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Effects of Input Redundancy on

Time Optimal Control
PENG Zhong-Xing1 YANG Ying1 HUANG Lin1

Abstract Due to the popularity of the systems with input redundancy, this paper focuses on the problems with input redundancy,
where we concern about the effects of adding new input redundancy into the controllable systems. Time optimal control problems
are discussed, where such effects are evaluated by the optimal time. Based on the assumption of the existence and uniqueness of
the optimal control, the paper proves that increasing the number of input redundancy will result in a strict reduction of the optimal
time from the same initial state if there exists non-idle channel among the redundant input channels. Moreover, if the problem is
normal, then all of the redundant input channels are used to shorten the optimal time. On the other hand, without the assumption
of normality, the optimal time will also be smaller for the redundant system as comparing to the original system if at least one of
these redundant input channels is completely controllable. Finally, two numerical examples are deployed to demonstrate the main
results of this paper.
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In a traditional aeroplane, there are three different kinds
of control surfaces to generate three different moments
which are needed for flying the plane, i.e., horizontal tails
generate the moment of pitch, rudders control the moment
of yaw, as well as the rolling moment is manipulated by
the ailerons. Nowadays, with rapid development of tech-
nology, more than twenty control surfaces (actuators) are
available for aircrafts, such as leading edge flaps[1]; thrust-
vectoring moment generators and vortical lift fans[2]; trail-
ing edge flaps and spoilers on the leading edge extensions[3];
side force generators[4]. From a view of system dynamics,
adding these extended/redundant control surfaces is equiv-
alent to add additional columns into the input matrix B of
the system if the inputs appear linearly. In 1970′s, Won-
ham pointed out that a single-input system can replace a
multi-input system equivalently by introducing a state feed-
back and finding an auxiliary vector in the column space
of the input matrix[5−6]. Meanwhile, the properties such
as stabilizability, controllability, and poles assignment will
remain invariant after adding new input redundancy (or
input extension) if the original system already possesses
them. However, beyond these invariance, this paper will
investigate the extra benefits brought by the new input re-
dundancy, where the optimal time is used to evaluate the
improvements of the input extensions.

Obviously, adding redundant control surfaces will possi-
bly result in some improvements of dynamical performance
for an aeroplane, which are demonstrated in numbers of ex-
periments. For example, in 1970′s, the thrust vectoring was
introduced to satisfy the demands of designing short-takeoff
and vertical-landing (STOVL) aircrafts, such as Harrier
and Yak-36. Soon after that, NASA developed the experi-
mental aircraft X-31 to investigate the advantage of using
thrust vectoring to improve the in-flight maneuverability[7].
Costes reported that the killing ratio was significantly in-
creased for a vectored thrust plane against a conventional
control fighter[8]. Meanwhile, the aircrafts implemented
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with thrust vectoring are capable to perform the superma-
neuver such as Pugachev-Cobra and Herbst maneuvers[9],
which can result in a rapid speed reduction and a sharper
turn. These supermaneuver abilities become vital char-
acteristics to takeover the enemy during the dogfights[10].
With respect to time optimal control problems, input ex-
tension also reduces the optimal time. Schneider concluded
that the reduction of the minimum turning time is related
to adding the thrust-vectoring[11].

Different from the experimental results listed above, in
this paper, we will discuss the advantages of adding input
redundancy through a theoretical perspective. Firstly, the
invariance of the controllability and pole placement under
input extension will be proven. Then, after defining and
examining the existence of idle channels, which represent
the unused input channels, the system with input redun-
dancy will own a faster optimal time than the one without
input redundancy if there exists non-idle channel among
the redundant input channels. According to a well-known
input constraint Π, the normality of the optimal control
problem will play a key role in the reduction of the optimal
time, although which is a quite strong condition since all of
the input channels are completely controllable. A weaker
condition requires only one of the redundant input channels
to be completely controllable.

1 Problem statement

A standard time optimal control problem without input
redundancy can be described as[12−15]:

Problem 1. Minimize the final time To(x0) subject to
a linear time-invariant (LTI) system

ẋ(t) = Ax(t) + Bouo(t) (1)

from the initial state x(0) = x0 to the final state x(T ) = 0
with the input constraint uo(t) ∈ Π, where A ∈ Rn×n,
Bo ∈ Rn×r, and Π is defined as

Π =
{

u(t) : [0, +∞) → Rd(u);

|ui(t)| ≤ 1, i = 1, · · · , d(u)
}

(2)
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in which d(u) denotes the dimension of the input vector
u(t) ∈ Rd(u).

On the other hand, the time optimal control problem
with input redundancy is:

Problem 2. Minimize the final time Te(x0) subject to
the LTI system with input redundancy:

ẋ(t) = Ax(t) + Beue(t) (3)

where Be = [Bo B1] and B1 ∈ Rn×k. The corresponding
control vector with input redundancy is

ue(t) =

[
uo(t)

u1(t)

]

under the input constraint ue(t) ∈ Π, where Π is defined in
(2) and u1(t) ∈ Rk.

2 Preliminaries

The Hamiltonian functions of Problems 1 and 2 are

Ho(x(t), λo(t), uo(t), t) = 1 + λT
o (t)Ax(t) + λT

o (t)Bouo(t)

and

He(x(t), λe(t), ue(t), t) = 1 + λT
e (t)Ax(t) + λT

e (t)Beue(t)

where λo(t), λe(t) : [0, T ] → Rn. According to Pontryagin′s
maximum principle (PMP)[16], the minimum of the Hamil-
tonian function of Problem 1 will satisfy:

min
uo∈Π

Ho ⇐⇒ min
uo∈Π

{λT
o (t)Bouo(t)} =

min
uo∈Π

{qo1(t)uo1(t) + · · ·+ qor(t)uor(t)}

where qo(t) ∈ Rr is the switching vector whose components
are defined as:

qoi(t) = bT
oiλo(t), i = 1, · · · , r

boi is the i-th column of the input matrix Bo in (1). Refer-
ring to Problem 2, it can be similarly concluded that

min
ue∈Π

He = min
ue∈Π

{qe1(t)ue1(t) + · · ·+ qe(r+k)(t)ue(r+k)(t)}

where qe(t) ∈ Rr+k is the switching vector and

qej(t) = bT
ejλe(t), j = 1, · · · , r + k

bej is the j-th column of the input matrix Be in (3).
Then, through the switching vectors qo(t) and qe(t), the

singularity of Problems 1 and 2 can be defined as follows.
Definition 1. Problem 1 (or Problem 2) is normal, if all

of the components qon(t) (or qen(t)) of the switching vector
qo(t) (or qe(t)) satisfy

qon(t) = 0 (or qon(t) = 0)

only at some isolated points during the whole optimal time
interval, where n = 1, · · · , d(u).

According to [17], a normal time optimal control problem
will lead to a bang-bang control, in which all of the input

channels work at their extreme values during any nontrivial
time interval (i.e., t1 6= t2).

Lemma 1[12]. If all the eigenvalues of the system matrix
A in (1) have non-positive real parts, the optimal control
for Problem 1 exists.

Lemma 2[12]. Problem 1 is normal if and only if every
matrix

Gj = [bj Abj · · · An−1bj ]

is nonsingular, where bj is the j-th column of matrix Bo

and j = 1, · · · , r.
Lemma 3[12]. If Problem 1 is normal and the optimal

control exists, then the optimal control is unique.
Obviously, the conclusions in Lemmas 1∼ 3 about Prob-

lem 1 can be applied to Problem 2.
Lemma 4[18]. The pair (A, B) is controllable if and only

if, for every choice of the set Λ, there is a matrix C such
that A + BC has Λ for its set of eigenvalues.

The controllability is equivalent to the property that the
closed-loop transfer matrix can be assigned to an arbitrary
set of poles by a suitable choice of the feedback “gain”
matrix C [18].

3 Main results

Lemma 5. The redundant system (3) is controllable if
the original system (1) is controllable.

However, it should be pointed out that a change of con-
trollability may happen attributing to the input extension
if the original system is uncontrollable. Although the con-
trollability under input extension will be dependent on the
property of the original system and the additional columns
in Be, a controllable system will never become uncontrol-
lable due to the extension of the input matrix.

According to Lemmas 4 and 5, the controllability is
equivalent to the pole placement and the system with input
redundancy will maintain the controllability for a control-
lable system. Then, the property of pole placement will
remain invariant after input extension, which can be ex-
pressed as follows:

Lemma 6. The eigenvalues of the closed-loop system
for (3) can be assigned arbitrarily if the original system (1)
is controllable.

Otherwise, since it is well known that the observability
of an LTI system is only associated with the system matrix
A and the output matrix C, a change of input matrix B
will not change the observability.

As a result, the input extension will retain several prop-
erties such as controllability and pole placement for a con-
trollable LTI system, while the observability is immune
from this extension in the input matrix. Before present-
ing the main results of this paper, an important definition
of idle channel is introduced as follows:

Definition 2. An input channel is called an idle channel
if it is unused during the entire optimal time period, i.e.
ui(t) ≡ 0 for all t ∈ [0, T ∗], where i ∈ N and T ∗ is the
optimal time.

According to Definitions 1 and 2, it is immediate to con-
clude that

Lemma 7. There exists non-idle channel in the time
optimal control of Problem 1 (or Problem 2) if the problem
is normal.
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Obviously, the optimal time of Problems 1 and 2 should
satisfy:

Proposition 1. For any initial state x0 ∈ Rn, it can be
concluded that

T ∗e (x0) ≤ T ∗o (x0)

where T ∗o (x0) and T ∗e (x0) are the optimal time for Problems
1 and 2, respectively.

According to this proposition, the optimal intervals for
Problems 1 and 2 should satisfy:

[0, T ∗e (x0)] ⊂ [0, T ∗o (x0)]

The main contribution of this paper is to find out a con-
dition, which guarantees a strict reduction of the optimal
time due to the input redundancy, as follows:

Theorem 1. Assume that the time optimal control of
Problems 1 and 2 exist, and the optimal control of Problem
2 is unique, if there exists non-idle channel among the re-
dundant input channels, then the optimal time will satisfy:

T ∗e (x0) < T ∗o (x0)

for any nonzero initial state x0 ∈ Rn.
Proof. Denote u∗o(t) and u∗e(t) as the time optimal con-

trol of Problems 1 and 2, respectively. Without loss of
generality, assume that there is only one redundant input
channel which has been added into (3), i.e. k = 1, then the
control with input redundancy can be rewritten as

ue(t) =

[
uo(t)

ur+1(t)

]
=




u1(t)
...

ur(t)

ur+1(t)




If ur+1(t) is not an idle channel in the optimal con-
trol, there exists a nontrivial time interval [t1, t2] and
ξ ∈ [t1, t2] ⊂ [0, T ∗e (x0)] ⊂ [0, T ∗o (x0)], in which it results in

u∗r+1(ξ) 6= 0

Then, even if the following equation

ue(t) =

[
uo(t)

0

]

holds during several time segments, however, the equality
will not be valid during the entire t ∈ [0, T ∗e (x0)]. Thus,
u∗e(t) and [u∗To (t) 0]T are two different controls. Because of
the uniqueness of u∗e(t), if T ∗e (x0) = T ∗o (x0), then

u∗e(t) =

[
u∗o(t)

0

]

for all the t ∈ [0, T ∗e (x0)], which contradicts to the preced-
ing discussion that u∗e(t) and [u∗To (t) 0]T are two different
controls, thus, T ∗e (x0) 6= T ∗o (x0). According to Proposition
1, we can conclude that

T ∗e (x0) < T ∗o (x0) (4)

More generally, as the number of redundant input chan-
nels goes higher, i.e. k > 1 and k ∈ N, the inequality (4)
will be hold as well. ¤

Based on the proof of Theorem 1, if the existence and
uniqueness of the optimal control for both two problems
are guaranteed, a sufficient and necessary condition for
T ∗e (x0) = T ∗o (x0) is:

Corollary 1. Suppose that the time optimal control for
Problems 1 and 2 exist, and the optimal time for Problem
2 is unique, then the optimal time for Problems 1 and 2
will be identical from any nonzero initial state x0 ∈ Rn,
i.e.

T ∗e (x0) = T ∗o (x0)

if and only if all of the redundant input channels are idle
channels in the optimal control of Problem 2.

The input constraint Π is illustrated in Fig. 1, where the
dimension of input vector u(t) is d(u) = 2. It is well known
that if Problem 1 (or Problem 2) is normal, the optimal
control will be a bang-bang control which only stands at
one of the four vertices of a, b, c, d described in the figure.
Otherwise, if there exists any idle channel, the correspond-
ing optimal control will be either on the axes or at the origin
point. Thus, Problem 2 is normal will imply that none of
the redundant input channels is an idle channel among the
optimal control. Then, it is immediate to conclude that:

Fig. 1 The input constraint of Π as u(t) ∈ R2

Theorem 2. If all the eigenvalues of A have non-positive
real parts and Problem 2 is normal, then

T ∗e (x0) < T ∗o (x0)

for any nonzero initial state x0 ∈ Rn.
Proof. According to Lemma 1, if all of the eigenvalues

of the system matrix A have non-positive real parts, the
optimal control u∗o(t) and u∗e(t) exist for Problems 1 and 2
from any initial state x0. From Lemma 3, since the problem
is normal and the optimal control exists, then the optimal
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control of Problem 2 is unique.
Based on the above discussions, there is not an idle chan-

nel in the optimal control for a normal problem. As a result,
according to Theorem 1, it can be concluded that

T ∗e (x0) < T ∗o (x0)

for any nonzero initial state x0 ∈ Rn. ¤
Replacing the assumption of the normality of Problem

2 in Theorem 2 by that of Problem 1, yields the following
corollary:

Corollary 2. If the input redundancy satisfies Be =
[Bo, bα]T, Problem 1 is normal and the optimal control ex-
ists, then

T ∗e (x0) < T ∗o (x0)

for any nonzero initial state x0 ∈ Rn, where bα is one of
the columns in the original input matrix Bo.

This corollary indicates that adding identical columns
into the input matrix will reduce the optimal time strictly
from the same initial state if the original problem is nor-
mal..

According to Lemma 2, a time optimal control problem
with input constraint Π is normal if every matrix Gj is non-
singular, where j = 1, · · · , d(u). Obviously, all of Gj are
nonsingular means the system is completely controllable,
which is a strong condition. Next, it will be pointed out
that the completely controllable is not a necessary condi-
tion leading to a smaller optimal time after input extension.

Based on the preceding discussions, a critical point to
guarantee a smaller optimal time after adding input re-
dundancy is whether or not there exists non-idle channel
among the redundant input channels. Since the bang-
bang control of Problem 1 (or Problem 2) is deduced by
the PMP, which is a necessary but not sufficient condition
for the optimal control problem, then any optimal control
should satisfy the PMP. As a result, if the optimal con-
trol exists and at least one matrix Gκ is nonsingular where
κ ∈ {r + 1, · · · , r + k}, the corresponding redundant input
channel uκ(t) : [0, +∞) → R1 is not an idle channel dur-
ing the optimal time interval, which will lead to a smaller
optimal time according to Theorem 1.

Theorem 3. Assume that the time optimal control of
Problems 1 and 2 exist, and the optimal control of Problem
2 is unique, if there exists index κ satisfying

|Gκ| =
∣∣[bκ Abκ · · · An−1bκ]

∣∣ 6= 0

where κ ∈ {r+1, · · · , r+k}, then the optimal time of these
two problems satisfy:

T ∗e (x0) < T ∗o (x0)

from any nonzero initial state x0 ∈ Rn.
Comparing to Theorem 2 and Corollary 2, the normal-

ity of Problem 1 or 2 is omitted in this theorem, which
means, even if both of the problems are singular, the ef-
fect of adding new input redundancy can be evaluated by
Theorem 3.

4 Examples

Example 1. Discuss the time optimal control of a
double-integral plant without input redundancy:

[
ẋ1

ẋ2

]
=

[
0 1

0 0

] [
x1

x2

]
+

[
0

1

]
u1 (5)

and the plant with identical input redundancy:

[
ẋ1

ẋ2

]
=

[
0 1

0 0

] [
x1

x2

]
+

[
0 0

1 1

] [
u1

u2

]
(6)

where the control satisfies the input constraint −1 ≤ ui(t)
≤ 1 and i = 1, 2.

Obviously, the time optimal control problems for both
(5) and (6) are normal. Since the eigenvalues of A have
non-positive real parts, according to Lemmas 1 and 3, the
optimal control for these two plants exist and are unique.
With the input constraint Π, the isochrones of (5) and (6),
S1 and S2, are described in Fig. 2. From the figure, S1

is strictly contained within S2, which means that adding
the identical input redundancy into a double integral plant
will lead to a smaller optimal time, which demonstrates the
conclusion in Corollary 2.

Fig. 2 Isochrones of double-integral plant with and without

identical input redundancy when the optimal time is T ∗ = 2

Example 2. Compare with the time optimal control
problems of the double-integral plant (DIP) and the ex-
tended double-integral plant (EDIP), where DIP is

[
ẋ1

ẋ2

]
=

[
0 1

0 0

] [
x1

x2

]
+

[
0

1

]
u1 (7)

and EDIP is

[
ẋ1

ẋ2

]
=

[
0 1

0 0

] [
x1

x2

]
+

[
0 1

1 1

] [
u1

u2

]
(8)

with the input constraint −1 ≤ ui(t) ≤ 1 and i = 1, 2.
On one hand, according to Lemmas 1 and 3, the existence

and uniqueness of the time optimal control for (7) and (8)
are guaranteed. Moreover, since



226 ACTA AUTOMATICA SINICA Vol. 37

|GIDP | = |b Ab| =
∣∣∣∣

0 1

1 0

∣∣∣∣ 6= 0

|GEIDP1| = |b1 Ab1| =
∣∣∣∣

0 1

1 0

∣∣∣∣ 6= 0

|GEIDP2| = |b2 Ab2| =
∣∣∣∣

1 1

1 0

∣∣∣∣ 6= 0

from Lemma 2, the time optimal problems with (7) and (8)
are normal. According to Theorem 2, the optimal time of
these two plants should satisfy T ∗EDIP(x0) < T ∗DIP(x0).

On the other hand, the numerical simulations of the op-
timal trajectories for the EDIP from different initial states
are illustrated in Fig. 3, where the dashed line represents a
switching curve. The optimal control switches from u∗ =
[+1, +1]T to u∗ = [−1, +1]T on the dashed line if x1 < 0,
while on the rest part of the dashed line, the optimal con-
trol switches from u∗ = [−1,−1]T to u∗ = [+1,−1]T.
Meanwhile, the dash-dotted line is another switching curve,
where the optimal control changes from u∗ = [−1, +1]T to
u∗ = [−1, −1]T on it if x2 > 0, otherwise, the optimal con-
trol changes from u∗ = [+1,−1]T to u∗ = [+1, +1]T on it.
Finally, the optimal trajectories go along either the dash-
dotted line or the horizontal part of the dashed line to the
origin point.

Fig. 3 The optimal trajectories for the EDIP

Fig. 4 illustrates the isochrones of the EDIP and the DIP
when the optimal time is T ∗ = 2 s. In this figure, the
isochrone of the EDIP strictly contains the one of the DIP,
which means that the optimal time of the EDIP is smaller
than the one of the DIP for any nonzero initial states x0,
i.e. T ∗EDIP(x0) < T ∗DIP(x0).

As a result, the numerical results in this section demon-
strate the theoretical conclusions in the preceding section.

Fig. 4 The comparison of isochrones between the DIP and the

EDIP while the optimal time is T ∗ = 2 s

5 Conclusions

In this paper, the constrained time optimal control prob-
lem with input redundancy is investigated. Several suf-
ficient conditions lead to a smaller optimal time for the
system with input redundancy than the one without re-
dundancy. A concept of idle channel is introduced, which
represents the channel never being used during the entire
optimal time interval. Then we prove that the optimal
time for the redundant system is shorter than the one of
the original system if there exists non-idle channel among
the redundant input channels. According to a widely dis-
cussed input constraint Π, the normality of the extended
system will guarantee a smaller optimal time for the sys-
tem with input redundancy if the optimal control exists
and it is unique. Moreover, if the input redundancy only
consists of the columns from the original input matrix Bo

and the original system is normal, then the optimal time
becomes smaller and smaller as the input redundancy in-
creases. According to Lemma 2, the time optimal control
problem with input constraint Π is normal if and only if all
the matrices Gj are nonsingular, which is a strong condi-
tion. To weaken this condition, we point out that only one
redundant input channel is completely controllable will also
guarantee a smaller optimal time. At last, two numerical
examples about the double integral plants with and with-
out input redundancy have been employed to demonstrate
the main results of the paper, where the isochrones of the
original systems are strictly contained by the ones of the
systems with input redundancy.
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