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Pricing of average strike Asian call option using numerical PDE methods
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Abstract

In this paper, a standard PDE for the pricing of arithmetierage strike Asian call option is pre-
sented. A Crank-Nicolson Implicit Method and a Higher Or@ampact finite difference scheme for
this pricing problem is derived. Both these schemes werdemented for various values of risk free
rate and volatility. The option prices for the same set ofigalof risk free rate and volatility was also
computed using Monte Carlo simulation. The comparativalte®f the two numerical PDE methods
shows close match with the Monte Carlo results, with the EigBrder Compact scheme exhibiting a
better match. To the best of our knowledge, this is the firskwo use the numerical PDE approach for
pricing Asian call options with average strike.
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1 Introduction

Options are one of the most common financial derivativesateatraded both in exchanges as well as over
the counter(],12,13,14]. The two most common options are theiaan and the American options. The
purchase or sale of the underlying asset for the option faleee at the discretion of the holder of the option
for a price called the exercise price or the strike price atedftime called expiration time (denoted By in
case of European option and any timé(n7’| in case of American option. Options can be further classified
as call or put depending whether the holder has the rightyoobthe right to sell the underlying asset. In
addition there are numerous other options that can broaaiyldssified as exotic options! [1,[2,5, 6]. The
specialty of these kinds of options is that the final payofhi@re sophisticated and sometimes depends on
some function of the path of prices of underlying asset. rieeocommon path dependent exotic options
is the Asian option([1,12,]%,6] 7], whose payoff depends oratlezage historical stock prices. In this paper,
we will focus on pricing of an Asian call option with arithnietiverage strike.

We begin with the assumption that the stock priSés) follow a geometric Brownian motion given by
the stochastic differential equatidn [1[2[5. 5, 7],

dS(t) = rS(t)dt + oS(t)dW (t),
wherer is the average rate of growth of asset prices or drifis the volatility andiV (¢)(0 < ¢t < T)is a
Brownian motion or Wiener process under the risk neutralsues. The payoff for an Asiarcall option
[1,[2,[8,6]7], with arithmetic average strike is given by,

T
V(T) =max | S(T) — % /S(u)du,O
0
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The price of the option at timee [0, T'] (with filtration F3) is given by the risk-neutral pricing formulal[7],
V() = B (7 TIVD)|R).

In order to deal with the challenge of the pay®f{7’) being path-dependent we introduce a stochastic
procesd (t) [2,[7] given by,

I(t) = /S(u)du.
0

The stochastic differential equation for evolutiondf) is thus given by,

Thus the Asian call option pric& (S, I,t) for continuous arithmetic average strike satisfies the Wwaod
PDE [2,6]7], ,
oV oV 1 5 ,0°V oV B

Note that the above problem is three dimensional which l¢adgeater computational costs. This moti-
vates the reduction of the problem into lower dimensidn.. [Br this purpose, a new variabR(t) =
% fot S(u)du is defined[[2[_B]. This in turn motivates the ans&teS, I,t) = S - H(R,t) for some func-
tion H(R,t). It can be shown that the SDE satisfied Bit) is [6],

dR(t) = (1 + (0% — p)R(t)) dt — o R(t)dW (2).
Also the functionH (R, t) satisfies the PDE [6],

OH 1 5 ,0°H OH
4= 4 (1- — =0.
8t+20R8R2+( rR)aR 0
The solution of this backward PDE requires a final conditiod avo boundary conditions which are out-

lined below [2]6].

i. Final Condition : The final payoff for the option gives the final condition,
1
H(R(T),T) = max <1 - TR(T)’ 0> .

ii. Right Hand Boundary Condition The right hand boundary condition fét — oo can be obtained by
observing that since the integrBl¢) is bounded, s& — 0 for R — oo. For S — 0 the option is not
exercised rendering it's value to beHence,

H(R,t) =0for R — oo.

iii. Left Hand Boundary Condition The left hand boundary condition fd&¢ — 0 can be obtained from
the similarity reduction equation. The tetROH/0R — 0 asR — 0. Assuming that is bounded it
follows that the termR20?H/0R? — 0 asR — 0. This leads to the boundary condition,

OH OH
E‘Fﬁ—@fOl’R-}O.



The problem to be solved now reduces to,

OH 1 5 ,0°H OH

subject to,

H(R(T),T) = max (1 - @,0)

OH O0H
E‘l‘ﬁ = 0forR—0 D

H = 0,forR— .

Once the solutiorf/ (R, t) is obtained the price of the Asian option is determined by,

whereS(0) is the initial stock price. For pricing of options (espelsiaxotic options) the standard method
used is Monte Carlo simulation![8] 9,110]. This involves siating the paths of the underlying asset and
calculating the option price based on this path. A large remalb such simulations are run and the average
of the option prices from each simulation is taken to be th@apprice. Several methodologies have been
adopted for pricing of options using the numerical PDE appho Some of the most commonly used ones
are finite differences of lower ordér [11,112] 13} 14] and kigbrder compact schemes for American options
[15],[16] and option pricing in stochastic volatility modéf].

2 Crank Nicolson Implicit Method

The problem of pricing the average strike Asian call optissestially entails solving for equatidd (1). While
geometric mean Asian option admits closed form solutiofjstf® same is not true in case of arithmetic
average Asian options. As such one has to seek a solutiomgihmumerical methods for PDESs [12]. There
are several articles in literature which dwell upon nunarRDE approach to Asian option pricing. One of
the first papers to deal with numerical PDE pricing of optiaby Rogers and Shi[11]. In this paper, the
authors first reduce the problem of solving a parabolic PD&vimvariables and present a highly accurate
lower bound. Zvan et al[ [13] in their technical report, doextensive analysis of numerical PDE methods
of Asian options. They discuss the shortcomings of applyfregusual numerical PDE techniques used for
standard options in case of Asian options. In particulay tmapt flux limiting techniques from computa-
tional fluid dynamics (CFD) to tackle the problem of spuriassillations that arise in Asian options. Vecer
[12] provided a numerical implementation of the Asian opticing problem using thé method. Dubois
and Lelievre[[14] extend the approach by Rogers and[Shi [Ad]mopose a scheme which produced fast
and accurate results. While all these papers[[11], 12, 13dd 4kamine the pricing problem from the nu-
merical PDE point of view, the focus is mostly on fixed strikgions. Rogers and SHi[11] and Zvan et al.
[13] present some results on average strike put options.

Our main objective in this paper will be to use Higher Ordem@act (HOC) scheme for this purpose.
We will postpone the discussion on this until the next sectim this section we will present the Crank-



Nicolson Implicit Method (CNIM) for solving equatioi](1) drcompare the results with those obtained by
Monte Carlo simulation [18].

CNIM is obtained by taking the average between Forward-T@eatered-Space method (FTCS) and
Backward-Time Centered-Space method (BTCS). For thisquerplet us define a finite difference dis-
cretization of the PDE (equatidd(1)) with the uniform gtid=¢; + (n — 1) - Ay,n =1 : N + 1 and
Ri=Ry+(i—1)-Ap,i=1: M+ 1, whereA; andAp, are the temporal and spatial mesh size respec-
tively. The values used in this paper @fe= 0 andiy., = T = 1 (i.e 1 year option) withR; = 0 and
Rurq1 = 5. Let us also define the variable§R) = $02R? andd(R) = (1 — rR). H(R,t) at the point
(Ri,t,) is denoted by". The CNIM discretization of equatiohl(1) is then given by,

HY -Hp o [HESH <Hf+1 + H> L H A Hﬁ_ll

A A% 2 2 2
1 1
i d |HiN +HEy _ HP + HE _0 @
2AR 2 2
The above can now be rewritten as,
G;H].\ + K;H]' + J;H}' | = D;H'\' + E;H"™" + F;H]'"! ()
where,
C; d; Cj d;
G — — _ D, —
‘T TOAL 1A, "= 3AZ TIAg
C; 1 C; 1
K; = — + — E; = ——— + —
! A%% At ! A%% At
C; d; & d;
J= ——= = — — .
‘T T3AZ TIAg "= 3AZ T IAL

Let us define the vector,
H™ = (Hy H} HY HY,... HY,) forn=1:N+1.

The CNIM can now be written in the matrix form as,

BH®™ = AHMD 4 p(n), )
where,
Ey Dy 0 ... 0
F3 E3 D3
A=\ o . . " 0
: - Dyrq
0o ... 0 Fy FEy



and

Ky Gy 0 ... 0
J3 K3 G3

B=1|o . . - 0
: Gy
0 ... 0 Ju Ky

BHM — LH}

pn) —

Dy Hy — GuHyy
From second order finite differences, the one-sided diffezds given by,

OH| —Hi2+4H;y1 —3H;

il 2
IR |, 2A R +O(AR).

Therefore, applying the same on the left boundary along battkward time approximation we get,

HY = (1 - 3k)H}™ + dkHIT — kHFH,

ﬁtR' The right boundary7y, . ; = 0 follows from equation[{). The final condition is given by,

R\ T
HNT = (1-2) .
r=(-7)

wherek =

The CNIM formulation above was solved using MatPR8M. The solution was obtained using an iterative
process which involved a tolerance criterion|éfpew(1,1) — Hoid(1,1)| < €. For the purpose of this
implementation the number of time and space grid points waken to bel01 and501 respectively. The
tolerance level was taken to be= 1075,

3 Higher Order Compact Scheme

Finite difference methods have been used for solving ODERIDEH problems for quite a long time. They
are relatively easier to set up and solve, but require stredtmesh[[19, 20]. Finite element methods on
the contrary are more sophisticated, works well with irtegulomains and are amenable to unstructured
meshes. Finite element methods are relatively more clgafigrto implement. Standard finite difference
schemes like the CNIM (used in the previous section) arergkooder accurate. However, in financial
applications like option pricing a higher level of accurasydesirable. A direct extension of the central
difference schemes to achieve higher order accuracy woutilvie more node points on the stencil. An
innovative way of achieving higher accuracy with lesser hanof nodes in the stencil came by the way of
higher order compact (HOC) schemes. Spotz and Caréy [195potk [20] provide an excellent discourse
on application of this scheme in case of viscous flow and caatipmal mechanics.



r— | 0.06 0.06 0.1 0.1 0.2 0.2
ol | CNIM MC CNIM MC CNIM MC

0.05 | 3.5025 3.1509 5.1148 | 4.8734 9.3988 9.3486
(0.375339)| (4.511535)| (0.365693)| (4.492267)| (0.344431)| (4.556745)
0.1 |4.1353 | 4.0124 5.5629 5.4183 9.5333 9.433
(0.117604)| (4.505087)| (0.11831) | (4.489719)| (0.117648)| (4.53052)
0.2 |6.1337 6.1172 7.2951 7.2625 10.547 10.4894
(0.117679)| (4.490006)| (0.117177)| (4.481982)| (0.117271)| (4.530701)
0.3 |8.3256 8.3155 9.3669 9.3484 12.2035 | 12.163
(0.11757) | (4.490814)| (0.117839)| (4.518666)| (0.118941)| (4.500043)
0.4 |10.5403 | 10.5358 | 11.5081 | 11.4952 | 14.0885 | 14.0581
(0.12389) | (4.483286)| (0.117663)| (4.483686)| (0.116222)| (4.490074)

Table 1: Comparison between Monte Carlo Simulation (MC)@rahk Nicolson Implicit Method (CNIM).
The values in braces represent the CPU time in seconds. ifia stock price wasS(0) = 100.

Despite it's enormous potential of application to financelpems, HOC schemes have not been used
much in this area. Zhao et al. [21] presented a compact scham#enerican option pricing with second
order accuracy in space. Tangman et al.| [15, 16] applied a B&M€me for the pricing of American put
option. They do a comparative [15] analysis with a non-corhfaurth order scheme. In their subsequent
paper they describe an improvement of a method suggestedbyitl Wul[22]. In this chapter we shall
apply HOC scheme to the setuip (1) which is written in the feilte form [18],

*H OH

C(R)m + d(R)ﬁ =g

(®)

wherec(R) andd(R) are as defined in the previous section ane- —%—If. We now define notation

[19,[20,23] as follows, )
. 9f 2 .0
rl=5g  OrS= gpe

Thus rewriting Equatior{5) in terms of finite differenceatistization we get,

and so on.

iR H; + didpH; = g; (6)

In the HOC scheme we derive the leading truncation errorgénrterms of finite difference equation making
use of the original equation. Denoting these terms iyhe HOC scheme is obtained by subtractinigack
to the original finite difference discretization. Thus weda

ciOnH; + didpH; — 73 = g; (7)

where,

AL O'H OP*H 4



From the initial PDE[{Il) we get,
dc O°H  93H  0d OH d82H 0Oy

R — — = 9
orRorz "o T oror T Yorz T oR ©)
Therefore this can be rewritten dnotation as,
O*H 1 ) 5 1
W ) = _C_Z' |:5Rci5RHi + 5Rdi5RHi + diéRHZ’ + C—iéRgi (10)
Differentiating the PDEL(9) w.r.tkR once more and simplifying we get,
@82H+2@83H+684H+82d8_H+2@82H+d83H_ 0%g (11)
OR? OR? OR OR3 OR*  0OR20OR OR OR? OR3  OR?
which can be written id-notation as,
c-a4_H = —0%gi + 0%ci0%H; + 6%d;0r H; + 20 pd;0% H;
28R4-_ RYi RCiOR11; RWiOR1L1g RWOpily
+ (5Rg,- — (5RCZ‘(5RHZ' — 5Rdi5RH d; 5RH) (12)
(&
d;

+ (0rgi — Orci6fH; — 6pdidpH; — di6H;) —

Making use of approximations in equatidn10) and equafld) i{n the truncation errorrf) (equation[(B))
and hence substituting in equation[(¥V) we obtain,

A2, 2 AZd; A2 rA% A2 A2

2 2 R™ R 2 R R 4 2 R 2

Hilei+—>— i —0" — 0 R,
On [C T T e TR T e g W0 R

TA2 d; 1A% %R,
+0rH; [di - 1212 + 6R - } (13)
A2 A2 d; A2
= { R5R+ 12 o 5R— 6:(0231')551] gi

Note that,c; = §J2RZZ = 0grci =0 RZ’, 5%%61 = g2 andd; =1 —-rR; = Ord; = -, ég%dz =0.
We define,

AZ d? A%Ld; A2 rAZ A2 A
A, = |+ 2R% SRyo Sk SRoapy  SRgoop
[C+12ci+UR12 TR T8 6’ T 6 R
rA%d;  rA% o%R;
B, = |di— 2~ RZ %
[ 12¢; N 6 ¢ ]
ARd AR At At
Fll == i) s kl = —5 = .
24 G 12c,( R) 2A%% 4AR

We now apply the HOC scheme to the above equation (recaliaty t= —%—’j) and obtain,

k1 (Hsz:rl1 2HP + HIH + HYy — 2H] + H}' ) A;
+ k2(HN - H'Y' + HY - HL) By

i+1
2 n+1l n+1 n+1
A2 [HPA = 2HF! 4 HIY,

_ (_pntt ny _ i+1
- (Hz +Hz) 12 A%%
L AL [HE. - 2HY 4 HE,

12 A%

- [Hzrfll H?—Jrll] + F'1; [ z'n+1 - z‘n—l] (14)



The above can now be rewritten as,

GiH!'y + K;H! + L;H' | = D;H!"' + E;H!'' + FHM! (15)
where,
1 1
) )
1 1
Ji:—klAi—l-kQBi-l-E—Fli FZ':]flAi—kQBi-l-E—Fli.

The implicit method can be written in the matrix form,
BH™ = AH™+D 4 p()

where H(™ A, B andb(™ has already been defined in the previous section. As withake of CNIM the
number of time and space grid points were taken td(eand 501 respectively along with the tolerance
level of e = 10~%. The scheme was implemented using MatpabM.

r— | 0.06 0.06 0.1 0.1 0.2 0.2

o] | HOC MC HOC MC HOC MC

0.05 | 3.1391 | 3.1509 | 4.8784 |4.8734 [ 93449 | 9.3486
(0.393252)| (4.511535)| (0.385447)| (4.492267)| (0.367639)| (4.556745)
0.1 |3.8929 |4.0124 |[53592 |5.4183 9.4385 | 9.433
(0.127529)| (4.505087)| (0.130137)| (4.489719)| (0.125133)| (4.53052)
02 |59919 |6.1172 7.1641 | 7.2625 10.4486 | 10.4894
(0.121434)| (4.490006)| (0.121898)| (4.481982)| (0.125619)| (4.530701)
0.3 | 8.2462 |8.3155 9.2902 | 9.3484 12.1361 | 12.163
(0.123275)| (4.490814)| (0.125051)| (4.518666)| (0.125488)| (4.500043)
04 | 10.4921 |10.5358 | 11.4607 |11.4952 | 14.0444 | 14.0581
(0.12519) | (4.483286)| (0.120896)| (4.483686)| (0.120095)| (4.490074)

Table 2: Comparison between Monte Carlo Simulation (MC) Higher Order Compact Scheme (HOC).
The values in braces represent the CPU time in seconds. ifia stock price wasS(0) = 100.

4 Resultsand Discussion

In this section we discuss the results obtained by using td/Gnd the HOC schemes as outlined in the
previous two sections. As already noted we could not find asults for average strike Asian call option
using numerical PDE methods. For the purpose of comparisonsed the Monte Carlo (MC) simulation
as the benchmark value. We generated the path of a stocls prgieg the geometric Brownian motion



process. We generatéd000 such paths and determined the option price from each of ttis g&nerated.
The average of all these option prices was taken to be theroptiice, for the purpose of comparison
with the PDE methods. We generated the option prices usindpalthree methods for three values of
r = 0.06,0.1,0.2 and five values of = 0.05,0.1,0.2,0.3,0.4.

A comparative study of results from the CNIM and the MC methsdowed a close match. The com-
parative results are presented in Tdble 1 along with the @R&Jih seconds. The option prices for the three
values ofr against the five values of have been presented in the graphical form in Figlres[(Lar{@)X3).
Forr = 0.06 (Figure [1)), the match was very close except the case wherd).05. This slight difference
in the option price is reduced when= 0.1 (Figure [2)). The other values for= 0.1 showed a close match.
The results were similar for the cagse= 0.2 except for a very minimal difference in the casecof= 0.1
(Figure [3)). The CPU time in case of CNIM was however consibly lower < 0.5 seconds) as compared
with the Monte Carlo simulationX 4 seconds).

The results and comparison of the HOC scheme and the MC maibarhtes excellent consonance.
A comparison of the results from these two methods in termgbfes and CPU time in seconds have
been presented in a tabular form in Table 2. The option pficea both the methods are very close to
each other. In fact the results obtained from the HOC schémme a better match with the MC simulation
results as compared with the CNIM method. This holds fortadl values of- ando and is evident from
the comparative figures (Figurés (4), (%), (6)) of HOC and M€was the case with CNIM, the CPU time
taken in case of the HOC scheme is significantly les®.6 seconds) in contrast to Monte Carlo simulation
which requires at leagt seconds.

5 Conclusion

In this paper we examined several ways of computing the mican average strike Asian call option,
namely Monte Carlo simulation and the numerical PDE apgrohtcase of option pricing, the benchmark
generally used is Monte Carlo simulation which suffers freome severe drawbacks like computational
costs and a certain amount of uncertainty of pricing. In@stt the usage of numerical PDE approaches
that we have taken results in lesser computational costslangrovides an unique answer. The numerical
PDE approach in pricing the average strike Asian call opigdoy and large an unexplored area, since this
approach applied to Asian option is mostly concentratechercase of fixed strike. In this paper, we take
the PDE approach to the pricing problem and present two sefi¢onaccomplish this numerically. Firstly,
we use the Crank-Nicolson Implicit Method (which is seconden) to solve the PDE and hence price the
option. Then, we present a Higher Order Compact schemetlifauder) to solve the problem. Finally
we make a comparison of results obtained from the PDE appradéb that of Monte Carlo. The results
obtained using the two PDE techniques were in excellenteageat with the Monte Carlo results. The
results obtained using Higher Order Scheme are closer tivitihhge Carlo results as opposed to Crank-
Nicolson Implicit method vis-a-vis Monte Carlo. This is ne®o in case of lower values of To the best of
our knowledge, this is the first work to use the numerical Ppgreach for pricing Asian call options with
average strike. We believe this work would find more applicet in the area of option pricing through the
PDE approach.
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Figure 1: Comparison between Monte Carlo Simulation (M@) @rank Nicolson Implicit Method (CNIM)
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Figure 2: Comparison between Monte Carlo Simulation (M@) @rank Nicolson Implicit Method (CNIM)
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Comparison between Crank Nicolson and Monte Carlo for r=0.2
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Figure 3: Comparison between Monte Carlo Simulation (M@) @rank Nicolson Implicit Method (CNIM)
for r=0.2
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Figure 4: Comparison between Monte Carlo Simulation (M@ Higher Order Compact Scheme (HOC)
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Comparison between Higher Order Compact and Monte Carlo for r=0.1
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Figure 5: Comparison between Monte Carlo Simulation (M@ Higher Order Compact Scheme (HOC)
forr=0.1

Comparison between Higher Order Compact and Monte Carlo for r=0.2
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Figure 6: Comparison between Monte Carlo Simulation (M@ Higher Order Compact Scheme (HOC)
for r=0.2
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