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Abstract
In this paper, a standard PDE for the pricing of arithmetic average strike Asian call option is pre-

sented. A Crank-Nicolson Implicit Method and a Higher OrderCompact finite difference scheme for

this pricing problem is derived. Both these schemes were implemented for various values of risk free

rate and volatility. The option prices for the same set of values of risk free rate and volatility was also

computed using Monte Carlo simulation. The comparative results of the two numerical PDE methods

shows close match with the Monte Carlo results, with the Higher Order Compact scheme exhibiting a

better match. To the best of our knowledge, this is the first work to use the numerical PDE approach for

pricing Asian call options with average strike.
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1 Introduction

Options are one of the most common financial derivatives thatare traded both in exchanges as well as over

the counter [1, 2, 3, 4]. The two most common options are the European and the American options. The

purchase or sale of the underlying asset for the option takesplace at the discretion of the holder of the option

for a price called the exercise price or the strike price at a fixed time called expiration time (denoted byT ) in

case of European option and any time in[0, T ] in case of American option. Options can be further classified

as call or put depending whether the holder has the right to buy or the right to sell the underlying asset. In

addition there are numerous other options that can broadly be classified as exotic options [1, 2, 5, 6]. The

specialty of these kinds of options is that the final payoff ismore sophisticated and sometimes depends on

some function of the path of prices of underlying asset. One of the common path dependent exotic options

is the Asian option [1, 2, 5, 6, 7], whose payoff depends on theaverage historical stock prices. In this paper,

we will focus on pricing of an Asian call option with arithmetic average strike.

We begin with the assumption that the stock pricesS(t) follow a geometric Brownian motion given by

the stochastic differential equation [1, 2, 5, 6, 7],

dS(t) = rS(t)dt+ σS(t)dW (t),

wherer is the average rate of growth of asset prices or drift,σ is the volatility andW (t)(0 ≤ t ≤ T ) is a

Brownian motion or Wiener process under the risk neutral measureP. The payoff for an Asiancall option

[1, 2, 5, 6, 7], with arithmetic average strike is given by,

V (T ) = max



S(T )−
1

T

T
∫

0

S(u)du, 0



 .
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The price of the option at timet ∈ [0, T ] (with filtration Ft) is given by the risk-neutral pricing formula [7],

V (t) = E
(

e−r(T−t)V (T )|Ft

)

.

In order to deal with the challenge of the payoffV (T ) being path-dependent we introduce a stochastic

processI(t) [2, 7] given by,

I(t) =

t
∫

0

S(u)du.

The stochastic differential equation for evolution ofI(t) is thus given by,

dI(t) = S(t)dt.

Thus the Asian call option priceV (S, I, t) for continuous arithmetic average strike satisfies the backward

PDE [2, 6, 7],
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+ S

∂V

∂I
− rV = 0.

Note that the above problem is three dimensional which leadsto greater computational costs. This moti-

vates the reduction of the problem into lower dimension. [2]. For this purpose, a new variableR(t) =
1

S(t)

∫

t

0 S(u)du is defined [2, 6]. This in turn motivates the ansatzV (S, I, t) = S ·H(R, t) for some func-

tion H(R, t). It can be shown that the SDE satisfied byR(t) is [6],

dR(t) =
(

1 + (σ2 − µ)R(t)
)

dt− σR(t)dW (t).

Also the functionH(R, t) satisfies the PDE [6],

∂H

∂t
+

1

2
σ2R2∂

2H

∂R2
+ (1− rR)

∂H

∂R
= 0.

The solution of this backward PDE requires a final condition and two boundary conditions which are out-

lined below [2, 6].

i. Final Condition :The final payoff for the option gives the final condition,

H(R(T ), T ) = max

(

1−
1

T
R(T ), 0

)

.

ii. Right Hand Boundary Condition :The right hand boundary condition forR → ∞ can be obtained by

observing that since the integralR(t) is bounded, soS → 0 for R → ∞. ForS → 0 the option is not

exercised rendering it’s value to be0. Hence,

H(R, t) = 0 for R → ∞.

iii. Left Hand Boundary Condition :The left hand boundary condition forR → 0 can be obtained from

the similarity reduction equation. The termR∂H/∂R → 0 asR → 0. Assuming thatH is bounded it

follows that the termR2∂2H/∂R2 → 0 asR → 0. This leads to the boundary condition,

∂H

∂t
+

∂H

∂R
= 0 for R → 0.



The problem to be solved now reduces to,

∂H

∂t
+

1

2
σ2R2∂

2H

∂R2
+ (1− rR)

∂H

∂R
= 0.

subject to,

H(R(T ), T ) = max

(

1−
R(T )

T
, 0

)

∂H

∂t
+

∂H

∂R
= 0 for R → 0 (1)

H = 0 , for R → ∞.

Once the solutionH(R, t) is obtained the price of the Asian option is determined by,

V (S(0), R(0), 0) = S(0)H(R(0), 0),

whereS(0) is the initial stock price. For pricing of options (especially exotic options) the standard method

used is Monte Carlo simulation [8, 9, 10]. This involves simulating the paths of the underlying asset and

calculating the option price based on this path. A large number of such simulations are run and the average

of the option prices from each simulation is taken to be the option price. Several methodologies have been

adopted for pricing of options using the numerical PDE approach. Some of the most commonly used ones

are finite differences of lower order [11, 12, 13, 14] and higher order compact schemes for American options

[15, 16] and option pricing in stochastic volatility model [17].

2 Crank Nicolson Implicit Method

The problem of pricing the average strike Asian call option essentially entails solving for equation (1). While

geometric mean Asian option admits closed form solutions [8], the same is not true in case of arithmetic

average Asian options. As such one has to seek a solution through numerical methods for PDEs [12]. There

are several articles in literature which dwell upon numerical PDE approach to Asian option pricing. One of

the first papers to deal with numerical PDE pricing of optionsis by Rogers and Shi [11]. In this paper, the

authors first reduce the problem of solving a parabolic PDE intwo variables and present a highly accurate

lower bound. Zvan et al. [13] in their technical report, do anextensive analysis of numerical PDE methods

of Asian options. They discuss the shortcomings of applyingthe usual numerical PDE techniques used for

standard options in case of Asian options. In particular they adapt flux limiting techniques from computa-

tional fluid dynamics (CFD) to tackle the problem of spuriousoscillations that arise in Asian options. Vecer

[12] provided a numerical implementation of the Asian option pricing problem using theθ method. Dubois

and Lelievre [14] extend the approach by Rogers and Shi [11] and propose a scheme which produced fast

and accurate results. While all these papers [11, 12, 13, 14]do examine the pricing problem from the nu-

merical PDE point of view, the focus is mostly on fixed strike options. Rogers and Shi [11] and Zvan et al.

[13] present some results on average strike put options.

Our main objective in this paper will be to use Higher Order Compact (HOC) scheme for this purpose.

We will postpone the discussion on this until the next section. In this section we will present the Crank-



Nicolson Implicit Method (CNIM) for solving equation (1) and compare the results with those obtained by

Monte Carlo simulation [18].

CNIM is obtained by taking the average between Forward-TimeCentered-Space method (FTCS) and

Backward-Time Centered-Space method (BTCS). For this purpose, let us define a finite difference dis-

cretization of the PDE (equation(1)) with the uniform gridtn = t1 + (n − 1) · ∆t, n = 1 : N + 1 and

Ri = R1 + (i − 1) ·∆R, i = 1 : M + 1, where∆t and∆R are the temporal and spatial mesh size respec-

tively. The values used in this paper aret1 = 0 andtN+1 = T = 1 (i.e 1 year option) withR1 = 0 and

RM+1 = 5. Let us also define the variablesc(R) = 1
2σ

2R2 andd(R) = (1 − rR). H(R, t) at the point

(Ri, tn) is denoted byHn
i

. The CNIM discretization of equation (1) is then given by,

Hn+1
i

−Hn
i

∆t

+
ci
∆2

R

[

Hn+1
i+1 +Hn

i+1

2
− 2

(

Hn+1
i

+Hn
i

2

)

+
Hn+1

i−1 +Hn
i−1

2

]

+
di

2∆R

[

Hn+1
i+1 +Hn

i+1

2
−

Hn+1
i−1 +Hn

i−1

2

]

= 0 (2)

The above can now be rewritten as,

GiH
n
i+1 +KiH

n
i + JiH

n
i−1 = DiH

n+1
i+1 +EiH

n+1
i

+ FiH
n+1
i−1 (3)

where,

Gi = −
ci

2∆2
R

−
di

4∆R

Ki =
ci
∆2

R

+
1

∆t

Ji = −
ci

2∆2
R

+
di

4∆R

Di =
ci

2∆2
R

+
di

4∆R

Ei = −
ci
∆2

R

+
1

∆t

Fi =
ci

2∆2
R

−
di

4∆R

.

Let us define the vector,

H(n) = (Hn
2 ,H

n
3 ,H

n
4 ,H

n
5 , . . . ,H

n
M )⊤ for n = 1 : N + 1.

The CNIM can now be written in the matrix form as,

BH(n) = AH(n+1) + b(n), (4)

where,

A =





















E2 D2 0 . . . 0

F3 E3 D3
.. .

...

0
.. . .. . .. . 0

...
.. . .. . .. . DM−1

0 . . . 0 FM EM





















.



and

B =





















K2 G2 0 . . . 0

J3 K3 G3
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . GM−1

0 . . . 0 JM KM





















.

b(n) =













F2H
n+1
1 − J2H

n
1

. . .

. . .

DMHn+1
M+1 −GMHn

M+1













.

From second order finite differences, the one-sided difference is given by,

∂H

∂R

∣

∣

∣

∣

i

=
−Hi+2 + 4Hi+1 − 3Hi

2∆R

+O(∆2
R).

Therefore, applying the same on the left boundary along withbackward time approximation we get,

Hn
1 = (1− 3k)Hn+1

1 + 4kHn+1
2 − kHn+1

3 ,

wherek = ∆t

2∆R
. The right boundaryHn

M+1 = 0 follows from equation (1). The final condition is given by,

HN+1
i

=

(

1−
Ri

T

)+

.

The CNIM formulation above was solved using MatLabSSTM . The solution was obtained using an iterative

process which involved a tolerance criterion of|Hnew(1, 1) − Hold(1, 1)| < ǫ. For the purpose of this

implementation the number of time and space grid points weretaken to be101 and501 respectively. The

tolerance level was taken to beǫ = 10−8.

3 Higher Order Compact Scheme

Finite difference methods have been used for solving ODE andPDE problems for quite a long time. They

are relatively easier to set up and solve, but require structured mesh [19, 20]. Finite element methods on

the contrary are more sophisticated, works well with irregular domains and are amenable to unstructured

meshes. Finite element methods are relatively more challenging to implement. Standard finite difference

schemes like the CNIM (used in the previous section) are second order accurate. However, in financial

applications like option pricing a higher level of accuracyis desirable. A direct extension of the central

difference schemes to achieve higher order accuracy would involve more node points on the stencil. An

innovative way of achieving higher accuracy with lesser number of nodes in the stencil came by the way of

higher order compact (HOC) schemes. Spotz and Carey [19] andSpotz [20] provide an excellent discourse

on application of this scheme in case of viscous flow and computational mechanics.



r → 0.06 0.06 0.1 0.1 0.2 0.2

σ ↓ CNIM MC CNIM MC CNIM MC

0.05 3.5025 3.1509 5.1148 4.8734 9.3988 9.3486

(0.375339) (4.511535) (0.365693) (4.492267) (0.344431) (4.556745)

0.1 4.1353 4.0124 5.5629 5.4183 9.5333 9.433

(0.117604) (4.505087) (0.11831) (4.489719) (0.117648) (4.53052)

0.2 6.1337 6.1172 7.2951 7.2625 10.547 10.4894

(0.117679) (4.490006) (0.117177) (4.481982) (0.117271) (4.530701)

0.3 8.3256 8.3155 9.3669 9.3484 12.2035 12.163

(0.11757) (4.490814) (0.117839) (4.518666) (0.118941) (4.500043)

0.4 10.5403 10.5358 11.5081 11.4952 14.0885 14.0581

(0.12389) (4.483286) (0.117663) (4.483686) (0.116222) (4.490074)

Table 1: Comparison between Monte Carlo Simulation (MC) andCrank Nicolson Implicit Method (CNIM).

The values in braces represent the CPU time in seconds. The initial stock price wasS(0) = 100.

Despite it’s enormous potential of application to finance problems, HOC schemes have not been used

much in this area. Zhao et al. [21] presented a compact schemefor American option pricing with second

order accuracy in space. Tangman et al. [15, 16] applied a HOCscheme for the pricing of American put

option. They do a comparative [15] analysis with a non-compact fourth order scheme. In their subsequent

paper they describe an improvement of a method suggested by Han and Wu [22]. In this chapter we shall

apply HOC scheme to the setup (1) which is written in the following form [18],

c(R)
∂2H

∂R2
+ d(R)

∂H

∂R
= g (5)

wherec(R) andd(R) are as defined in the previous section andg = −∂H

∂t
. We now define notationδ

[19, 20, 23] as follows,

δR f :=
∂f

∂R
, δ2R f :=

∂2f

∂R2
and so on.

Thus rewriting Equation (5) in terms of finite difference discretization we get,

ciδ
2
RHi + diδRHi = gi (6)

In the HOC scheme we derive the leading truncation error terms in terms of finite difference equation making

use of the original equation. Denoting these terms byτ , the HOC scheme is obtained by subtractingτ back

to the original finite difference discretization. Thus we have,

ciδ
2
RHi + diδRHi − τi = gi (7)

where,

τi =
∆2

R

12

(

c
∂4H

∂R4
+ 2d

∂3H

∂R3

)

+O(∆4
R) (8)



From the initial PDE (1) we get,

∂c

∂R

∂2H

∂R2
+ c

∂3H

∂R3
+

∂d

∂R

∂H

∂R
+ d

∂2H

∂R2
=

∂g

∂R
(9)

Therefore this can be rewritten inδ notation as,

∂3H

∂R3

∣

∣

∣

∣

i

= −
1

ci

[

δRciδ
2
RHi + δRdiδRHi + diδ

2
RHi

]

+
1

ci
δRgi (10)

Differentiating the PDE (9) w.r.t.R once more and simplifying we get,

∂2c

∂R2

∂2H

∂R2
+ 2

∂c

∂R

∂3H

∂R3
+ c

∂4H

∂R4
+

∂2d

∂R2

∂H

∂R
+ 2

∂d

∂R

∂2H

∂R2
+ d

∂3H

∂R3
=

∂2g

∂R2
(11)

which can be written inδ-notation as,

− ci
∂4H

∂R4

∣

∣

∣

∣

i

= −δ2Rgi + δ2Rciδ
2
RHi + δ2RdiδRHi + 2δRdiδ

2
RHi

+
(

δRgi − δRciδ
2
RHi − δRdiδRHi − diδ

2
RHi

) 2δRci
ci

(12)

+
(

δRgi − δRciδ
2
RHi − δRdiδRHi − diδ

2
RHi

) di
ci

Making use of approximations in equation (10) and equation (12) in the truncation error (τi) (equation (8))

and hence substitutingτi in equation (7) we obtain,

δ2RHi

[

ci +
∆2

R

12

d2
i

ci
+ σ2Ri

∆2
R
di

12ci
+

∆2
R

12
σ2 −

r∆2
R

6
−

∆2
R

6ci
σ4R2

i −
∆2

R

6ci
diσ

2Ri

]

+δRHi

[

di −
r∆2

R
di

12ci
+

r∆2
R

6

σ2Ri

ci

]

(13)

=

[

1 +
∆2

R

12
δ2R +

∆2
R

12

di
ci
δR −

∆2
R

6ci
(σ2Ri)δR

]

gi

Note that,ci = 1
2σ

2R2
i
⇒ δRci = σ2Ri, δ

2
R
ci = σ2 anddi = 1− rRi ⇒ δRdi = −r, δ2

R
di = 0.

We define,

Ai =

[

ci +
∆2

R

12

d2
i

ci
+ σ2Ri

∆2
R
di

12ci
+

∆2
R

12
σ2 −

r∆2
R

6
−

∆2
R

6ci
σ4R2

i −
∆2

R

6ci
diσ

2Ri

]

Bi =

[

di −
r∆2

R
di

12ci
+

r∆2
R

6

σ2Ri

ci

]

F1i =
∆R

24

di
ci

−
∆R

12ci
(σ2Ri) , k1 =

∆t

2∆2
R

, k2 =
∆t

4∆R

.

We now apply the HOC scheme to the above equation (recalling thatg = −∂H

∂t
) and obtain,

k1
(

Hn+1
i+1 − 2Hn+1

i
+Hn+1

i−1 +Hn
i+1 − 2Hn

i +Hn
i−1

)

Ai

+ k2
(

Hn+1
i+1 −Hn+1

i−1 +Hn
i+1 −Hn

i−1

)

Bi

=
(

−Hn+1
i

+Hn
i

)

−
∆2

R

12

[

Hn+1
i+1 − 2Hn+1

i
+Hn+1

i−1

∆2
R

]

+
∆2

R

12

[

Hn
i+1 − 2Hn

i
+Hn

i−1

∆2
R

]

− F1i
[

Hn+1
i+1 −Hn+1

i−1

]

+ F1i
[

Hn
i+1 −Hn

i−1

]

(14)



The above can now be rewritten as,

GiH
n
i+1 +KiH

n
i + JiH

n
i−1 = DiH

n+1
i+1 +EiH

n+1
i

+ FiH
n+1
i−1 (15)

where,

Gi = −k1Ai − k2Bi +
1

12
+ F1i

Ki = 2k1Ai +
5

6

Ji = −k1Ai + k2Bi +
1

12
− F1i

Di = k1Ai + k2Bi +
1

12
+ F1i

Ei = −2k1Ai +
5

6

Fi = k1Ai − k2Bi +
1

12
− F1i.

The implicit method can be written in the matrix form,

BH(n) = AH(n+1) + b(n),

whereH(n), A,B andb(n) has already been defined in the previous section. As with the case of CNIM the

number of time and space grid points were taken to be101 and501 respectively along with the tolerance

level of ǫ = 10−8. The scheme was implemented using MatLabSSTM .

r → 0.06 0.06 0.1 0.1 0.2 0.2

σ ↓ HOC MC HOC MC HOC MC

0.05 3.1391 3.1509 4.8784 4.8734 9.3449 9.3486

(0.393252) (4.511535) (0.385447) (4.492267) (0.367639) (4.556745)

0.1 3.8929 4.0124 5.3592 5.4183 9.4385 9.433

(0.127529) (4.505087) (0.130137) (4.489719) (0.125133) (4.53052)

0.2 5.9919 6.1172 7.1641 7.2625 10.4486 10.4894

(0.121434) (4.490006) (0.121898) (4.481982) (0.125619) (4.530701)

0.3 8.2462 8.3155 9.2902 9.3484 12.1361 12.163

(0.123275) (4.490814) (0.125051) (4.518666) (0.125488) (4.500043)

0.4 10.4921 10.5358 11.4607 11.4952 14.0444 14.0581

(0.12519) (4.483286) (0.120896) (4.483686) (0.120095) (4.490074)

Table 2: Comparison between Monte Carlo Simulation (MC) andHigher Order Compact Scheme (HOC).

The values in braces represent the CPU time in seconds. The initial stock price wasS(0) = 100.

4 Results and Discussion

In this section we discuss the results obtained by using the CNIM and the HOC schemes as outlined in the

previous two sections. As already noted we could not find any results for average strike Asian call option

using numerical PDE methods. For the purpose of comparison we used the Monte Carlo (MC) simulation

as the benchmark value. We generated the path of a stock prices using the geometric Brownian motion



process. We generated50000 such paths and determined the option price from each of the paths generated.

The average of all these option prices was taken to be the option price, for the purpose of comparison

with the PDE methods. We generated the option prices using all the three methods for three values of

r = 0.06, 0.1, 0.2 and five values ofσ = 0.05, 0.1, 0.2, 0.3, 0.4.

A comparative study of results from the CNIM and the MC methods showed a close match. The com-

parative results are presented in Table 1 along with the CPU time in seconds. The option prices for the three

values ofr against the five values ofσ have been presented in the graphical form in Figures (1), (2)and (3).

For r = 0.06 (Figure (1)), the match was very close except the case whereσ = 0.05. This slight difference

in the option price is reduced whenr = 0.1 (Figure (2)). The other values forr = 0.1 showed a close match.

The results were similar for the caser = 0.2 except for a very minimal difference in the case ofσ = 0.1

(Figure (3)). The CPU time in case of CNIM was however considerably lower (< 0.5 seconds) as compared

with the Monte Carlo simulation (> 4 seconds).

The results and comparison of the HOC scheme and the MC methodindicates excellent consonance.

A comparison of the results from these two methods in terms ofvalues and CPU time in seconds have

been presented in a tabular form in Table 2. The option pricesfrom both the methods are very close to

each other. In fact the results obtained from the HOC scheme show a better match with the MC simulation

results as compared with the CNIM method. This holds for all the values ofr andσ and is evident from

the comparative figures (Figures (4), (5), (6)) of HOC and MC.As was the case with CNIM, the CPU time

taken in case of the HOC scheme is significantly less (< 0.5 seconds) in contrast to Monte Carlo simulation

which requires at least4 seconds.

5 Conclusion

In this paper we examined several ways of computing the priceof an average strike Asian call option,

namely Monte Carlo simulation and the numerical PDE approach. In case of option pricing, the benchmark

generally used is Monte Carlo simulation which suffers fromsome severe drawbacks like computational

costs and a certain amount of uncertainty of pricing. In contrast, the usage of numerical PDE approaches

that we have taken results in lesser computational costs andalso provides an unique answer. The numerical

PDE approach in pricing the average strike Asian call optionis by and large an unexplored area, since this

approach applied to Asian option is mostly concentrated on the case of fixed strike. In this paper, we take

the PDE approach to the pricing problem and present two schemes to accomplish this numerically. Firstly,

we use the Crank-Nicolson Implicit Method (which is second order) to solve the PDE and hence price the

option. Then, we present a Higher Order Compact scheme (fourth order) to solve the problem. Finally

we make a comparison of results obtained from the PDE approach with that of Monte Carlo. The results

obtained using the two PDE techniques were in excellent agreement with the Monte Carlo results. The

results obtained using Higher Order Scheme are closer to theMonte Carlo results as opposed to Crank-

Nicolson Implicit method vis-a-vis Monte Carlo. This is more so in case of lower values ofσ. To the best of

our knowledge, this is the first work to use the numerical PDE approach for pricing Asian call options with

average strike. We believe this work would find more applications in the area of option pricing through the

PDE approach.
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Figure 1: Comparison between Monte Carlo Simulation (MC) and Crank Nicolson Implicit Method (CNIM)

for r=0.06
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Figure 2: Comparison between Monte Carlo Simulation (MC) and Crank Nicolson Implicit Method (CNIM)

for r=0.1
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Figure 3: Comparison between Monte Carlo Simulation (MC) and Crank Nicolson Implicit Method (CNIM)

for r=0.2
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Figure 4: Comparison between Monte Carlo Simulation (MC) and Higher Order Compact Scheme (HOC)

for r=0.06
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Figure 5: Comparison between Monte Carlo Simulation (MC) and Higher Order Compact Scheme (HOC)

for r=0.1
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Figure 6: Comparison between Monte Carlo Simulation (MC) and Higher Order Compact Scheme (HOC)

for r=0.2
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