i.e., γ1 = ... =

γN = γ. Then, the equilibrium state price density is given explicitly by

Mt =




N∑

i=1

ci0e
−ρit/γZ

1/γ
it H

γ−1
γ

it

Dt




γ

.

Furthermore, if the habits are homogeneous, that is, β1 = ... = βN = β, we have

Mt = e(γ−1)βxt

(
N∑

i=1

ci0e
ρit/γZ

1/γ
it

Dt

)γ

.

If the beliefs among the agents are not varying, i.e., Z1t = ... = ZNt = Zt, then,

we have

Mt = Zt




N∑

i=1

ci0e
ρit/γH

γ−1
γ

it

Dt




γ

.

Finally, we provide formulas for the risk free rate and the market price of risk.

Proposition 3.3. We have

θt =

N∑

i=1

ωitθit,

and

rt =

N∑

i=1

ωitrit +
1

2

N∑

i=1

(1 − 1/γi)ωit (θit − θt)
2
,

where

(3.4) ωit :=
1/γicit∑N

j=1 1/γjcjt

denotes the r.

Proof of Proposition 3.3. The proof is identical to the proof of Proposition

4.1 in Cvitanić et. al. [5]. �

4. The Main Result: The long run Surviving Consumer

The current section is devoted to the study of the long run behavior of the op-

timal consumption shares in a heterogeneous economy. We establish the existence

of a surviving consumer in the market, i.e., an agent whose optimal consumption

asymptotically behaves as the aggregate consumption. This dominating individual

is determined through the survival index. That is, a quantity depending on individ-

uals’ characteristics and specifies the surviving agent versus the extincting agents

in the economy.
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Definition 4.3. The survival index of agent i is given by

(4.1) κi := ρi +

(
µ− 1

2
(σD)2

)
(γi + (1− γi)βi)+

1

2

(
µi − µ

σD

)2

+
ξ2 +

(
σµ/σD

)2
(1− φφi)

2

√
ξ2 + (σµ/σD)

2
(1− φ2

i )
.

The following is assumed throughout the entire paper.

Assumption 4.1. There exists an agent IK whose survival index is the lowest one,

namely κIK < κi, for all i 6= IK .

We are now ready to state our main result.

Theorem 4.1. In equilibrium, the only surviving agent in the long run is the one

with the lowest survival index, i.e.,

lim
t→∞

cit
Dt

= 0,

for all i 6= IK , and

lim
t→∞

cIKt

Dt
= 1.

The survival index is a complicated function of the individuals’ underlying pa-

rameters. In order to isolate the effects of various agents’ characteristics on the

long run survival, we will discuss special cases in which agents differ with respect

to only one or few particular parameters.

4.1. The Effect of Risk-Aversion and Habits. Let the initial priors (µi)i=1,...,N

and the over-confidence parameters (φi)i=1,...,N be fixed and identical for all agents.

As it will be seen in the proof of Theorem 4.1, the survival index is invariant under

additive translation, and thus it is determined in the current setting by

ρi +

(
µ− (σD)2

2

)
· (γi + (1− γi)βi).

If β1 = ... = βN = 0, the survival index is the same as in Cvitanić et. al. [5]. In

particular, in a growing economy (i.e. µ − (σD)2

2 > 0) the least risk-averse agent

will survive in the long run, as in the models of Yan [29], and Cvitanić et. al. [5].

The presence of habits may change the behavior. Here, if the habit is sufficiently

strong (βi > 1), the effect completely reverses: It is the most risk-averse agent who

survives in the long run. Effectively, ’catching up with Jonses’ preferences change

an agent’s risk aversion from γi to

γi + (1− γi)βi.

Therefore, for strong habits, agents with a high risk-aversion effectively behave as

agents with a low risk aversion. When risk aversion is homogeneous, the effect of
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habits strength on survival depends on whether risk aversion is above or below 1. If

risk aversion is above 1, we get the surprising and at the first sight counter-intuitive

result that agents with stronger habits survive in the long run. The reason for this

is that the presence of habits forces the agent to trade more aggressively and make

bets on very good realizations of the dividend in order to sustain the aggregate

habit level generated by the ’catching up with the Jonses’ preferences. This makes

an agent with strong habits effectively less risk averse. This is beneficial for survival

in a growing economy.

4.2. The Effect of Diverse Beliefs. Consider an economy where agents may

differ only with respect to their average mean growth-rate estimations (µi)i=1,...,N

and their correlation parameters (φi)i=1,...,N . In this case, the survival index admits

the form

(4.2) κi =
1

2

(
µi − µ

σD

)2

+
ξ2 +

(
σµ/σD

)2
(1− φφi)

2

√
ξ2 + (σµ/σD)

2
(1− φ2

i )
.

Note that in this case the survival index is a decreasing function of the correlation

parameter φi in the interval [−1, φ], and an increasing function in the interval

(φ, 1]. Therefore, in an economy where the only distinction between agents is their

correlation parameters, the surviving agent is derived as follows. If either all agents

are over-confident (φ < φ, for all i = 1, ..., N) or under-confident (φ > φ, for all

i = 1, ..., N) in the signal φ, then, the survival index is given by

|φi − φ| ,

and thus the individual with the most accurate guess of the correct correlation

will dominate the market. If some agents are over-confident and some are under-

confident in the signal, the situation becomes more complex. For simplicity, let

us analyze the case of an economy which consists of two agents: The first agent

underestimates the correlation and believes that it is φ1 ∈ [−1, φ], whereas the

second agent overestimates the correlation by φ2 ∈ [φ, 1]. Let us set a :=
(

ξσD

σµ

)2
.

If φ1 ∈
[
−1, 2 aφ(1+a)

aφ2+(a+1−φ)2
− 1
]
, the second agent will survive. Now, assume that

φ1 ∈
[
2 aφ(1+a)

aφ2+(a+1−φ)2
− 1, φ

]
. Then, if φ2 ∈

[
φ,

2(a+1)φ−(a+1+φ2)φ1

a+1+φ2−2φφ1

]
, then the sec-

ond agent will survive; otherwise, that is, if φ2 ∈
[
2(a+1)φ−(a+1+φ2)φ1

a+1+φ2−2φφ1
, 1

]
, the first

agent will survive. To demonstrate the above scheme numerically, let us consider

the case where a = 1 and φ = 1/2 (see Figure 1). If φ1 ∈ [−1,−0.2], then the sec-

ond agent survives. If φ1 ∈ [−0.2, 0.5] , then: If φ2 ∈
[
0.5, 8−9φ1

9−4φ1

]
, the second agent

is the one to survive. Otherwise, that is, if φ2 ∈
[
8−9φ1

9−4φ1
, 1
]
then the first agent

will survive. The preceding fact yields an economically surprising observation: Too

overconfident agents will not survive when they compete with agents that believe
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in a weak negative correlation. Assume for instance that the second agent believes

that the correlation is some φ2 ∈ [8/9, 1]. Then, if φ1 ∈ [ 8−9φ2

9−4φ2
, 0], the first agent

will survive, despite of the negative correlation.

0 1/2φ1

1/2

1

φ2

−1 −0.2

8/9

First agent survives

Second agent survives

φ1 = 8−9φ2

9−4φ2

Figure 1. The long-run surviving consumer

If the only source of heterogeneity in the economy is the belief regarding the av-

erage mean-growth rate, then the survival index depends only on the error between

the subjective mean-growth-rate and the correct one, namely,

κi = |µ− µi| .

Therefore, the consumer with the best forecast of the average mean-growth rate is

the one to dominate the market.

4.3. The Relative Level of Absolute Risk Tolerance. As in Cvitanić et. al.

[5], we define the relative level of absolute risk tolerance of agent i by

wit :=
1/γi · cit∑N

j=1 1/γj · cjt
.

The following is an immediate consequence of Theorem 4.1.

Corollary 4.1. We have

lim
t→∞

wit = 0,

for all i 6= Ik, and

lim
t→∞

wIK t = 1.

Proof of Corollary 4.1. Note that (3.2) implies that

wit =
cit
Dt

· 1/γi∑N
j=1 1/γj · c0j(Mjt/Mt)1/γj

.
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The identity (3.3) yields

1
∑N

j=1
1
γj
c0j(Mjt/Mt)1/γj

≤ max
k=1,...,N

γk.

The preceding observations combined with Theorem 4.1 and the equality
∑N

i=1 ωit =

1 complete the proof of Theorem 4.1. �

5. Auxiliary Results

In the present section we introduce some results that will be crucial for proving

Theorem 4.1. First, we introduce the following estimates indicating that yit, 1/yit,

their derivatives, and νit are close to certain functions, of a simpler form. The errors

in these estimates are shown to be decaying exponentially fast to 0, as t → ∞.

Lemma 5.3. We have

(5.1)
∣∣νit − αi2(σ

D)2
∣∣ ≤ Ce−2(αi2+ξ)t,

(5.2)

∣∣∣∣yit − exp

(
−αi2

αi1
e
−αi2

αi1

)
e(αi2+ξ)t

∣∣∣∣ ≤ Ce−(αi2+ξ)t,

(5.3)

∣∣∣∣y
′
it − (αi2 + ξ) exp

(
−αi2

αi1
e
−αi2

αi1

)
e(αi2+ξ)t

∣∣∣∣ ≤ Ce−(αi2+ξ)t,

(5.4)

∣∣∣∣
1

yit
− exp

(
αi2

αi1
e
−αi2

αi1

)
e−(αi2+ξ)t

∣∣∣∣ ≤ Ce−3(αi2+ξ)t,

(5.5)

∣∣∣∣∣

(
1

yit

)′
+ (αi2 + ξ) exp

(
αi2

αi1
e
−αi2

αi1

)
e−(αi2+ξ)t

∣∣∣∣∣ ≤ Ce−3(αi2+ξ)t,

for all t > 0 and some constant C > 0.

Proof of Lemma 5.3. Inequality (5.1) is due to the fact that
∣∣νit − αi2(σ

D)2
∣∣ =∣∣∣ (αi1−αi2)αi2(σ

D)2

αi1e2(αi2+ξ)t−αi2

∣∣∣ . Next, by definition (see Proposition 2.2), it follows that yit

admits the form

yit = exp

(
(αi2 + ξ) t− αi2

αi1
e
−αi2

αi1

(
1− e−2(αi2+ξ)t

))
.

One checks that the inequality ex − 1 ≤ (e − 1)x, for all 0 ≤ x ≤ 1 concludes the

validity of (5.2). Recall that yit satisfies the ODE y′it =
(
ξ + νit

(σD)2

)
yit, and thus

we can estimate ∣∣∣∣y
′
it − (αi2 + ξ) exp

(
−αi2

αi1
e
−αi2

αi1

)
e(αi2+ξ)t

∣∣∣∣ ≤
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exp

(
−αi2

αi1
e
−αi2

αi1

)
e(αi2+ξ)t

∣∣∣∣
νit

(σD)2
− αi2

∣∣∣∣+
(
ξ +

νit
(σD)2

) ∣∣∣∣yit − exp

(
−αi2

αi1
e
−αi2

αi1

)
e(αi2+ξ)t

∣∣∣∣ ,

which implies (5.3) by applying inequalities (5.1) with (5.2). Inequalities (5.4) and

(5.5) are proved in a similar manner. �

For each d ≥ 1, we denote by
(
C0

(
[0, 1];Rd

)
, || · ||∞

)
the space of all Rd-valued

continuous functions on the interval [0, 1] vanishing at 0 endowed with the sup

topology.

Definition 5.4. We denote by K(d) the space of all functions f = (f1, ..., fd) ∈
C0

(
[0, 1];Rd

)
, such that each component fi is absolutely continuous, and

d∑

i=1

∫ T

0

(f ′
i(x))

2dx ≤ 1.

We note that K(d) is a compact subset of C0

(
[0, 1];Rd

)
(see Proposition 2.7,

page 343, in Revuz and Yor [23]). The next result deals with the asymptotics of

certain multiple stochastic integrals.

Lemma 5.4. Let (Wt)t∈[0,∞) and (Bt)t∈[0,∞) be two arbitrary standard Brownian

motions and denote Zt =
∫ t

0 e
−s ·W 1

2 ·(e2s−1)dBs. Then, we have

(i)

〈Z〉∞ := lim
t→∞

〈Z〉t = ∞.

(ii)

lim
t→∞

∫ t

0
e−as

∫ s

0
eaudWudBs

t
= 0,

for any a > 0.

(iii)

lim
t→∞

∫ t

0
e−(a+b)s

∫ s

0
eau
∫ u

0
ebxdWxdudBs

t
= 0,

for all a, b > 0.

Proof of Lemma 5.4. (i) First, note that a change of variable implies that

〈Z〉t =
∫ t

0
e−2s ·

(
W 1

2 ·(e2s−1)

)2
ds =

∫ 1
2 (e

2t−1)

0
W 2

u

(1+u)2 du. Consider the functional

F : C0 ([0, 1];R) → R+, which is given by

F (f) :=

∫ 1

0

f2(x)

(1 + x)2
dx.

Note that F is a continuous functional. Indeed, for a fixed f ∈ C0 ([0, 1];R) and

all ε > 0, let δ = ε(2||f ||∞ + ε) and observe that if ||f − g||∞ < δ, for some
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g ∈ C0 ([0, 1];R), then |F (f)− F (g)| < ε. It follows by Strassen’s functional law of

iterated logartigm (see Revuz and Yor [23], page 346, Theorem 2.12) that P-a.s,

lim sup
N→∞

F

(
1√

2N log log(N)
WNt

)
= sup

h∈K(1)

F (h).

Notice that suph∈K(1) F (h) ≥ F (h̃) > 0, where h̃(x) = x. Therefore, we have

lim sup
N→∞

F

(
1√

2N log log(N)
WNt

)

= lim sup
N→∞

∫ 1

0
WNt

(1+t)2 dt

2N log logN
= lim sup

N→∞

∫ N

0
W 2

u

(N+u)2 du

2 log log(N)
> 0.

Furthermore,

lim sup
N→∞

∫ N

0
W 2

u

(1+u)2 du

2 log log(N)
≥ lim sup

N→∞

∫ N

0
W 2

u

(N+u)2 du

2 log log(N)
> 0.

In particular, it follows that lim supN→∞
∫ N

0
W 2

u

(1+u)2 du = ∞, but, since the function
∫ N

0
W 2

u

(1+u)2 du is monotone increasing in N , it follows that limN→∞
∫ N

0
W 2

u

(1+u)2 du =

∞. This accomplishes the proof of part (i).

(ii) Denote Yt =
∫ t

0 e−s
∫ s

0 eudWudBs and Xs =
∫ s

0 eudWu. Note that 〈X〉t =
1
2 ·
(
e2t − 1

)
, therefore, since Xt is a martingale vanishing at 0 and 〈X〉∞ = ∞, it

follows by the Dambis, Dubins-Schwartz theorem (shortly DDS, see Revuz and Yor

[23], page 181, Theorem 1.6) that Xt = W̃ 1
2 ·(e2t−1), for a certain Brownian motion

W̃t. Therefore, we can rewrite

Yt =

∫ t

0

e−s · W̃ 1
2 ·(e2s−1)dBs,

and thus by part (i), we have, limt→∞〈Y 〉t = 〈Y 〉∞ = ∞. Therefore, the DDS

theorem implies that Yt = B̃〈Y 〉t , for some Brownian motion B̃t. Now, denote

φ(x) =
√
2x log log x and let us rewrite Yt

t =
B̃〈Y 〉t

φ(〈Y 〉t) ·
φ(〈Y 〉t)

t . By the law of iterated

logarithm, we have lim supt→∞
|B̃〈Y 〉t

|
φ(〈Y 〉t) ≤ 1, and hence it is enough to concentrate

on the asymptotics of the second term:

φ (〈Y 〉t)
t

=

√√√√√
2 ·

∫ t

0 e
−2s ·

(
W̃ 1

2 ·(e2t−1)

)2
ds · log log

(∫ t

0 e
−2s ·

(
W̃ 1

2 ·(e2t−1)

)2
ds

)

t2
.

Note that φ(12 (e
2s−1)) ≤ es

√
log 2s and thus, the law of iterated logarithm implies

that

lim sup
t→∞

φ (〈Y 〉t)
t

≤ lim sup
t→∞

√
log(2t) log log(t log 2t)

t
= 0.
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This accomplishes the proof of part (ii).

(iii) By Fubini’s Theorem, we have

lim
t→∞

∫ t

0 e
−(a+b)s

∫ s

0 eau
∫ u

0 ebxdWxdudBs

t
=

1

a
lim
t→∞

∫ t

0 e
−as

∫ s

0 ebxdWxdBs

t
− 1

a
lim
t→∞

∫ t

0 e
−(a+b)s

∫ s

0 e(a+b)xdWxdBs

t
= 0,

where the last equality follows by part (ii). This completes the proof of Lemma

5.4. �

We proceed with the following statement.

Lemma 5.5. Let (Wt)t∈[0,∞) be a standard Brownian motion. Then, we have

(i)

lim
t→∞

∫ t

0 e
−as

∫ s

0 eaxdWxds

t
= 0,

for all a > 0.

(ii)

lim
t→∞

∫ t

0 e−(a+b)s
∫ s

0 eau
∫ u

0 ebxdWxduds

t
= 0,

for all a, b > 0.

Proof of Lemma 5.5. (i) By using integration by parts and Fubini’s Theorem,

we get

lim
t→∞

∫ t

0
e−as

∫ s

0
eaudWuds

t
= lim

t→∞

∫ t

0

(
Ws − ae−as

∫ s

0
eauWudu

)
ds

t
=

lim
t→∞

∫ t

0
Wsds− a

∫ t

0

(
eauWu

∫ t

u
e−asds

)
du

t
= lim

t→∞

∫ t

0 e
auWudu

teat
= 0,

where the last equality follows by the law of large numbers.

(ii) As in (i), one checks that the limit is equal to

1

a
lim
t→∞

(∫ t

0

e−bs

∫ s

0

ebxdWxds−
∫ t

0

e−(a+b)s

∫ s

0

e(a+b)xdWxds

)
,

which vanishes according to (i). �

In the next limit theorems, the main tool is ergodicity of certain stochastic pro-

cesses. Similar ideas as below (even though we have provided a straightforward

argument) could be applicable to deduce the previous lemma.
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Lemma 5.6. Let (Wt)t∈[0,∞) and (Bt)t∈[0,∞) be two independent Brownian mo-

tions. Then, the following holds

(i)

lim
t→∞

∫ t

0
e−as

∫ s

0
eaxdWxe

−bs
∫ s

0
ebxdBxds

t
= 0,

for all a, b > 0.

(ii)

lim
t→∞

∫ t

0

(
e−as

∫ s

0 eaxdWx

)2
ds

t
=

1

2a
,

for all a > 0.

(iii)

lim
t→∞

∫ t

0 e
−(a+b)s

∫ s

0 eaxdWx

∫ s

0 ebxdWxds

t
=

1

a+ b
,

for all a, b > 0.

Proof of Lemma 5.6. (i) First observe that
∫ s

0
eaxdWx is a martingale with

〈
∫ ·
0
eaxdWx〉t = e2at−1

2a , and thus by the DDS Theorem, we have
∫ t

0
eaxdWx =

W̃ e2at−1
2a

for some Brownian motion (W̃t)t∈[0,∞). A similar argument implies that
∫ t

0 e
bxdBx = B̃ e2bt−1

2b

, for a Brownian motion (B̃t)t∈[0,∞). The construction in the

DDS Theorem implies that (B̃t)t∈[0,∞) and (B̃t)t∈[0,∞) are independent. Recall that

e−atW̃e2at and e−btB̃e2bt are two independent stationary Orenstein-Uhlenbeck pro-

cesses and thus the process e−(a+b)tW̃e2at B̃e2bt is stationary. Therefore, an ergodic

theorem for stationary processes implies that

(5.6) lim
t→∞

∫ t

0 e
−(a+b)sW̃e2as B̃e2bsds

t
= e−(a+b)E

[
W̃e2aB̃e2b

]
= 0.

Next, the process (W ′
t )t∈[0,∞) given by W ′

t =
√
2aW̃ t

2a
for t < 1, and W ′

t =√
2aW̃ t−1

2a
+

√
2aW̃ 1

2a
for t > 1 is a Brownian motion. Thus, we have W̃ e2as−1

2a

=

1√
2a
W ′

e2as − W̃ 1
2a
, for all s > 1. We define the process (B′

t)t∈[0,∞) in a similar man-

ner. We emphasize that (W ′
t )t∈[0,∞) and (W̃t)t∈[0,∞) are independent of (B

′
t)t∈[0,∞)

and (B̃t)t∈[0,∞). Thus we can rewrite (5.6) as

lim
t→∞

∫ t

0 e−(a+b)s
(

1√
2a
W ′

e2as − W̃ 1
2a

)(
1√
2b
B′

e2bs − B̃ 1
2a

)
ds

t
.

Next, the law of iterated logarithm implies that for every ε > 0 there exsits an

F∞-measurable random variable N(ε) : Ω → R+ such that for all s > N(ε),∣∣∣ We2as

eas
√

log(2as)

∣∣∣ < 1 + ε, and hence

lim
t→∞

∫ t

0

∣∣e−as−bsW ′
e2as

∣∣ ds
t

≤ (1 + ε) lim
t→∞

∫ t

0
log(as)
ebs ds

t
= 0.
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This fact combined with (5.6) accomplishes the proof of part (i).

(ii) As in (i),
∫ s

0 eaxdWx = W̃ e2as−1
2a

and W̃ e2as−1
2a

= 1√
2a
W ′

e2as − W̃ 1
2a
. Next,

ergodicity yields

lim
t→∞

∫ t

0

(
e−asW̃e2as

)2
ds

t
=

1

e2a
E
[
W̃ 2

e2a

]
= 1.

Finally, the above limit combined with similar arguments to those appearing in (i)

conclude the proof.

(iii) The idea of the proof is to rewrite the required limit in terms of limits of the

same form as those in (ii). First, observe that e−at
∫ s

0
eaudWu = Ws−ae−at

∫ s

0
eauWudu.

Thus we can rewrite,

(5.7)

∫ t

0

(
e−as

∫ s

0

eaudWu

)2

ds

=

∫ t

0

W 2
s ds− 2a

∫ t

0

e−asWs

∫ s

0

eauWududs+ a2
∫ t

0

e−2as

(∫ s

0

eauWudu

)2

du.

Observe that Fubini’s Theorem implies that

(5.8)

∫ t

0

e−2as

(∫ s

0

eauWudu

)2

du =

∫ t

0

∫ t

0

eax+ayWxWy

∫ t

max{x,y}
e−2asdsdxdy

=
1

a

∫ t

0

e−asWs

∫ s

0

eauWududs−
1

2ae2at

(∫ t

0

Wxe
axdx

)2

.

This fact combined with (5.7) and (5.8) implies that

lim
t→∞

∫ t

0

(
e−at

∫ s

0 eaudWu

)2
ds

t

= lim
t→∞

∫ t

0
W 2

s ds− a
∫ t

0
e−asWs

∫ s

0
eauWududs− a

2e2at

(∫ t

0
easWsds

)2

t
.

By using similar arguments and exploiting the preceding observations, one can

check that

(5.9) lim
t→∞

∫ t

0 e
−(a+b)s

∫ s

0 eaxdWx

∫ s

0 ebxdWxds

t
=

a

a+ b
lim
t→∞

∫ t

0 W
2
s ds− a

∫ t

0 e
−asWs

∫ s

0 eauWududs+
a

2e2at

(∫ t

0 e
asWsds

)2

t
+

b

a+ b
lim
t→∞

∫ t

0
W 2

s ds− b
∫ t

0
e−asWs

∫ s

0
eauWududs+

a
2e2at

(∫ t

0
easWsds

)2

t
.

The latter fact combined with part (ii) completes the proof. �

The next statement is heavily based on the above lemma.
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Lemma 5.7. Let (Wt)t∈[0,∞) and (Bt)t∈[0,∞) be two independent Brownian mo-

tions. Then, we have

(i)

lim
t→∞

∫ t

0

(
e−(a+b)s

∫ s

0 eax
∫ x

0 ebudWudx
)2

ds

t
=

1

2b(a+ b)(a+ 2b)
,

for all a, b > 0.

(ii)

lim
t→∞

∫ t

0 e
−(2a+b)s

∫ s

0 eaudWu

∫ s

0 ebu
∫ u

0 eaxdWxduds

t
=

1

2a(2a+ b)
,

for all a, b > 0.

(iii)

lim
t→∞

∫ t

0 e
−(a+b)s

∫ s

0 e(a−ξ)u
∫ u

0 eξudWxdu
∫ s

0 e(b−ξ)u
∫ u

0 eξudWxduds

t
=

1

(a− ξ)(b − ξ)

(
1

a+ b
+

1

2ξ
− 1

a+ ξ
− 1

b+ ξ

)
,

for all a, b, ξ > 0.

(iv)

lim
t→∞

∫ t

0 e
−2(a+b)s

∫ s

0 eay
∫ y

0 ebudWudy
∫ s

0 e(a+b)xdWxds

t
=

1

2(a+ b)(a+ 2b)
,

for all a, b > 0.

(v)

lim
t→∞

∫ t

0 e
−2(a+b)s

∫ s

0 eay
∫ y

0 ebudWudy
∫ s

0 e(a+b)xdBxds

t
= 0,

for all a, b > 0.

Proof of Lemma 5.7. (i) Notice that
∫ s

0
eax
∫ x

0
ebudWudx = 1

a

∫ s

0
ebu(eas −

eau)dWu. Therefore, the required limit is equal to

1

a2
lim
t→∞

∫ t

0

(
e−bs

∫ s

0 ebudWu

)2
ds

t
− 2

a2
lim
t→∞

∫ t

0 e−(a+2b)s
∫ s

0 e(a+b)udWu

∫ s

0 ebudWuds

t

+
1

a2
lim
t→∞

∫ t

0

(
e−(a+b)s

∫ s

0
e(a+b)udWu

)2
ds

t
.

Parts (ii) and (iii) in Lemma 5.6 complete the proof of (i).

(ii) As before, one checks that the limit is equal to

1

b
lim
t→∞

∫ t

0 e
−2as

(∫ s

0 eaxdWx

)2
ds

t

−1

b
lim
t→∞

∫ t

0 e−(2a+b)s
∫ s

0 eaudWu

∫ s

0 e(a+b)xdWxds

t
,
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and the rest is a consequence of parts (ii) and (iii) of Lemma 5.6.

(iii) The limit is equal to

1

(a− ξ)(b − ξ)

(
lim
t→∞

∫ t

0

(
e−au

∫ u

0 eaxdWx

)2
du +

∫ t

0 e
−(a+b)u

∫ u

0 eaxdWx

∫ u

0 ebxdWxdu

t

− lim
t→∞

∫ t

0
e−(a+ξ)u

∫ u

0
eξxdWx

∫ u

0
eaxdWxdu+

∫ t

0
e−(b+ξ)u

∫ u

0
eξxdWx

∫ u

0
ebxdWxdu

t

)
.

The rest then follows by applying items (ii) and (iii) of Lemma 5.6.

(iv) One checks that the required limit is equal to

1

a
lim
t→∞

∫ t

0 e
−(2a+b)s

∫ s

0 ebudWu

∫ s

0 e(a+b)xdWxds

t
+

1

a
lim
t→∞

∫ t

0
e−(a+b)s

(∫ s

0
e(a+b)udWu

)2
ds

t
,

and the rest follows by parts (ii) and (iii) of Lemma 5.6.

(v) As in (i), one checks that the limit is equal to

1

a
lim
t→∞

∫ t

0
e−(2a+b)s

∫ s

0
ebudWu

∫ s

0
e(a+b)xdBxds

t
−

1

a
lim
t→∞

∫ t

0 e
−2(a+b)s

∫ s

0 e(a+b)udWu

∫ s

0 e(a+b)xdBxds

t
,

which vanishes due to part (i) of Lemma 5.6. �

6. Proof of The Main Result

We provide now a proof for Theorem 4.1. Fix an arbitrary i 6= IK . Recall that∑N
j=1 cjt = Dt, and thus it suffices to show that limt→∞

cit
Dt

= 0. Note that (3.3)

implies that Mt ≥ c
γIK

IK0 ·MIKt. Therefore, identity (3.2) yields

cit
Dt

= c0i ·
(
Mit

Mt

)1/γi

≤ ci0

c
γIK

/γi

IK0

·
(

Mit

MIKt

)1/γi

.

In virtue of identity (3.1), we have

Mit

MIKt
= exp (ai(t)− aIK (t)) ,

where

aj(t) := (γj − 1)βjxt +

(
(σD)2

2
γj − ρj

)
t+

∫ t

0

(
−γjµ

D
s −

δ2js
2

)
ds+

∫ t

0

δjsdW
(0)
s − γjσ

DW
(1)
t ,

for all j = 1, ..., N. Therefore, in order to complete the proof of the statement, it

suffices to show that

lim
t→∞

ai(t)− aIK (t)

t
= κIK − κi < 0.
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To this end, we proceed with the computation of the following limits.

Part I. We claim that

(6.1) lim
t→∞

xt

t
= µ− 1

2
(σD)2.

Recall that by (2.5) and (2.2), we have

lim
t→∞

xt

t
= lim

t→∞

x0 + λ ·
∫ t

0 e
λs
(∫ s

0 µD
u du− 1

2 (σ
D)2s+ σDW

(1)
s

)
ds

teλt
.

Now, note that the law of large numbers implies that limt→∞
∫ t
0
eλsW (1)

s ds

teλt = 0.

Next, it is evident that limt→∞
x0

teλt = 0 and limt→∞
∫

t
0
seλsds

teλt = 1/λ. Let us show

now that

(6.2) lim
t→∞

∫ t

0
µD
u du

t
= µ.

By (2.4), we get

lim
t→∞

∫ t

0 µ
D
u du

t
= lim

t→∞

∫ t

0

(
µ+ (µ0 − µ) e−ξs + σµ

∫ s

0
eξ(u−s)dW

(2)
u

)
ds

t
.

Clearly, we have limt→∞

∫ t
0 (µ+(µ0−µ)e−ξs)ds

t = µ. Furthermore, part (i) of Lemma

5.5 yields limt→∞
∫ t
0

∫ s
0
eξ(u−s)dW (2)

u ds

t = 0. This asserts the validity of (6.2). Next,

by L’hôpital’s rule, we get

lim
t→∞

∫ t

0
eλs
∫ s

0
µD
u duds

teλt
= lim

t→∞

∫ t

0
µD
s ds

λt+ 1
=

µ

λ
,

proving (6.1).

Part II. We claim that

lim
t→∞

∫ t

0
(δIKs − δis) dW

(1)
s

t
= 0.

By definition (see (2.14)), it suffices to verify that

lim
t→∞

∫ t

0
µD
jsdW

(1)
s

t
= 0,

holds for all j = 1, ..., N. It is not hard to check by employing Lemma 5.3 combined

with the law of large numbers, that the preceding limit does not change when the

functions yiu,
1

yiu
and νiu are substituted by e(αi2+ξ)t, e−(αi2+ξ)t and αi2(σ

D)2

respectively. In view of latter observation, by definition (see (2.10)), we need to

show that

lim
t→∞

∫ t

0

(
(µi − µ)

(
1− e−ξs

)
+ (µ0i − µ0) e

−ξs + ξµi

ξ+αi2

(
1− e−(ξ+αi2)s

))
dW

(1)
s

t

+αi2 lim
t→∞

∫ t

0 e
−(ξ+αi2)s

∫ s

0 e(ξ+αi2)u
(
µ+ (µ0 − µ) e−ξu

)
dudW

(1)
s

t
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+αi2σ
µ lim

t→∞

∫ t

0 e
−(ξ+αi2)s

∫ s

0 eαi2u
∫ u

0 eξxdW
(2)
x dudW

(1)
s

t

+σµφi lim
t→∞

∫ t

0 e
−(ξ+αi2)s

∫ s

0 e(ξ+αi2)udsudW
(1)
s

t
= 0.

One checks that the first two summands vanish by the law of large numbers. The

third and fourth limits vanish by part (iii) and (ii) of Lemma 5.4, respectively. This

completes the proof of the second part.

Part III. We have,

1

2
lim
t→∞

∫ t

0

(
δ2is − δ2IKs

)
ds

t
=

1

2

(
µi − µ

σD

)2

+
ξ2 +

(
σµ/σD

)2
(1− φφi)

2

√
ξ2 + (σµ/σD)

2
(1− φ2

i )

−1

2

(
µIK − µ

σD

)2

− ξ2 +
(
σµ/σD

)2
(1− φφIK )

2
√
ξ2 + (σµ/σD)

2 (
1− φ2

IK

) .

This can be derived by applying Lemmata 5.4, 5.5, 5.6 and 5.7. The proof is now

accomplished by combining the above three parts, some routine algebraic transfor-

mations and the law of large numbers. �

7. Interest Rate and Market Price of Risk: Further long run

Results

The current section deals with asymptotic results for the interest rate and the

market price of risk in heterogeneous economies. More precisely, it is shown that

asymptotically, the latter parameters behave as those associated with a homoge-

neous economy populated by the dominating consumer. Under some mild con-

ditions, we prove that the distance between these parameters in a heterogeneous

economy and those associated with any of the non-dominating consumer homoge-

neous economies, becomes unbounded as time goes to infinity.

7.1. Market Price of Risk. The next statement provides a full characterization

of the market price of risk asymptotics in heterogeneous economies.

Theorem 7.2. (i) We have

lim
t→∞

|θt − θIK t| = 0.

(ii) If φi = φIK , for some i 6= IK , then

lim
t→∞

(θt − θit) = σD (γIK − γi)−
1

σD

(
µIK − µi

)
.

If φi (for some i 6= IK) is such that

ξ2 +
(
σµ/σD

)2
(1− φφi)

2

√
ξ2 + (σµ/σD)

2
(1− φ2

i )
6= ξ2 +

(
σµ/σD

)2
(1− φφIK )

2
√
ξ2 + (σµ/σD)

2 (
1− φ2

IK

) ,
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then

lim sup
t→∞

|θt − θit| = +∞.

Proof of Theorem 7.2. (i) First, we shall prove that limt→∞ ωitθit = 0, for

all i 6= IK . As in Section 5, the DDS Theorem implies the existence of a Brownian

motion
(
B̃(t)

)
t∈[0,∞)

such that

e−at

∫ t

0

easdBs = e−atB̃

(
e2at − 1

2a

)
,

where a > 0 is some constant and (Bt)t∈[0,∞) is a Brownian motion. By exploiting

the preceding fact, one checks that limt→∞
µD
it√
log t

< ∞, for all i = 0, ..., N, which

implies that

(7.1) lim sup
t→∞

θjt√
log t

< ∞,

for all j = 1, ..., N. On the other hand, it was shown in Theorem 4.1 that ωit ≤
cit
Dt

maxi=1,...,N γi, for all i 6= IK . We have in particular proved in Section 6 that
cit
Dt

≤ e−ait, for some ai > 0, for all i 6= IK . This implies that

(7.2) ωit ≤ e−ait max
i=1,...,N

γi,

holds for all i 6= IK , and thus by (7.1) we have ωitθit ≤ e−a′
it, for all i 6= IK , and

some constant a′i > 0. Therefore, by Proposition 3.3, we have

(7.3) |θt − ωIKtθIKt| =
N∑

i=1,i6=IK

ωitθit ≤
N∑

i=1,i6=IK

e−a′
it.

Finally, observe that |θt − θIK t| ≤ |θt − ωIK tθIK t|+
∑N

i=1,i6=IK
ωitθIKt, since

∑N
i=1 ωit =

1. The proof of part (i) is now concluded by (7.1), (7.2) and (7.3).

(ii) If φi = φIK , by part (i) we can substitute θT by θIKT . The assertion follows

then by noting that

lim
t→∞

|θIK t − θit| = lim
t→∞

∣∣∣∣σ
D (γi − γIK ) +

1

σD
(µIK t − µit)

∣∣∣∣ .

Assume now that

ξ2 +
(
σµ/σD

)2
(1− φφi)

2

√
ξ2 + (σµ/σD)

2
(1− φ2

i )
6= ξ2 +

(
σµ/σD

)2
(1− φφIK )

2
√
ξ2 + (σµ/σD)

2 (
1− φ2

IK

) .

By part (i), the claim is equivalent to proving that

(7.4) lim sup
t→∞

|µD
IK t − µD

it | = +∞.
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First, one checks by employing Lemma 5.3 that the limit (7.4) does not change

when substituting νit, yit and 1
yit

by αi2(σ
D)2, exp

(
−αi2

αi1
e
−αi2

αi1

)
e(αi2+ξ)t and

exp
(

αi2

αi1
e
−αi2

αi1

)
e−(αi2+ξ)t respectively. Next, note that Fubini’s Theorem yields

αi2

e(ξ+αi2)T

∫ T

0

eαi2u

∫ u

0

eξxdW (2)
x du =

1

eξT

∫ T

0

eξudW (2)
u − 1

e(αi2+ξ)T

∫ T

0

e(αi2+ξ)udW (2)
u .

By exploiting the latter observations and the DDS Theorem, one checks that

lim sup
t→∞

∣∣µD
it − µD

Ikt

∣∣ = lim sup
t→∞

|fi(t)− fIk(t)| ,

where

fi(t) =
1√

(αi2 + ξ) t

(
σDαi2B

i1(t)− σµ (φφi − 1)Bi2(t) + σµφi

√
1− φ2Bi3(t)

)
.

Here, Bi1(t), Bi2(t) and Bi3(t) denote three independent Brownian motions. By

applying further the DDS Theorem, we can rewrite

(7.5) fi(t) =
1√

(αi2 + ξ) t
B(i) (lit) ,

where B(i)(t) is a Brownian motion, and

li =
(
σDαi2

)2
+ (σµ)

2
(1− φφi)

2
+ (σµφi)

2 (
1− φ2

)
.

Finally, one checks that lim supt→∞ |fi(t)− fIk(t)| = ∞ by using the law of iterated

logarithm and (7.5) combined with the fact that li
αi2+ξ = −2ξσD+2(σD)2

ξ2+(σµ/σD)2(1−φφi)

2
√

ξ2+(σµ/σD)2(1−φ2
i )
.

This completes the proof of Theorem 7.2. �

7.2. Interest Rate. Analogously to Theorem 7.2, we analyze in the next statement

the asymptotics of the interest rate in heterogeneous economies.

Theorem 7.3. (i) We have

lim
t→∞

|rt − rIK t| = 0.

(ii) If γi = γIK , βi = βIK , and φi = φIK , for some i 6= IK , then

lim
t→∞

(rt − rit) = ρIK − ρi + γIK
(
µIK − µi

)
.

If at least one of the conditions: γi = γIK , βi = βIK and

ξ2 +
(
σµ/σD

)2
(1− φφi)

2

√
ξ2 + (σµ/σD)

2
(1− φ2

i )
=

ξ2 +
(
σµ/σD

)2
(1− φφIK )

2
√
ξ2 + (σµ/σD)

2 (
1− φ2

IK

)

does not hold, for some i 6= IK , then

lim sup
t→∞

|rt − rit| = +∞.
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Proof of Theorem 7.3. (i) By definition, we have

rt − ωitrit =
N∑

j=1,j 6=IK

ωjtrjt +
1

2

N∑

j=1

(1− 1/γj)ωjt (θjt − θt)
2 ,

for all i = 1, ..., N. We start with treating the second term. Observe that Theorem

4.1, part (i) of Theorem 7.2, (7.4) and (7.2), imply that

N∑

j=1

(1− 1/γj)ωjt (θjt − θt)
2 ≤ e−a′t,

for some constant a′ > 0. Next, note that (7.2) yields

N∑

j=1,j 6=IK

|ωjtrjt| ≤
N∑

j=1,j 6=IK

e−ajt |rjt| .

As in the proof of Theorem 4.1, one can check that lim supt→∞
rjt
t < +∞, for all

j = 1, ..., N , and thus we conclude that

|rt − ωIKtrIK t| ≤ e−a′t,

for some constant a′ > 0. Finally, the proof of item (i) is accomplished by employing

the inequality |rt−rIK t| ≤ |rt−ωIKtrIK t|+rIK t|1−ωIKt| combined with the fact that

1 =
∑N

j=1 ωjt, (7.2) and the fact that lim supt→∞
rjt
t < +∞, for all j = 1, ..., N .

(ii) If φi = φIK , γi = γIK and βi = βIK , for some i 6= IK , the claim follows by

combining part (i) with the fact that

|rit − rIK t| =
∣∣ρIK − ρi + γIK

(
µD
IK t − µD

it

)∣∣ .

Now, if at least one of the indicated conditions, fails for some i 6= IK , the proof is

in the same spirit as the one of item (ii) of Theorem 7.2. The only distinction is as

follows. If λ = ξ, one can check that the problem can be reduced to proving that

(7.6) lim sup
t→∞

e−λt

(
σD

∫ t

0

eλudW (1)
u +

∫ t

0

∫ s

0

eλudW (2)
u ds

)
= +∞.

If λ = 0, we need to prove that

lim sup
t→∞

(
σDW

(1)
t +

∫ t

0

W (2)
s ds

)
= +∞.

Let G : C0 ([0, 1];R) → R be a functional given by G(f) =
∫ 1

0
f(x)dx. Note that G

is continuous, since |G(f)−G(g)| ≤ ||f − g||∞ holds for all f, g ∈ C0 ([0, 1];R). By

Strassen’s functional law of iterated logarithm, we have

lim sup
N→∞

G

(
1√

2N log logN
W

(2)
Nx

)
= lim sup

N→∞

∫ N

0 W
(2)
u du

N3/2
√
2 log logN

= max
f∈K(1)

G(f),

where the subspace K(1) is given in Definition 5.4. Note that maxf∈K(1) G(f) ≥
G(f0) > 0, where f0(x) = x. The preceding observation combined with the fact
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limt→∞
W

(1)
t

t3/2
√
log log t

= 0 asserts that (7.6) holds for λ = 0. Now, assume that

λ 6= 0. By the DDS Theorem, (7.6) is equivalent to

lim sup
t→∞

e−λt

(
σDB(1)

(
e2λt − 1

2λ

)
+

∫ t

0

B(2)

(
e2λs − 1

2λ

)
ds

)
= +∞,

where B(1) and B(2) denote two standard independent Brownian motions. By a

change of variables, the claim is equivalent to

(7.7) lim sup
t→∞

1√
t

(
σDB(1)(t) +

∫ t

0

B(2)(u)

1 + 2λu
du

)
= +∞.

The LIL yields limt→∞

∫ t
1

B(1)(u)
u(1+2λu)

du
√
t

= 0, and thus (7.7) can be rewritten as

(7.8) lim sup
t→∞

1√
t

(
σDB(1)(t) +

1

2λ

∫ t

1

B(2)(u)

u
du

)
= +∞.

Fix some 0 < ε < 1. Consider the functional H : C0

(
[0, 1];R2

)
→ R, which is given

by

H(f, g) := σDf(1) +
1

2λ

∫ 1

ε

g(u)

u
du.

Note that H is continuous, since
∣∣∣H(f, g)−H(f̂ , ĝ)

∣∣∣ ≤ σD||f− f̂ ||∞− log ε
2λ ||g− ĝ||∞

is satisfied for all f, g, f̂ , ĝ ∈ C0

(
[0, 1];R2

)
. Next, Strassen’s functional law of

iterated logarithm yields

lim sup
N→∞

H

(
1√

2N log logN
·
(
B(1)(Nt), B(2)(Nt)

))
= max

(f,g)∈K(2)
H (f, g) ,

where K(2) is introduced in Definition 5.4. Observe that max(f,g)∈K(2) H (f, g) ≥
H (h(x), h(x)) > 0, where h(x) = x. Therefore, we obtain that

(7.9) lim sup
N→∞

1√
2N log logN

(
σ(D)B(1) (N) +

1

2λ

∫ N

εN

B(2)(u)

u
du

)
> 0.

We claim now that

lim sup
N→∞

1√
2N log logN

(
σ(D)B(1) (N) +

1

2λ

∫ N

1

B(2)(u)

u
du

)
> 0.

Assume in a contrary that this is not the case. Then, Kolmogorov’s 0-1 law implies

that

P

(
lim sup
N→∞

1√
2N log logN

(
σ(D)B(1) (N) +

1

2λ

∫ N

1

B(2)(u)

u
du

)
> 0

)
= 0.

Therefore, by exploiting the symmetry of the Brownian motion, we obtain that

lim
N→∞

1√
2N log logN

(
σ(D)B(1) (N) +

1

2λ

∫ N

1

B(2)(u)

u
du

)
= 0,
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holds P−a.s. But, since σD and λ were arbitrary, we obtain that

lim sup
N→∞

1√
2N log logN

(
σ(D)B(1) (N) +

1

2λ

∫ N

εN

B(2)(u)

u
du

)
=

lim sup
N→∞

1√
2N log logN

((
σ(D) −√

ε
)
B(1) (N) +

1

2λ

∫ N

1

B(2)(u)

u
du

+B̃(1) (εN)− 1

2λ

∫ εN

1

B(2)(u)

u
du

)
= 0,

where B̃(1) (t) =
√
εB(1)

(
t
ε

)
is a Brownian Motion (independent of B(2)), and ε > 0

is sufficiently small. This is a contradiction to (7.9) proving (7.7). �
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[5] Cvitanić, J., Jouini, E., Malamud, S., Napp, C.: Financial markets equilibrium with

heterogeneous agents. To appear in Rev. Finance

[6] Chan, Y.L., Kogan, L.: Catching up with the Joneses: Heterogeneous preferences and

the dynamics of asset prices. J. Pol. Econm. 110, 1255-1285 (2002)
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