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Abstract

We discuss utility based pricing and hedging of jump diffusion pro-
cesses with emphasis on the practical applicability of the framework. We
point out two difficulties that seem to limit this applicability, namely drift
dependence and essential risk aversion independence. We suggest to solve
these by a re-interpretation of the framework. This leads to the notion of
an implied drift. We also present a heuristic derivation of the marginal
indifference price and the marginal optimal hedge that might be useful in
numerical computations.

1 Introduction

The applicability of the Black–Scholes framework for the pricing and hedging of
derivative claims crucially depends on the assumption of market completeness,
i.e., the possibility to replicate claims and thus eliminate risk. This assumption
is not fulfilled if the asset process is driven by more than one source of risk or
when market imperfections such as transaction costs are not negligible. One
then speaks of an incomplete market in which investors may attribute different
prices to derivatives, according to their risk preferences.

As an example, let’s consider a jump diffusion process, i.e., the asset S
evolves according to

dSt = µSt−dt+ σSt−dWt + (eJt − 1)St−dNt. (1)

Here Wt is a Wiener and Nt a Poisson process with frequency λ The random
variable Jt determines the relative size eJt − 1 of the jump. The oldest and
probably most popular approach for the pricing and hedging of a claim on such
an asset is Merton’s [11]. There, the investor sets up a portfolio Π consisting
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of the claim with value V and a quantity −∆ of assets, so that the evolution of
the portfolio is given by

dΠt = dVt −∆tdSt

=
(
∂tVt(St) + µSt∂SVt(St) + σ2

2 S
2
t ∂

2
SVt(St)−∆tµSt

)
dt (2)

+ σSt {∂SVt(St)−∆t} dWt +
{
Vt(e

JtSt)− Vt(St)−∆t(e
Jt − 1)St

}
dNt

It is in general not possible to eliminate jump and diffusion risk at the same
time, so some “optimal” choice is necessary. Merton’s proposal is to hedge only
the diffusion risk and to diversify the jump risk, i.e., to set ∆t = ∂SVt. The
above then yields

dΠt =
(
∂tVt(St) + σ2

2 S
2
t ∂

2
SVt(St)

)
dt

+
{
Vt(e

JtSt)− Vt(St)− (eJt − 1)St∂SVt(St)
}

dNt.

If jump risk is diversified, the investor does not need any risk premium for
taking this risk, i.e., the expected value of dΠt should vanish. Thus, we obtain
the partial integro-differential equation (PIDE)

0 = ∂tVt(S) + σ2

2 S
2∂2
SVt(S)−

{∫
(ez − 1)dν(z)

}
S∂SVt(S)

+

∫
{Vt(ezS)− Vt(S)} dν(z). (3)

Here ν is the cumulative jump frequency distribution, i.e., for an interval I with
characteristic function χI , ν(χI) gives the frequency of jumps of size in I. In
particular ν(R) = λ.

Two remarks are in order here:

1. The diversification of jump risk is problematic not only in our model (as
there is only one asset), but also in practice: In a typical market crash,
jumps occur in the whole market, so diversification may well turn out to
be accumulation of risk.

2. Merton’s proposal coincides with a naive interpretation of the Black–
Scholes framework which states that for risk-neutral pricing one simply
has to adjust the drift term such that the expected drift vanishes (in dis-
counted units), and that the appropriate hedging strategy is given by the
derivative of the price. In particular, the real-world drift does not enter
the price, which is a benefit, as it is notoriously hard to estimate.

Note that the assumption that diversification is possible is crucial here, since
otherwise one could not invoke no-arbitrage arguments to set the expected re-
turn of the portfolio to zero. If one drops this assumption, then the investor
should (i) try to find an optimal balance between diffusion and jump risk and
(ii) value the remaining risk in order to obtain a risk premium. A popular
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framework that achieves (i) is minimal variance pricing and hedging, cf. [15, 5]
and references therein. There, the investor tries to minimize the variance of the
expected returns. It has the advantage that no new concepts have to be intro-
duced. However, the choice of a quadratic criterion is somewhat arbitrary and
penalizes profits as well as losses. Furthermore, in the case of a jump diffusion,
the framework may assign negative probabilities to some jump sizes, i.e., there
would be positive claims which have a negative value in the framework. Finally,
the framework only tackles (i), but does not yield a price for the remaining risk.

A framework that achieves (i) and (ii) at one stroke is utility based pricing
and hedging. There, the investor is equipped with a concave von Neumann
utility function U(XT ) that assigns an economic value to the wealth XT at
the investment horizon T . Risk aversion is encoded in the concavity of U
which entails that the investor prefers a secure income to a random income
with the same expectation. This preference is encoded in the risk aversion
A(x) = −U ′′(x)/U ′(x).

In this framework, the appropriate price v for a claim with payoff C(ST ) is
the indifference price, i.e., the amount the investor should receive such that her
maximal expected utility E[U(XT −C(ST ))] for initial capital x+v is the same
as the expected utility E[U(XT )] for initial capital x. This means that one has
to consider investment and hedging at the same time and then try to disentangle
them. In general, this is a very complicated optimization problem. However, in
the limit where the number of traded claims is infinitesimally small, the problem
becomes much simpler. One then speaks of the marginal indifference price and
the corresponding marginal optimal hedge. This field has ripen considerably
during the last years. Milestones were the papers of Kramkov and Ŝırbu, who
gave sufficient criteria for the the marginal indifference price to be well-behaved
[8], and defined the concept of the marginal optimal hedge, together with con-
venient characterizations of it [9]. The framework was applied to, e.g., basis
risk [9], transaction costs [16, 12], and Lévy processes and stochastic volatility
models [7].

In spite of its conceptual elegance, the practical applicability of the frame-
work seems to be limited by two problems:

1. The marginal indifference price and the marginal optimal hedge depend
strongly on the real-world drift, which is notoriously hard to estimate.

2. The marginal indifference price (and also the marginal optimal hedge) are
essentially independent of the risk aversion of the investor [13].

The second fact is quite inconvenient for a framework whose purpose is to incor-
porate risk aversion. It turns out that the two problems can be solved, at one
stroke, by a change of perspective. The marginal indifference price takes into
account how well the option trade matches to the optimal investment strategy
of the investor. The assumption is of course that the investor is invested in this
optimal strategy. However, the investment strategy a bank chooses is typically
not derived from the model that is used to price options. It is thus tempting to
interpret the actual investment strategy as the optimal one and adjust the drift
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such that they match. One may thus speak of an implied drift. To the best of
our knowledge, this concept is new.

In the following section, we introduce utility based pricing and hedging in
a heuristic fashion. In particular, we do not (explicitly) use semi-martingale
decompositions, on which the rigorous mathematical treatment [8, 9] heavily
relies. Instead, we use the concept of functional differentiation. Our results
can of course be proven rigorously, in fact they are (partly) implicitly contained
in [7]. Nevertheless, our approach might be interesting in itself, as it sheds
new light on the framework and could be useful in numerical computations.
In Section 3, we discuss our results, in particular the two problems mentioned
above. As a nontrivial toy model that exemplifies the discussion, we use a jump
diffusion with fixed jump size. We also compare the marginal utility price and
hedge with those obtained in Merton’s and the minimal variance approach. We
conclude with a summary and an outlook.

2 A heuristic derivation

The basic idea of marginal utility based pricing and hedging is the following:
Consider an investor with a concave utility function U , i.e., the expected utility
for investment with time horizon T is given by

ut(x;π) = E[U(Xπ
t )|Xπ

t = x],

where Xπ
t is the wealth process depending on some trading strategy π. This is

maximized by the optimal investment strategy π∗:

ut(x) = sup
π
ut(x;π) = ut(x;π∗). (4)

If we now want to value a European claim with maturity T and payoff C(ST ),
where St is the asset process, we force the investor to short an infinitesimal
number ε of them. For this she may charge a price vεt (x, s) per claim. It is the
indifference price if

ut(x) = sup
π
E[U(Xπ

T − εC(ST ))|Xπ
t = x+ εvεt (x, s), St = s]. (5)

It means that the investor is willing to sell the options at a price vε, as this does
not decrease her expected utility. The limit

v = lim
ε→0

vε

is the marginal indifference price. The marginal optimal hedge can be similarly
characterized as the linear change of π∗ that is needed to achieve the maximum
on the r.h.s. of (5). Before we formalize this notion, we discuss the wealth pro-
cess Xπ

t and the optimal investment strategy π∗ for the case of a jump diffusion
and introduce functional differentiation, a technical tool we later employ.
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2.1 The wealth process and optimal investment

The wealth process Xπ
t corresponding to the asset process (1), given a trading

strategy πt, is given by

dXπ
t = πt(X

π
t− , St−)d logSt

= πt(X
π
t− , St−)µdt+ πt(X

π
t− , St−)σdWt + πt(X

π
t− , St−)(eJt − 1)dNt

Here πt(x, s) denotes the wealth invested in the asset at time t, given that the
total wealth is x and the asset price is s. Note that no interest rate is present,
so we are working in discounted units.

For a quantity Ft(x, s), depending on time t, the wealth x and the asset
price s that fulfills

Ft(x, s;π) = E[Fτ (Xπ
τ , Sτ ;π)|Xπ

t = x, St = s] ∀t ≤ τ, (6)

one obtains the partial integro-differential equation (PIDE)

∂tFt(x, s;π) + LπFt(x, s;π) = 0, (7)

where Lπ is the integro-differential operator defined by

Lπft(x, s) = µ {πt(x, s)∂x + s∂s} ft(x, s) (8)

+ σ2

2

{
πt(x, s)

2
∂2
x + 2πt(x, s)s∂x∂s + s2∂2

s

}
ft(x, s)

+

∫
{ft(x+ πt(x, s)(e

z − 1), ezs)− ft(x, s)} dν(z).

Note that in (7) we included the dependence on the trading strategy π. As π is
a function (of t, x and s), F is, apart from being a function of t, x and s, also a
functional, i.e., a map from a space of functions to the real numbers. A useful
tool for discussing extrema of such functionals are functional derivatives, which
we briefly discuss in Section 2.2.

In the absence of consumption, the expected utility ut(x;π) fulfills (6). For
the maximal expected utility ut(x), the HJB equation

sup
π

[∂tut(x) + Lπut(x)] = 0

holds, where the supremum is achieved by the optimal investment strategy π∗.
Thus, the optimal investment strategy π∗t fulfills

∂πt(x)|π∗Lπut(x) = 0.

Using the explicit form (8) of Lπ, we obtain

µu′t(x) + π∗t (x)σ2u′′t (x) +

∫
u′t(x

z)(ez − 1)dν(z) = 0, (9)

5



where we used the notation

xz = x+ π∗t (x)(ez − 1) (10)

for the wealth after a jump. Having solved for π∗, we know that ut fulfills the
PIDE

∂tut(x) + Lπ
∗
ut(x) = 0. (11)

For investment with a time horizon T , the boundary condition is given by the
utility U at time T , i.e., uT (x) = U(x).

We now discuss the form of π∗ and ut in the two cases that will be of most
interest to us, namely the case of constant relative or absolute risk aversion.
Constant relative risk aversion is specified by a utility function

U(x) = x1−β/(1− β), β > 1. (12)

The limit β → 1 corresponds to logarithmic utility, and the results below are also
valid in that case. It can be shown that, up to an unimportant multiplicative
constant, the expected utility ut is of the same form, i.e.,

ut(x) = Btx
1−β/(1− β). (13)

Introducing the notation π̃∗t (x) = π∗t (x)/x, (9) becomes

µ− π̃∗t (x)βσ2 +

∫
(ez − 1)(1 + π̃∗t (x)(ez − 1))−βdν(z) = 0. (14)

We see that π̃∗t (x) is independent of x and t. The optimal strategy is to invest
a fixed fraction of the wealth in the asset. For precise conditions under which a
solution to (14) exists, we refer to [14].

We now discuss a special case which we will study explicitly in Section 3 and
in which (14) can be solved analytically:

Example 1. If only jumps of a certain size J can happen, i.e., ν(z) = λδ(z−J),
then (14) becomes

µ− π̃∗βσ2 + λJ̃(1 + π̃∗J̃)−β = 0. (15)

Here we introduce the notation J̃ = eJ − 1 for the relative jump size. For
logarithmic utility, i.e., for β = 1 this has an analytic solution:

π̃∗ = − 1

2J̃

1− µ

σ2
J̃ −

√(
1− µ

σ2
J̃
)2

+ 4
µ+ λJ̃

σ2
J̃

 . (16)

This has the expected behavior: π̃∗ always has the same sign as the average
drift µ + λJ̃ . Also note that the expression under the square root is strictly
positive, so that an optimal investment strategy always exist for a fixed jump
size. For β > 1, (15) can easily be solved numerically.
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We briefly consider the case of constant absolute risk aversion, i.e., exponen-
tial utility

U(x) = −Ce−αx, α > 0. (17)

As above, the expected utility is of the same form, where C (but not α) is time
dependent. The optimal investment strategy π∗t (x) fulfills

µ− π∗t (x)σ2α+

∫
(ez − 1)e−απ

∗
t (x)(ez−1)dν(z) = 0. (18)

A solution π∗t (x) of this equation will be independent of x and t, so that the
optimal strategy is to invest a fixed amount of wealth in the asset. Furthermore,
it is antiproportional to the risk aversion α, i.e., we can write

π∗ = π̄∗/α (19)

for some constant π̄∗. Noting that, for large β, π̃∗(β) behaves as β−1, one
obtains, by inspection of (14) and (18) that

lim
β→∞

βπ̃∗(β) = π̄∗. (20)

Finally, we remark that by applying the PIDE (11) to the terminal condition
W (x) = U ′(x), one can show that for π∗ fulfilling (9), one has wt = u′t, i.e.,

u′t(x, s) = E[U ′(Xπ∗

T )|Xπ∗

t = x, St = s]. (21)

2.2 Functional derivatives

We briefly introduce the concept of functional derivatives as a special case of
directional derivatives, cf. [6, 4]. Let F be a functional, i.e., a continuous map
U → R, where U is an open subset of a space X of functions1. Then F is called
differentiable at f ∈ U in the direction h ∈ X if the limit

〈δF (f), h〉 := lim
t→0

F (f + th)− F (f)

t

exists. It is called continuously differentiable (or C1) on U if the limit exists
for all f ∈ U , h ∈ X and if δF : U × X → R is continuous. If F is C1,
then δF (f) : X → R is linear. Many of the usual theorems of differential
calculus hold, in particular the fundamental theorem. It follows that a necessary
condition for a C1 functional to have a local maximum in f is the vanishing of
δF (f).

The second derivative can be defined as the derivative of the first derivative,
w.r.t. f , i.e.,

〈δ2F (f), h⊗ k〉 := lim
t→0

〈δF (f + tk), h〉 − 〈δF (f), h〉
t

.

1In order to define these notions, X has to be equipped with a topology, which we assume
to be locally convex.
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We say that F is C2 on U if the limit exists for all f ∈ U and h, k ∈ X and is
a continuous map δ2F : U ×X ×X → R. In that case δ2F (f) is bilinear and
symmetric. This generalizes to derivatives of arbitrary order. There is a Taylor
formula from which it follows that a sufficient condition for a C2 function to
have a local maximum in f ∈ U is that δF (f) = 0 and 〈δ2F (f), h⊗ h〉 < 0 for
all h ∈ X.

If F is C1 then δF (f) is a continuous linear functional on X, so δF (f) is a
distribution. Similarly, if F is C2, then δ2F (f) is a symmetric bi-distribution.
Employing the familiar abuse of notation to express a distribution in terms of
an integral kernel, we sometimes write

〈δF (f), h〉 =

∫
δf(x)F (f)h(x)dx,

and analogously for the higher order derivatives.
The functionals that we want to differentiate below are solutions to a PIDE

of the form (7), which we want to differentiate w.r.t. π. More precisely, let w
be a solution to the PIDE

∂twt(x, s;π) +Mπwt(x, s;π) = 0,

where Mπ
t is an integro-differential operator that depends on π. We will want

to compute
δπt(x,s)wt(x, s;π),

i.e, compute the change in wt(x, s;π) if π is perturbed at the same point, namely
at time t, wealth x and asset price s. We assume that the PIDE is solved
backwards in time from some terminal condition. Formally, we thus have

wt(x, s;π) = wt+dt(x, s;π) +Mπwt(x, s;π)dt.

The effect of turning on a perturbation π′ of π that is localized around x, s and
in the time interval [t,dt), can thus be computed by differentiating Mπ w.r.t.
π. One thus obtains

〈δπwt(x, s;π), π′〉 = ∂πM
πwt(x, s;π)π′(x, s)dt.

Here ∂π only acts on the operator Mπ. The limit where π′ tends to a Dirac δ
in time corresponds to dt→ 0, π′ ∼ dt−1. Hence, we obtain

δπt(x,s)wt(x, s;π) = ∂πt(x,s)M
πwt(x, s;π). (22)

2.3 The marginal indifference price

We want to determine the marginal indifference price v from (5). As the per-
turbation is infinitesimally small, we can assume that the trading strategy πε

that achieves the minimum on the r.h.s. of (5) fulfills πε = π∗+ επ̄+O(ε2). We
also have vε = v +O(ε). Thus, expanding (5) in ε, we obtain

ut(x) = ut(x) + εvt(x, s)∂xut(x, s)− εE[U ′(Xπ∗

T )C(ST )|Xπ∗

t = x, St = s]

+ ε〈δπut(x;π∗), π̄〉+O(ε2),

8



To obtain the fourth term on the r.h.s., we used functional differentiation w.r.t.
π. This term vanishes, since π∗ is optimal. Equating the remaining terms of
first order in ε, one obtains [3]

vt(x, s) =
E[U ′(Xπ∗

T )C(ST )|Xπ∗

t = x, St = s]

u′t(x)
. (23)

It follows that in order to determine the marginal indifference price v it suffices
to know π∗, i.e., one does not have to solve the full optimization problem. Using
the tower property, (23) can be expressed as an expected value for quantities at
times τ with t < τ ≤ T :

vt(x, s) =
E[u′τ (Xπ∗

τ )vτ (Xπ∗

τ , Sτ )|Xπ∗

t = x, St = s]

u′t(x)
. (24)

In this form, the pricing problem can be solved backwards in time with the
payoff as the terminal condition. In continuous time, the limit τ = t + dt will
yield a partial (integro-) differential equation.

In the case of jump diffusion, one obtains from (24) the PIDE

∂tvt(x, s) + LQvt(x, s) = 0, (25)

where LQt is the integro-differential operator defined by

LQft(x, s) = µQ {π∗t (x, s)∂x + s∂s} ft(x, s) (26)

+ σ2

2

{
π∗t (x, s)

2
∂2
x + 2π∗t (x, s)s∂x∂s + s2∂2

s

}
ft(x, s)

+

∫
{ft(xz, ezs)− ft(x, s)} dνQ(x; z).

where we used the notation (10) and changed the drift and the jump distribution
w.r.t. Lπ, cf. (8), as

dνQ(x; z) =
u′t(x

z)

u′t(x)
dν(z), (27)

µQ(x) = −
∫

(ez − 1)dνQ(x; z). (28)

Let us briefly discuss the intuition behind (27). Recall that U , and thus also
u, is concave, i.e., u′(y) < u′(x) for y > x. Suppose the asset has, on average,
positive returns. Then the optimal investment strategy will be to invest in the
asset, i.e., π∗ > 0. Then, for a downward jump, z < 0, we have xz < x.
It follows that the fraction on the r.h.s. of (27) is greater than one, so that
downward jumps become more (and upward jumps less) frequent. The opposite
happens for π∗ < 0. The economic rationale behind this is the following: If the
investor is invested in the asset, she is exposed to the risk of downward jumps.
She will thus seek remuneration for taking even more downward jump risk. On
the other hand, she is also exposed to the risk of no upward jumps happening.
She is thus willing to sell a claim that is exposed to upward jump risk with a
discount. Finally (28) serves to set the average drift to zero.
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Example 2. If the process is a pure diffusion, i.e., λ = 0, the terms in the first
and the third line in (26) vanish. All other terms that have some x-dependence
involve ∂x. Thus, if the terminal condition is independent of x, as for a payoff,
the marginal indifference price is also independent of x and one recovers the
Black–Scholes PDE, in discounted units.

From our discussion in Section 2.1, we know that in the case of constant
relative or absolute risk aversion u′t(x

z)/u′t(x) is independent of x. Thus, for
these types of utility, the only terms in LQ that depend on x are those that
involve at least one ∂x. It follows that if the terminal condition is independent
of x, the solution to (25) will also be independent of x. Since by definition the
payoff only depends on s, the marginal indifference price is independent of x for
constant relative or absolute risk aversion [8]. We thus obtain

Proposition 3. In the case of power utility, (12), the marginal indifference
price is a solution to the PIDE

0 = ∂tvt(s) +

{∫
{ez − 1} (1 + π̃∗(ez − 1))

−β
dν(z)

}
s∂svt(s) + σ2

2 s
2∂2
svt(s)

+

∫
{vt(ezs)− vt(s)} (1 + π̃∗(ez − 1))

−β
dν(z), (29)

where π̃∗ is a solution to (14). In the case of exponential utility, (17), the
marginal indifference price is a solution to the PIDE

0 = ∂tvt(S) +

{∫
{ez − 1}e−π̄

∗(ez−1)dν(z)

}
s∂svt(s) + σ2

2 s
2∂2
svt(s)

+

∫
{vt(ezs)− vt(s)} e−π̄

∗(ez−1)dν(z), (30)

where π̄∗ is given by (19).

Remark 4. A special case of (29) was found in [10]. There, it is assumed that all
market participants have power utility, and so the market-clearing utility must
also be of this form. Furthermore, the market is invested fully in the asset, the
positions in cash and options cancel each other2. This corresponds to π̃∗(x) = 1
in the present setting, which, inserted in (29), gives the PIDE of [10].

2.4 The marginal optimal hedge

We now want to study the marginal optimal hedge corresponding to the marginal
indifference price. In the previous section, we expressed the trading strategy that
maximizes the r.h.s. of (5) as πε = π∗ + επ̄ + O(ε2). We define the marginal
optimal hedge π̂ as

π̂ = π̄ + v∂xπ
∗.

2This implies that the model is only applicable to an “index” that comprises the whole
market, i.e., in principle equities, commodities, real estate, etc.
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The idea behind this definition is the following: We want to determine the
change in the optimal trading strategy that is caused by the option trade. Thus,
we wish the investor to invest optimally as she would do without the trade plus
some correction which we wish determine. The purpose of the second term on
the r.h.s. of the above equation is to cancel the shift in the optimal investment
strategy that is caused by the payment of the option price v.

As πε is the optimizer on the r.h.s. of (5), the functional derivative at this
point should vanish:

δπt′ (x′,s′)E[U(Xπε

T −C(ST ))|Xπε

t = x+εvεt (x, s), St = s] = 0 ∀(t′, x′, s′). (31)

Expanding this in ε, one obtains

0 = −δπt′ (x′,s′)E[U ′(Xπ∗

T )C(ST )|Xπ∗

t = x, St = s] (32)

+ vt(x, s)δπt′ (x′,s′)∂xut(x;π∗)

+

∫
π̄t′′(x

′′, s′′)δπt′ (x′,s′)δπt′′ (x′′,s′′)ut(x;π∗)dt′′dx′′ds′′.

The two derivatives in the second line commute, so by the optimality of π∗, this
term vanishes.

We now want to argue that the second order functional derivative in the
third term vanishes unless t′ = t′′. Here the optimality (and the implicitly
assumed Markov property of S) is crucial. Assume that t′′ > t′. Then we may
find τ such that t′ < τ < t′′. We have, by the tower property

ut(x;π) = E[U(Xπ
T )|Xπ

t = x] = E[E[U(X̃π
T )|X̃π

τ = Xπ
τ ]|Xπ

t = x].

Here we introduced the notation X̃ for the process from τ to T in order to
distinguish in from the process X on which it is conditioned at τ . Changing π at
t′ only affects the process X, while changing π at t′′ only affects X̃. In particular,
the derivative w.r.t. πt′′(x

′′, s′′) can be pulled inside the outer expected value
and the derivative w.r.t. πt′(x

′, s′) does not act on the inner expected value.
But the derivative w.r.t. πt′′(x

′′, s′′) of the inner expected value, evaluated at
π∗, vanishes, by optimality. Thus, the second order functional derivative in the
third term on the r.h.s. of (32) vanishes unless t′ = t′′.

For well behaved processes (in particular there should be no predetermined
jump times), the second order functional derivative at equal times t′ = t′′ van-
ishes unless (x′, s′) = (x′′, s′′). The intuitive reason is that a change of the
trading strategy at (t′, x′, s′) can only affect paths that are at (x′, s′) at time
t′. But a path can not be at (x′, s′) and (x′′, s′′) at the same time unless
(x′, s′) = (x′′, s′′). We may thus write

δπt′ (x′,s′)δπt′′ (x′′,s′′)ut(x;π∗)

= δD(t′ − t′′)δD(x′ − x′′)δD(s′ − s′′)δ2
πt′ (x

′,s′)ut(x;π∗).

Here δD denotes the Dirac δ distribution and the second order functional deriva-
tive on the r.h.s. is implicitly defined by this equation.
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Applying this to (32), we obtain

δπt′ (x′,s′)E[U ′(Xπ∗

T )C(ST )|Xπ∗

t = x, St = s]

= (π̂t′(x
′, s′)− vt′(x′, s′)∂xπ∗t′(x′)) δ2

πt′ (x
′,s′)ut(x;π∗).

For a constant payoff P , v = P and π̂ vanishes, so that we have

∂xπ
∗
t′(x
′)δ2

πt′ (x
′,s′)ut(x;π∗) = −δπt′ (x′,s′)E[U ′(Xπ∗

T )|Xπ∗

t = x, St = s].

This is valid for all (t′, x′, s′). In particular, we may choose (t′, x′, s′) = (t, x, s),
and with (23) and (21) we obtain

π̂t(x, s) =
u′t(x, s)δπt(x,s)

E[U ′(Xπ
∗

T )C(ST )|Xπ
∗

t =x,St=s]

E[U ′(Xπ
∗

T )|Xπ∗t =x,St=s]

δ2
πt(x,s)

ut(x;π∗)
. (33)

Note that the expression that is functionally differentiated in the numerator
is the marginal indifference price. Thus, this equation has a straightforward
economic interpretation: The functional derivative in the numerator gives the
marginal gain in the price v one can generate by shifting π from the optimal
trading strategy π∗. The factor in front of the functional derivative converts
this into a marginal gain in utility. This gain in utility stemming from v is to be
balanced by the loss in utility that is incurred to the wealth process (without
the claim) by deviating from π∗, which one finds in the denominator3.

We also note the similarity of this formula with the sensitivities that are
used in ∆-hedging. However, in the present case, one does not differentiate the
option value w.r.t. the asset price but w.r.t. the trading strategy and weights
the result with derivatives of expected utility. Nevertheless, this representation
of the marginal optimal hedge might be useful in numerical calculations.

We may now evaluate (33) for the case of a jump diffusion. We note that the
two quantities that are functionally differentiated are solutions to PIDEs that
depend on π. We may thus proceed as discussed in Section 2.2, i.e., we apply
(22). As the derivation of (25) from (23) did not make use of the optimality of
π∗, the functional derivative in the numerator may be computed by differenti-
ating LQ w.r.t. π. Similarly, for the computation of the functional derivative
in the denominator, we twice differentiate Lπ w.r.t. π. Restricting again to the
case of constant relative or absolute risk aversion, one obtains4

Proposition 5. In the case of power utility, (12), the marginal optimal hedging
strategy is given by

π̂t(s) = s
σ2∂svt(s) +

∫ vt(e
zs)−vt(s)

(ez−1)s (ez − 1)
2

(1 + π̃∗(ez − 1))
−β−1

dν(z)

σ2 +
∫

(ez − 1)
2

(1 + π̃∗(ez − 1))
−β−1

dν(z)
,

(34)

3One might think of the following analogy: Let f be a function with a local maximum
at x∗ and f ′′(x∗) < 0. Perturbing f(x) by subtracting εg(x), the new maximum is found at
x∗ε = x∗ + εg′(x∗)/f ′′(x∗) + O(ε2).

4The hedge (and also the price) for power utility is implicitly contained in [7].
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where π̃∗ is a solution to (14). In the case of exponential utility, (17), the
marginal optimal hedge is

π̂t(s) = s
σ2∂svt(s) +

∫ vt(e
zs)−vt(s)

(ez−1)s (ez − 1)
2
e−π̄

∗(ez−1)dν(z)

σ2 +
∫

(ez − 1)
2
e−π̄∗(ez−1)dν(z)

, (35)

where π̄∗ is given by (19).

Example 6. In the pure diffusion case λ = 0 one recovers Black–Scholes ∆
hedging, π̂ = s∂sv. But if a jump component is present, the marginal optimal
hedge is not given by s∂sv. Instead, it optimally balances diffusion and jump
risk, given the specified utility function.

Remark 7. Taking the marginal optimal hedge (34), (35) as starting point and
following the derivation of (3) from (2), one does in general not recover the
PIDE (29), (30) for the marginal indifference price. This is not surprising, since
in the present framework the investor wants to be compensated for taking risk.

2.5 Minimal variance pricing and hedging

The basic idea of minimal variance pricing and hedging was briefly discussed
in the introduction. Here, we content ourselves with giving the corresponding
price and hedge for our jump diffusion process. For the minimal variance price,
one finds the following PIDE [2]:

∂tvt(s)−
{∫
{ez − 1} {1− α(ez − 1)} dν(z)

}
s∂svt(s) + σ2

2 s
2∂2
svt(s)

+

∫
{vt(ezs)− vt(s)} {1− α(ez − 1)} dν(z) = 0. (36)

Here α is a generalization of the market price of risk and is given by

α =
µ+

∫
(ez − 1)dν(z)

σ2 +
∫

(ez − 1)2dν(z)
.

Note that the new jump measure in (36) gives negative frequencies for jumps
with α(ez − 1) > 1. For α > 0, this condition will always be fulfilled for un-
bounded upward jump distributions, which includes Merton’s log-normal jump
distribution [11].

For the corresponding hedge one obtains

θt(s) =
σ2∂svt(s) +

∫ vt(e
zs)−vt(s)

(ez−1)s (ez − 1)2dν(z)

σ2 +
∫

(ez − 1)2dν(z)
. (37)

Remark 8. Taking θ as hedging strategy and following the derivation of Merton’s
formula (3) from (2), one recovers the pricing PIDE (36). This shows that
with minimal variance hedging one tries to minimize risk (as measured by the
variance), but one is not compensated for it. This is in contrast to the setting
of utility maximization, cf. Remark 7. Possible modifications of the framework
to include also a risk premium are discussed, e.g., in [1].
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3 Discussion

We will now discuss the results obtained so far. In order to exemplify the
findings, we use the toy model of a jump diffusion with a fixed jump size J .
This model is analytically tractable [11]. Re-introducing the risk-free rate r, we
have to solve a PIDE of the form

∂tvt(s)+ σ2

2 s
2∂2
svt(s)+{r−λ̄J̃}s∂svt(s)−rvt(s)+λ̄

{
vt(e

Js)− vt(s)
}

= 0, (38)

where we used J̃ = eJ − 1. The only difference between the different methods
and utilities lies in the value of λ̄ that is employed. The above is solved by

vt(s) =

∞∑
k=0

(λ̄(T − t))ke−λ̄(T−t)

k!
vt(e

kJs, r, λ̄J̃) (39)

where vt(s, r, q) is the Black–Scholes price for the claim, given a risk-free rate r
and a dividend yield q.

3.1 The price

In order to get a feeling for the magnitude of the effect, we compare the marginal
indifference price for logarithmic utility with Merton’s and the minimal variance
price. We use a process with λ = 0.25, J̃ = −0.25, i.e., on average there is a
jump of −25% every four years. For the marginal indifference price, the relevant
value for λ̄ is obtained from (16) and (27). The price for a put (converted to
implied volatilities) is shown in Figure 1. As a reference, the square root of the
annualized variance is indicated. We see that the marginal indifference price
and the minimal variance price are quite close together, but the difference to
Merton’s price is notable. For a moneyness of 0.5, it corresponds to a price
difference of 40%.

That the marginal indifference price and the minimal variance price are
above Merton’s price is not a generic feature, but depends on the average drift
of the asset. This is illustrated in Figure 2, which shows the same plot as before,
but with an expected drift µ̃ = −0.05. Now the marginal indifference price and
the minimal variance price are below Merton’s price. This can be understood
as follows: If the expected drift is positive, the investor will be invested in the
asset. Since jumps are always downwards in our model, she is exposed to jump
risk. Writing a put on the asset in this situation enlarges this exposure. She
will thus ask for a risk premium. On the other hand, if the expected drift is
negative, the investor is short the asset and is then exposed to the risk of no
jumps happening. Writing a put in this situation diminishes the exposure to
this risk. Thus, she can sell the put with a discount. This strong dependence
on the drift seems to limit the practical applicability of the framework, as it is
very hard to estimate.

Another disturbing feature of the marginal indifference price is that it is
essentially independent of the risk aversion. That it is completely independent
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Figure 1: Implied volatilities for a jump diffusion with fixed jump size J̃ = −0.25
using the different pricing methods for the parameters σ = 0.2, r = 0, λ = 0.25,
µ̃ = µ + λJ̃ = 0.05 and T = 1. For the marginal indifference price logarithmic
utility was used.
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Figure 2: Same as Figure 1, but with negative expected returns, µ̃ = µ+ λJ̃ =
−0.05.

15



-0.1

-0.08

-0.06

-0.04

-0.02

0

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Im
p
lie

d
 V

o
la

Moneyness

β = 2
β = 4
β = 8

exp

Figure 3: Differences of implied volatilities of the marginal indifference prices
for different risk aversions and the one obtained for logarithmic utility (β = 1)
for the same parameters as in Figure 1.

of the risk aversion α in the case of exponential utility is obvious from (30).
But also for power utility, it is independent of β in the limit β → ∞. Using
(20) and comparing (29) and (30), one easily sees that the marginal indifference
price for power utility converges to the one for exponential utility in the limit
β →∞. This property was proven in a general setting in [13]. In our example,
this is shown in Figure 3: The price changes very little with the risk aversion
and approaches the price for exponential utility in the limit β →∞.

3.2 The implied drift

The two features just discussed, the drift dependence and the essential risk aver-
sion independence of the marginal indifference price seem to limit the practical
applicability of the framework. We also note that the essence of the indiffer-
ence price is that it takes into account how well the option trade matches to
the optimal investment strategy. But typically the investment strategy a bank
chooses is not derived from the model that is used to price options. A possible
way out is a change of perspective: One takes the actual investment strategy as
given and tries to take it into account for the valuation and hedging of options.
This is possible straightforwardly, as (29), (30), (34) and (35) do not contain
the original drift directly, but only via π̃∗ or π̄∗. In the case of power utility
one would thus set π̃∗ to the fraction of the wealth that is actually invested in
the asset and use (29) and (34). In the case of exponential utility, one uses the
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Figure 4: Implied volatilities of the marginal indifference prices obtained for
different risk aversions for the parameters J̃ = −0.25, λ = 0.25, σ = 0.2, r = 0,
T = 1, π̃∗ = 0.5. Note that the latter implicitly defines a drift, which is different
in the four cases (see text).

actual amount invested in the asset and the risk aversion α to compute π̄∗ via
(19). It is easily seen that this amounts to a change of the drift in the original
problem. One may thus speak of an implied drift. Note however, that this
implied drift need not be computed for pricing and hedging. It suffices to know
the actual investment strategy.

This change of perspective solves the problems discussed above: One does
not need to know the drift, and the price and hedge will in general depend on
the risk preference. This is exemplified in Figure 4. We see that the marginal
indifference price increases considerably with the risk aversion. We note how-
ever, that also the opposite effect is possible: For a negative actual, i.e., optimal,
investment strategy, the marginal indifference price decreases with risk aversion.
Again, this is due to the fact that by selling a put the investor can hedge the
risk of no jumps happening, to which she is exposed by her investment strategy.
Nevertheless, the marginal indifference price is always greater than the Black–
Scholes price, in which the jump component is neglected. Finally, we note that
for π∗ = 0, one recovers Merton’s price. This, however, is not true for the
marginal optimal hedge, which coincides with the minimal variance hedge (37)
for α = 0 in that case.
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Figure 5: The different hedging strategies (expressed in units of the asset) for a
put with strike K = 100 using the same parameters as in Figure 1.

3.3 The hedge

We now discuss the hedges corresponding to the prices considered before. Fig-
ure 5 shows the hedges for the prices shown in Figure 1. While the minimal
variance and the marginal optimal hedge are relatively close together, the devia-
tion from Merton’s hedge is noticeable. Heavily out of the money (S = 200), the
relative difference is over 150%. Note that this strong deviation stems mainly
from the new hedging formula (34) and not so much from using a different
price. This can be seen from Figure 6 where, for the same parameters as above,
Merton’s hedge and the optimal marginal hedge are compared to the derivative
w.r.t. s of the marginal indifference price. This derivative is quite close to Mer-
ton’s hedge, so for hedging purposes it seems to be more important to use the
appropriate hedging formula than to use the correct price.

Finally, we compare the marginal optimal hedges corresponding to the prices
shown in Figure 4. These are shown in Figure 7. We see the expected behavior,
i.e., for out of the money puts the higher the risk aversion the shorter the
investors are in the asset in order to hedge against downward jumps.

4 Summary & Outlook

We discussed marginal utility based pricing and hedging for the case of a jump
diffusion process. We pointed out two problems that seem to limit the practi-
cal applicability of the framework: The drift dependence and the essential risk
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Figure 6: Comparison of Merton’s hedge, the marginal optimal hedge and the
derivative of the marginal indifference price for the same parameters as in Fig-
ure 5.
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Figure 7: The marginal optimal hedging strategies corresponding to the prices
plotted in Figure 4.
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aversion independence of the marginal indifference price and the corresponding
hedge. We proposed to circumvent these by a change of perspective, by inter-
preting the actual investment strategy as the optimal one. We also compared
the marginal utility based framework conceptually and concretely in a toy model
with the minimal variance and Merton’s framework.

It would be desirable to apply the framework to more realistic models like
a log-normal jump distribution or variance-gamma processes. While this is no
problem in principle, we note that by the inclusion of a risk preference, the jump
distribution is changed. Thus, computational methods that rely on a particular
form of the jump distribution may no longer be applicable.
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