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Introduction

These lecture notes are the second instalment in a series of papers dealing with entropic fluctuations in
non-equilibrium statistical mechanics. The first instalment [JPR] concerned classical statistical mechanics.
This one deals with the quantum case and is an introduction to the results of [ ]. Although these
lecture notes could be read independently of [JPR], a reader who wishes to get a proper grasp of the
material is strongly encouraged to consult [JPR] for the classical analogs of the results presented here. In
fact, to emphasize the link between the mathematical structure of classical and quantum theory of entropic
fluctuations, we shall start the lectures with a classical example: a thermally driven harmonic chain. This
example will serve as a prologue for the rest of the lecture notes.

The mathematical theory of entropic fluctuations developed in [JPR, ] is axiomatic in nature.
Starting with a general classical/quantum dynamical system, the basic objects of the theory—entropy pro-
duction observable, finite time entropic functionals, finite time fluctuation theorems and relations, finite
time linear response theory—are introduced/derived at a great level of generality. The axioms concern the
large time limit ¢ — o0, i.e., the existence and the regularity properties of the limiting entropic functionals.
The introduced axioms are natural and minimal (i.e., necessary to have a meaningful theory), ergodic in
nature, and typically difficult to verify in physically interesting models. Some of the quantum models for
which the axioms have been verified (Spin-Fermion model, Electronic Black Box model) are described in
Chapter 6.

However, apart for Chapter 5, we shall not discuss the axiomatic approach of [ ] here. The main
body of the lecture notes is devoted to a pedagogical self-contained introduction to the finite time entropic
functionals and fluctuation relations for finite quantum systems. A typical example the reader should have
in mind is a quantum spin system or a Fermi gas with finite configuration space A C Z?. After the theory
is developed, one proceeds by taking first the thermodynamic limit (A — Z<), and then the large time limit
t — oo. The thermodynamic limit of the finite time/finite volume theory is typically an easy exercise in the
techniques developed in the 70’s (the two volumes monograph of Bratteli and Robinson provides a good
introduction to this subject). On the other hand, the large time limit, as to be expected, is typically a very
difficult ergodic-type problem. In these notes we shall discuss the thermodynamic and the large time limits
only in Chapter 5. This section is intended for more advanced readers who are familiar with our previous
works and lectures notes. It may be entirely skipped, although even technically less prepared readers my
benefit from Sections 5.1 and 5.6 up to and including the proof of Theorem 5.7.

Let us comment on our choice of the topic. From a mathematical point of view, there is a complete
parallel between classical and quantum theory of entropic fluctuations. The quantum theory applied to com-
mutative structures (algebras) reduces to the classical theory, i.e., the classical theory is a special case of the
quantum one. There is, however, a big difference in mathematical tools needed to describe the respective
theories. Only basic results of measure theory are needed for the finite time theory in classical statistical
mechanics. In the non-commutative setting these familiar tools are replaced by the Tomita-Takesaki modu-
lar theory of von Neumann algebras. For example, Connes cocycles and relative modular operators replace
Radon-Nikodym derivatives. The quantum transfer operators act on Araki-Masuda non-commutative LP-
spaces which replace the familiar LP-spaces of measure theory on which Ruelle-Perron-Frobenius (classi-
cal) transfer operators act, etc. The remarkably beautiful and powerful modular theory needed to describe
quantum theory of entropic fluctuations has been developed in 1970’s and 80’s, primarily by Araki, Connes
and Haagerup. Although modular theory has played a key role in the mathematical development of non-
equilibrium quantum statistical mechanics over the last decade, the extent of its application to quantum
theory of entropic fluctuations is somewhat striking. Practically all fundamental results of modular theory
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play a role. Some of them, like the Araki-Masuda theory of non-commutative LP-spaces, have found in
this context their first application to quantum statistical mechanics.

The power of modular theory is somewhat shadowed by its technical aspects. Out of necessity, a reader
of [ ] must be familiar with the full machinery of algebraic quantum statistical mechanics and modular
theory. Finite quantum systems, i.e., quantum systems described by finite dimensional Hilbert spaces, are
special since all the structures and results of this machinery can be described by elementary tools. The pur-
pose of these lecture notes is to provide a self-contained pedagogical introduction to the algebraic structure
of quantum statistical mechanics, finite time entropic functionals, and finite time fluctuation relations for
finite quantum systems. For most part, the lecture notes should be easily accessible to an undergraduate
student with basic training in linear algebra and analysis. Apart from occasional remarks/exercises and
Chapter 5, more advanced tools enter only in the computations of the thermodynamic limit and the large
time limit of the examples in Chapters 1 and 6. A student who has taken a course in quantum mechanics
and/or operator theory should have no difficulties with those tools either.

Apart from from a few comments in Chapter 5 we shall not discuss here the Gallavotti-Cohen fluc-
tuation theorem and the principle of regular entropic fluctuations. These important topics concern non-
equilibrium steady states and require a technical machinery not covered in these notes.

The lecture notes are organized as follows. In the Prologue, Chapter 1, we describe the classical theory
of entropic fluctuations on the example of a classical harmonic chain. The rest of the notes can be read
independently of this section. Chapter 2 is devoted to the algebraic quantum statistical mechanics of finite
quantum systems. In Chapters 3 and 4 this algebraic structure is applied to the study of entropic functionals
and fluctuation relations of finite quantum systems. In Chapter 6 we illustrate the results of Chapters 3 and
4 on examples of fermionic systems. Large deviation theory and the Gértner-Ellis theorem play a key role
in entropic fluctuation theorems and for this reason we review the Girtner-Ellis theorem in Appendix A.
Another tool, a convergence result based on Vitali’s theorem, will be often used in the lecture notes, and
we provide its proof in Appendix B.

Acknowledgment. The research of V.J. was partly supported by NSERC. The research of Y.O. was sup-
ported by JSPS Grant-in-Aid for Young Scientists (B), Hayashi Memorial Foundation for Female Natural
Scientists, Sumitomo Foundation, and Inoue Foundation. The research of C.-A.P. was partly supported
by ANR (grant 09-BLAN-0098). A part of the lecture notes was written during the stay at the first au-
thor at IHES. V.J. wishes to thank D. Ruelle for hospitality and useful discussions. Various parts of the
lecture notes have been presented by its authors in mini-courses at University of Cergy-Pontoise, Erwin
Schrodinger Institute (Vienna), Centre de Physique Théorique (Marseille and Toulon), University of British
Columbia (Vancouver), Ecole Polytechnique (Paris), Institut Henri Poincaré (Paris) and Ecole de Physique
des Houches. The lecture notes have gained a lot from these presentations and we wish to thank the re-
spective institutions and F. Germinet, J. Yngvanson, R. Froese, S. Kuksin, G. Stoltz, J. Frohlich for making
these mini-courses possible.



Chapter 1

Prologue: A thermally driven classical
harmonic chain

In this section we will discuss a very simple classical example: a finite harmonic chain C coupled at its
left and right ends to two harmonic heat reservoirs R, R g. This model is exactly solvable and allows for
a transparent review of the classical theory of entropic fluctuations developed in [JPR]. Needless to say,
models of this type have a long history in the physics literature and we refer the reader to Lebowitz and
Spohn [LS 1] for references and additional information. The reader should compare Chapter 4, which deals
with the non-equilibrium statistical mechanics of open quantum systems, with the example of open classical
system described here. The same remark applies to Section 6.6, where we study the non-equilibrium
statistical mechanics of ideal Fermi gases.

1.1 The finite harmonic chain

We start with the description of an isolated harmonic chain on the finite 1D-lattice A = [A, B] C Z (see
Fig. 1.1 below). Its phase space is

FA = {(pa Q) = ({pz}x€A7 {qx}TEA) ‘pxa qz € R} = RA S RAa
and its Hamiltonian is given by
2 2 2
pr 4z, (G —Gs-1)
H = E Pz 4 2z Mz Ho-l)
A(p7 q) —~ < 2 + ) + 2 ) )

where we set p, = g, = 0forx & A.

A+1 B

@ @ - @ S @S @ - @y

Figure 1.1: The finite harmonic chain on A = [A, B].

Thus, w.r.t. the natural Euclidian structure of ', the function 2H (p, ) is the quadratic form associ-
ated to the symmetric matrix
by — 1 0
AT { 0 1-Ay } ’
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where A denotes the discrete Laplacian on A = [A, B] with Dirichlet boundary conditions

2u4 —UA1 forxz = A;
(—ApUw)y = 2up —Uz—1 — Uz forx €]A, BJ; (1.1)
2up —up_1 forx = B.

The equations of motion of the chain,
pzi(]]'iAA)qv q:p7

tLA

define a Hamiltonian flow on I'y, the one-parameter group e*~* generated by

) : 0 -1
‘CA = ]hA7 J = |: 1 0 :| .
This flow has two important properties:

(i) Energy conservation: e'“ahy etfr = by,
(i) Liouville’s theorem: det (et54) = ef 1(£4) = 1.

An observable of the harmonic chain is a real (or vector) valued function on its phase space I'y and a
state is a probability measure on I'y. If f is an observable and w a state, we denote by

w(f) = g f(p,q) dw(p, q),

the expectation of f w.r.t. w. Under the flow of the Hamiltonian H the observables evolve as
fe=1fo elen,
In terms of the Poisson bracket
{f,95 =Vl Vg = Vy¢f - Vpy,
the evolution of an observable f satisfies
Oufe = {Ha, fi} = {Ha, [ }+-
The evolution of a state w is given by duality

wi(f) = w(fe),

and satisfies

Orwr(f) = wi({Ha, 1)

w is called steady state or stationary state if it is invariant under this evolution, i.e., w; = w for all ¢. If
w has a density w.r.t. Liouville’s measure on I'y, i.e., dw(p, q) = p(p, ¢) dpdg, then Liouville’s theorem
yields

wi(f) :/r foe”™(p,q)p(p,q) dpdq
=/ f(p,q)poe™ 4 (p,q) det (e7) dpdg

=/ f(p,a)poe (p,q)dpdg,
A
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and so wy also has a density w.r.t. Liouville’s measure given by p o e™**A, If D is a positive definite matrix
on 'y and w is the centered Gaussian measure with covariance D,

dw(p, q) = det (271'D)_1/2 e~ D pal/2 dpdg,

where D~ 1[p, q] denotes the quadratic form associated to D~*, then w is the centered Gaussian measure
with covariance D; = et£4 Det£A,

The thermal equilibrium state of the chain at inverse temperature /3 is the Gaussian measure with co-
variance (8hy) 71,

dwag(p, q) = 1/ det (%) e_ﬁHA(p’q)dpdq.

Thermal equilibrium states are invariant under the Hamiltonian flow of Hjy.

1.2 Coupling to the reservoirs

As a small system, we consider the harmonic chain C on A = [-N, N]. The left and right reservoirs
are harmonic chains Ry, and R on Ay = [-M,—N — 1] and A = [N + 1, M| respectively. In our
discussion we shall keep IV fixed, but eventually let M — oco. In any case, the reader should always have
in mind that M > N.

The Hamiltonian of the joint but decoupled system is

Hy(p,q) = Hx(p,q) + Ha, (P, q) + Han (s q)-

The Hamiltonian of the coupled system is

H(p,q) = Ha,uaung(p,q) = Ho(p,q) + VL(p,q) + Vr(p, 9),

where Vi, (p,q) = —¢-n-1¢—~ and Vg(p, q) = —qnqn+1-

N N N +1
IF@i-® = = -@-lilii-® O- - = o,

%

Figure 1.2: The chain C coupled at its left and right ends to the reservoirs Rz, and R .

We denote by hg, hy, hr and h the symmetric matrices associated to the quadratic forms 2H, 2H,
2HpR and 2H and by Ly = jho and £ = jh the generators of the corresponding Hamiltonian flows. We
also set v = vy, + vg = h — hg where vy, and vg are associated to 2V, and 2V respectively.

1.3 Non-equilibrium reference measure

We shall assume that initially each subsystem is in thermal equilibrium, the reservoirs at temperatures
Tr/r = 1/BL/ R, and the small system at temperature 7" = 1//3. The initial (reference) state is therefore

dwa, g, ® dwag ® dwapx (P q) = 71 o= (BLHAL (p,0)+BHA(P:0)+BRHA R (P:0)) dpdg. (1.2)

If the temperatures of the reservoirs are different, the system is initially out of equilibrium. We set X =
B—Pr, Xr=0—pPrand X = (X1, Xg). We call X the thermodynamic force acting on the chain C.
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X1, and X g are sometimes called affinities in non-equilibrium thermodynamics (see, e.g., [ 1. When
X = 0, one has f;, = Br = [ and the joint system is in equilibrium at inverse temperature 3 for the
decoupled dynamics generated by Hy.

In view of the coupled dynamics generated by H, it will be more convenient to use a slightly modified
initial state

dwx (p,q) = Z;(l e_(ﬁLHAL(Pv‘Z)"FﬁHA(paQ)‘f‘/@RHAR(P7Q)+BV(p,q))dpdq

— Z)_(l e~ (BH(p.a)=XrHap (P:Q)*XRHAR(p’Q))dpdq,

which, for X = 0, reduces to the thermal equilibrium state at inverse temperature 3 of the joint system
under the coupled dynamics. Note that wx is the Gaussian measure with covariance

Dx = (Bh—k(X))™',  k(X)=Xphy + Xghr,

whereas (1.2) is Gaussian with covariance (8ho — k(X)) 1. Since h — hg = v is a rank 4 matrix which is
well localized at the boundary of A, these two states describe the same thermodynamics.

1.4 Comparing states

Under the Hamiltonian flow of H, the state wx evolves into wy ;, the Gaussian measure with covariance
c c* c* £\t
Dy = e Dxelt" = (ﬁh e (X )et ) .

As time goes on, the state wx ; diverges from the initial state wx. In order to quantify this divergence,
we need a way to describe the “rate of change" of the state, i.e., a concept of “distance” between states.
Classical information theory provides several candidates for such a distance. In this section, we introduce
two of them and explore their physical meaning.

Let v and w be two states. Recall that v is said to be absolutely continuous w.r.t. w, written v < w,
if there exists a density, a non-negative function p satisfying w(p) = 1, such that v(f) = w(pf) for all
observables f. The function p is called Radon-Nikodym derivative of v w.r.t. w and is denoted dv/dw.

The relative entropy of v w.r.t. w is defined by

( 1 d”) if v <
v|—log— v < w,
S(vlw) = & dw (1.3)

—00 otherwise.

Exercise 1.1.
1. Show that log(z~—1) < = — 1 for x > 0, where equality holds iff z = 1.

2. Using the previous inequality, show that S(v|w) < 0 with equality iff v = w. This justifies the
use of relative entropy (or rather of —S(v|w)) as a measure of the “distance" between v and w. Note
however that —S(v|w) is not a metric in the usual sense since it is not symmetric and does not satisfy
the triangle inequality.

Applying Definition (1.3) to wx ; and wx, we get

dw
—log < dw);t> =Xp(Ha, —Hap—t) + Xr(Hpp — Hap,—t), (1.4

10
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and hence

S(wx tlwx) = wx (Xp(Hap — Hap,—t) + Xr(Hap — Hag,—1t))
= Xrwx (Hap e — Hpap) + Xpwx (Hape — Hay)) -

Since the observable Hy ,, ; — Hj, measures the increase of the energy in the right reservoir during the
time interval [0, ¢] and

t t
d
HAR,t_HAR:/ 7(1 HAR,SdSZ/{H,HAR}SdS,
o ds 0

we interpret
= —{H,Hxp} = {Hap, VR} = —Pn410n,

as the energy flux out of the right reservoir. Similarly,
®p =—{H,Ha,} = {Hna,,VL} = —p-N-1¢-N,

is the energy flux out of the left reservoir.

Exercise 1.2. Compare the equation of motion of the isolated reservoir R p with that of the same
reservoir coupled to C. Deduce that the force exerted on the reservoir by the system C is given by gn
and therefore that ¢y p 1 is the power dissipated into the right reservoir.

In terms of fluxes, we have obtained the following entropy balance relation

t
S(wx tlwx) = —/ wx(ox,s)ds, (1.5)
0
where
gx :XL(I)L+XR(I)R~

This bilinear expression in the thermodynamic forces and the corresponding fluxes has precisely the form
of entropy production as derived in phenomenological non-equilibrium thermodynamics (see, e.g., Section

IV3of [ ]). For this reason, we shall call o x the entropy production observable and
1 t
st = f/ 0x,sds, (1.6)
t Jo

the mean entropy production rate' over the time interval [0, ¢]. The important fact is that the mean entropy
production rate has non-negative expectation for ¢ > 0:

I 1
wx (T = E/ wx(ox,s)ds = *ES(WX,HWX) > 0. (1.7)
0

Another widely used measure of the discrepancy between two states w and v is Rényi relative a-entropy,

w 14 (U,

—00 otherwise.

'Various other names are commonly used in the literature for the observable o x : phase space contraction rate, dissipation function,
etc.

11
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Starting from Equ. (1.4) one easily derives the formula

d —t
log 2%t _ / ox.sds =57, (1.8)
de 0
so that
deat “ aty ™!
er(a) = So(wx tlwx) = logwx . = logwx (e ) . (1.9)
wx

Exercise 1.3.
1. Assuming ¥ < w and using Holder’s inequality, show that o — S, (v|w) is convex.

2. Show that Sp(v|w) = S1(v|w) = 0 and conclude that S, (v|w) is non-positive for a €]0, 1[ and
non-negative for o ¢]0, 1[.

3. Assuming also w < v, show that S;_,, (v|w) = S, (w|v).

1.5 Time reversal invariance

Our dynamical system is time reversal invariant: the map ¥(p, q) = (—p, ¢) is an anti-symplectic involu-
tion, i.e., {f o, go ¥} = —{f,g} o and ¥ o ¥ = Id. Since H o ¥ = H, it satisfies

efod=9oe tr

3

and leaves our reference state wx invariant,

wx (f o) = wx(f).

It follows that wx ¢ (f 0 V) = wx,—¢(f), Pr/r 0¥ = —Pr /p and ox 0 = —ox. Note in particular that
wx(®r/r) = 0and wx (0x) = 0. Applying time reversal to Definition (1.6) we further get

I 1/t
ZtOﬁ:f/UXoes’COﬁds:f/aon9oe_5Eds
tJo tJo
1 ! —sL 1 - sL
= —— oxoe ds = — ox oe’~ds (1.10)
tJo tJo
=_yt
and Equ. (1.9) becomes
ei(a) = logwx (e”‘tzﬂoﬂ) =logwx (e_atzt) . (1.1D)
Thus, o — t_let(a) is the cumulant generating function of the observable —tX! in the state wx, and in
particular
d 1/t
—t ! =— - d
i et(a) - wx <t A 0x,s S> )
a2 1 [t 2
—t (@) = wx (/ (ox.s —wX(UX’S))ds> .
da? ! a=0 \/i 0

12
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1.6 A universal symmetry

Let us look more closely at the positivity property (1.7). To this end, we introduce the distribution of the
observable X induced by the state wy, i.e., the probability measure P defined by

P'(f) = wx(f(Z)).

To comply with (1.7), this distribution should be asymmetric and give more weight to positive values than

to negative ones. Thus, let us compare P* with the distribution P’ (f) = wy (f(—3*)) of —X*. Observing
that

t t

1 t
= (t / ox oelt=9~ ds) oe =%t oe ¥, (1.12)
0

—t 1 -t sL 1 ! —sL
Y= —- ox oe’~ds= - oxoe ds
0 0

we obtain, using (1.8) and (1.10)

(f) = wx (F(-51) = wx (F(5 0d)) = wx (F(57) = wx (f(S 0 e™1£))
=wx,~(f(X") = wx (de’_tf(Zt)) =wx <e_t2tf(§]t)) ,

de

from which we conclude that P < Ptand
=t

dP s

ﬁ(s):e ts, (1.13)
This relation shows that negative values of Y. are exponentially suppressed as ¢ — co. One easily deduces
from (1.13) that
wx({Z' € [-5—6,-s+3]})

wx({Xt €[s—4d,s+4]})

for t,6 > 0 and any s € R. Such a property was discovered in numerical experiments on shear flows
by Evans et al. [ ]. Evans and Searles [ES] were the first to provide a theoretical analysis of the
underlying mechanism. Since then, a large body of theoretical and experimental literature has been devoted
to similar “fluctuation relations" or “fluctuation theorems". They have been derived for various types of
systems: Hamiltonian and non-Hamiltonian mechanical systems, discrete and continuous time dynamical
systems, Markov processes, ... We refer the reader to the review by Rondoni and Meija-Monasterio [RM]
for historical perspective and references and to [JPR] for a more mathematically oriented presentation.
We can rewrite Equ. (1.11) in terms of the Laplace transform of the measure P?,

< —s+49,

1
—s—Jgglog

er(a) = log/e*ats dP'(s).

Relation (1.13) is equivalent to

/e*(lfa)ts dP'(s) = /eats dﬁt(s) = /e*ats dP'(s),
and therefore can be expressed in the form
el — a) = e(a). (1.14)

We shall call the last relation the finite time Evans-Searles symmetry of the function e;(a). The above
derivation directly extends to a general time-reversal invariant dynamical system, see [JPR].
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1.7 A generalized Evans-Searles symmetry

Relation (1.13) deals with the mean entropy production rate 3!. It can be generalized to the mean energy
flux, the vector valued observable

1 t
(I)t:E/ (B 0e™, Proe™”) ds.
0

Exercise 1.4. Denote by Q? (respectively Q") the distribution of ®! (respectively —®?) induced by
the state wy, i.e., Q'(f) = wx (f(®")) and @t(f) = wx (f(—®")). Using the fact that X - ' = X*
and mimicking the proof of (1.13) show that

d—t
%(S) _ efth'

Again, this derivation can be extended to an arbitrary time-reversal invariant dynamical system, see

[JPR].

(1.15)

Introducing the cumulant generating function
9:(X,Y) =logwx (e*ty'q’t) , (1.16)
and proceeding as in the previous section, we see that Relation (1.15) is equivalent to
/eft(X7Y)‘s th(s) _ /etY-s d@t(s) _ /eftY-s th(s),

which leads to the generalized finite time Evans-Searles symmetry

Exercise 1.5. Check that
1 x
9:(X,Y) = = log det (11 ~ Dy (e“ k(Y )ett — k:(Y))) , (1.18)
where we adopt the convention that log x = —oo whenever x < 0. Using this formula verify directly

Relation (1.17).

1.8 Thermodynamic limit

So far we were dealing with a finite dimensional harmonic system. Its Hamiltonian flow e** is quasi-
periodic and it is therefore not a surprise that entropy production vanishes in the large time limit,

lim wy (T = lim —tr (DX (k(X) - e“*k(X)etﬁ)) —0,

t—o00 B t—oo 2t

see also Figure 1.3. To achieve a strictly positive entropy production rate in the asymptotic regime ¢t — oo,
the thermodynamic limit of the reservoirs must be taken prior to the large time limit.

14
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Figure 1.3: The typical behavior of the mean entropy production rate ¢ — wx (X?) for a finite system
(N =20, M = 300). The dashed line represent the steady state value wx 4 (ox) = lim;_,oc wx (X*) for
the same finite chain (N = 20) coupled to two infinite reservoirs.

To take M — oo while keeping NV fixed we observe that the phase space I'[_ 7, 7 is naturally embed-
ded in the real Hilbert space I' = (%(Z) @ ¢%(Z) and that ho, hr, hr and h are uniformly bounded and
strongly convergent as operators on this space. For example

. 1 0
SMi—Poglhoi | 0 ]I—Ao}’

where Ag = A)_oo _N_1]DA[_ N, N DA[N+1,00] I8 the discrete Laplacian on Z with Dirichlet decoupling
at + /N and

. 1 0
Spamh=1 g ]lA]’
where A = Ay is the discrete Laplacian on Z. It follows that £y = jho and £ = jh are also strongly
convergent. Hence, the Hamiltonian flows e*“° and e!* converge strongly and uniformly on compact time
intervals to the uniformly bounded, norm continuous groups on I' generated by the strong limits of £ and
L. Finally, since the covariance Dx = (8h — k(X)) ™! of the state wx converges strongly, the state wx
converges weakly to the Gaussian measure with the limiting covariance. In the following, we shall use
the same notation for these objects after the limit M — oo, i.e., h, hg, £, Lo, k(X), wx, ... denote the
thermodynamic limits of the corresponding finite volume objects.
After the thermodynamic limit, we are left with a linear dynamical system on the L2-space of the
Gaussian measure wx. Denoting by ¢,/ the finite rank operators corresponding to the flux observable
2@,/ and setting ¢(Y') = Yr.¢1 + YRR, we can write

t
TRV — k(YY) = — / e p(Y e ds. (1.19)
0

Since the right hand side of this identity is trace class for every Y € R? and ¢ € R, we conclude from

Dyl — D' = e " k(X)e ™ — k(X), (1.20)

15
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and the Feldman-Hajek-Shale theorem (see, e.g., [Si]) that the Gaussian measure wx ; and wx are equiva-
lent and that Relation (1.4) still holds in the following form

—t
log (dwm) :/ o3 ds.
dCUX 0 ’

For the same reason, Equ. (1.18) for the generalized Evans-Searles functional ¢;(X,Y") remains valid in
the thermodynamic limit.

1.9 Large time limit I: Scattering theory

Taking the limit £ — oo in (1.19), (1.20) we obtain the formal result

0
Dyl, = lim Dy, = Dy' + / L p(X)e ds,

— 00

which we can interpret in the following way: the state wx ;, Gaussian with covariance Dx ;, converges
as t — oo towards a non-equilibrium steady state (NESS) wy ;, Gaussian with covariance Dx i, which
formally writes

dwx +(p,q) =

Zl o (BH@Q) =Xt Hay (p.0)=XnHag 00) [ (X2 @1 o (p:0) + X n P15 (9:0)) 45) g
X+

This formal expression is a special case of the McLennan-Zubarev non-equilibrium ensemble (see [ ,
, ]). In this and the following sections we shall turn this formal argument into a rigorous construc-
tion.
The study of the limit £ — oo in our infinite dimensional harmonic system reduces to an application of
trace class scattering theory. We refer to [RS3] for basic facts about scattering theory. We start with a few
simple remarks:

(i) We denote by H = (A(Z) & (4(Z) ~ (4(Z) ® C? the complexified phase space and extend all
operators on I' to H by C-linearity. The inner product on the complex Hilbert space H is written

(2l).

(i) h — hg = v is finite rank and hence trace class. Since hg > 1 and A > 1, pi/2 — h(l)/2 is also trace
class.

(iii) h/2hg /=1 = (h'/2—h}/*)hg */? is trace class. The same is true for ht/*h=1/2—1, hy */2p1/2 -1
and h’1/2h(1)/2 —1.

(iv) Lo = ih(l)/2jh(1)/2 and L = ih'/2jh!/? are self-adjoint, L — Ly is trace class and

—j 1/2 —1/2 —i _
e itLg :ho/ etEOhO / , e 1tL:h1/2€tL'h 1/2.

Note that L (respectively iL) acting on H is unitarily equivalent to Ly (respectively £) acting on
the “energy" Hilbert space (%(Z) & (%(Z) equipped with the inner product (¢|1))n, = (¢|ho|t))
(respectively (P|1)rn = (p|h]1)).

(v) L has purely absolutely continuous spectrum.

(vi) The Hilbert space H has a direct decomposition into three parts, H = Hy & He ® H g, corresponding
to the three subsystems Ry, C and R . We denote by Pr,, P and Pr the corresponding orthogonal
projections.
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(vii) This decomposition reduces Lg so that Ly = Ly, & L¢ & Lg. The operators L, and L have purely
absolutely continuous spectrum and L¢ has purely discrete spectrum. In particular, P, + Pg is the
spectral projection of L onto its absolutely continuous part.

By Kato-Birman theory, the wave operators

Wi =s—lim eltle~itlo (PL + PR)

t—+oo

exists and are complete, i.e.,
Wi =s — limeltfoe it
t—+oo

also exists and satisfy WiWy = Pp + Pr, W Wi = 1. The scattering matrix S = W} W_ is unitary
on Hy ® Hpr. A few more remarks are needed to actually compute S:

(viii) One has

U*LOU:[QO 0 Q 0 }

0 —Q 0 —-Q
where Q@ = /1 — A and Qy = /1 — Ay are discrete Klein-Gordon operators and U is the unitary

o-5l11]

| o]

(ix) It follows that
o w+ 0 *
We=v { 0 we } v

where

wy = s — lim el ™% (Py 4 Pp).
t—too

In particular, one has

- wiw_ 0 "
S=U { 0 W wy ] U*. (1.21)

(x) By the invariance principle for wave operators, we have

. 102 _i102
wy = bt;ihogl eth e itQg Pac(Qg)

=5 — lim e (=M (=20 p, (_A().
t—too

We proceed to compute the scattering matrix. A complete set of (properly normalized) generalized eigen-
functions for the absolutely continuous part of —A is given by

Go(x) = \/E@(O’ZE — N)sink|oz — N|, (o,k) € {—,+} x [0,7],

where 6 denotes the Heaviside step function and —Ag¢, 1 = 2(1 — cos k)¢, . For the operator —A, such

a set is given by
1

ickx
ok(T) = —e7%, o k)e{—,+} x|0,m7].
Xoi() = (7.K) € {=,+} x [0.7]
Since .
Wik = FoieT Ny, ok,
we deduce that '
wiwsder = No_ o (1.22)
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We shall denote by b1 the 2-dimensional generalized eigenspace of Lg to the “eigenvalue” +e(k) =

++/3 — 2 cos k. The space by is spanned by the two basis vectors

wa,k,—i- =U |: ¢8k :| ) o€ {*a+}v

and fy_ is the span of

Vok,— =U [ ¢Sk } ; o€ {— +}

In the direct integral representation

D
HL@HR@(/[ hkydk>7

M:j: 0777]

the scattering matrix is given by

S = EB( o dk:),

where, thanks to (1.21) and (1.22), the on-shell S-matrix S,, (k) is given by

v [0 1
u(0) = Sl =2 | § (1],

1.10 Large time limit II: Non-equilibrium steady state

We shall now use scattering theory to compute the weak limit, as ¢ — oo, of the state wx ;.

X = X P, + XgPg for X = (X1, Xr) € R2, one has
k(X) = Xphy + Xphr = hi/*Xh/?.
Energy conservation yields e *40 k(X )e %0 = k(X) and

* gL 1/25,1/2
etC k(X)etﬁ — oL tﬁoho/ Xho/ e~ tLogtl

tL* h1/267itLo)?eitLo h1/2etz:
0 0

— otL” h1/2h71/2h(1j/2efitL05€eitLo hé/zh’l/th/Qew
_ h1/2€itLh71/2h(1)/267itL05(\veitLo h(1)/2h71/2efitLh1/2.

By Property (ii) of the previous section, one has
< lim U1 e o(P, + Pr) = W

itLoy1/2 1/2-itL
i e TR =W

and so R
s — lim e“ k(X)et = Y/ WL XWih/2,

t—too

It follows that

s—1lim Dx fsfhm(ﬂh 7tﬁ*k(X)eftll)71

t—o0
= (Bh — K\ PW_XW*pt/?)~1
=hVPW_(B— X)W h Y% = Dy 4,

18
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which implies that the state wx ; converges weakly to the Gaussian measure wx 4 with covariance Dy ..
The state wx 4 is invariant under the Hamiltonian flow e* and is called the non-equilibrium steady state

(NESS) associated to the reference state wx. Note that in the equilibrium case 37, = (g the operator X is
a multiple of the identity and

Dx 4 = (BLh)™",

which means that the stationary state wx 4 is the thermal equilibrium state of the coupled system at inverse
temperature 35, = Sg.

Exercise 1.6. If X # Xpg then wx 4 is singular w.r.t. wy, ie.,
Dx!, — D' = hy/>Xhy/* — mPW_XW*hl/?,

is not Hilbert-Schmidt. Prove this fact by deriving explicit formulas for W_Pr, g W* .

Exercise 1.7. Compute wx . (®/r) = 3tr(Dx 1 ér,r) and show that
wx,+(®r) = —wx,+(Pr) = K(TL — Tr),

where 17,/ p = 62/1R is the temperature of the left/right reservoir and

V5 -1
or

Note in particular that wx 4 (®r) + wx 4+ (Pr) = 0. What is the physical origin of this fact ? Show
that, more generally, if w is a stationary state such that w(p2 + ¢2) < oo for all = € Z, then w(® ) +
UJ(@R) =0.

Using the result of Exercise 1.7 we conclude that

wx,+(0x) = Xpwx +(Pr) + Xpwx 4+ (Pr)
= (X — Xp)wx,+(Pr)
(Ty — Tr)*

— gL TR
N T

provided T, # Tr. This implies that the mean entropy production rate in the state wx is strictly positive
in the asymptotic regime?,

. .1t .
tgr&wX(Et) = tlgrolo n ; wx(oxs)ds = tlggowx,t(ax) =wx +(ox) >0,

and that it is constant and strictly positive in the NESS wx 4,

1

t
wX7+(Zt) = ;/0 wX’+(0X’S) ds = wX7+(ch) > 0.

ZRecall that if lim¢— oo f(t) = a exists then it coincide with the Ceséro limit of f at +oo, limz_, 4 oo 771 fOT f(t)dt = a,
and with its Abel limit, lim, o n [ ™" f(t) dt = a.
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1.11 Large time limit III: Generating functions

In this section we use scattering theory to study the large time asymptotic of the Evans-Searles functional
et(a) (Equ. (1.11)) and the generalized Evans-Searles functional ¢;(X,Y") (Equ. (1.16)).
Starting from Equ. (1.18), and using (1.19) to write

t
T, = —Dx (etﬁ*k(Y)etﬂ - k(Y)) = / Dxe*™ ¢(Y)e*~ ds,
0
we get
1 1
;gt(X,Y) :72—tlogdet(]l+Tt)
1
= —2—ttrlog(1 +Ti)
1 ['d
=—= —trlog (1 T;) du.
2t/0 qq rles (1 +uli)du
Using the result of Exercise 1.8, we further get
1 I 1
,gt(x,y):—f/ tr ((]1+uTt) Tt> du
t 2t Jo
1 ot ) i
:_7/ / tr (1+uTt)* Dxe’c ¢(Y)es£> ds du
o Jo
L
— tr
el
= tr |e
2Jo Jo

oSt (D;CI _ u( L (Y Yetl — k(Y)))7 stL*
( —stL” Dyle £ —ye o StL” ( LT (Y e L_k(y)) efsw)fl

. —1
_ (D)_(,lst —u (e(lfs)t[l k(y)e(lfs)tﬁ - efstll k(y)efstﬁ)> ,

Dyl — ( L R (Y )etE — k(Y)))_lesﬁ*qs(Y)esﬁ] dsdu
tﬁ

- (ew*k(Y)etﬁ - k:(Y))) B estﬂ*¢(Y)] ds du.

Writing

and using (1.24) and (1.25), we obtain

S;Liom eStE (D)_(1 —u (ew*kz(Y)ew — k(Y))) B St
= (DXl —uh2 (W yws —w YWz ) pt/2)
- (h1/2 (W_ (B—X +u?) 1w — uW+?W1> h1/2) B
= h 12w (ﬁ — X —u(SYS — ?)) w2,

for all s €]0, 1[. Since ¢(Y") is trace class (actually finite rank), we conclude that

1 . . -1
9(X,Y) = lim %gt(X,Y) - —%/O tr [(5—X—u(S*YS—Y)) T} du,

where
T =W*h Y 2p(v)h=YV2W_.

20



Entropic Fluctuations in Quantum Statistical Mechanics

To evaluate the trace, we note that the scattering matrix S and the operators X s Y all commute with Lo
while the trace class operator 7 acts non-trivially only on the absolutely continuous spectral subspace of
Lg. It follows that

tr [(,@ X —u(SYS - }7)) B T}
—tr {(1 —u(ﬁ—X)-l(s*?s—?))_l(ﬁ—)?)—lﬂ (1.26)

=2 / Y Wl (1B = D) ST - T)) (B X))
p=%"70 o=+

Set .
o . . t
Al = [ e g el T 0 02) 5
— 00 Y[y

R dt

Bm) =n [ e " WoptlFlorp )5

0 Yi§

where

*

F=W*h1/? (e*w*k(Y)e*w —ett k(Y)etL) hY2w_

By the intertwining property of the wave operator, we have

eitLOTefitLo _ WjeitLh71/2¢(Y)h71/267ith_
_ thfl/QetE*¢(Y)etﬁh71/2W7
d

_ _&th—l/Qet,C*k_(y)etﬁh—l/Zw_’

and an integration by parts yields that
A(n) = B(n), (1.27)

for any > 0. Let us now take the limit 7 | 0 in this formula. Since v 1, + is a generalized eigenfunction
of Ly to the eigenvalue +e(k), we get, on the left hand side of (1.27),

> . y dt
<¢a,k,i|T|¢af,k/,i>/ e Mltlit(e(k) —e(k ))7 = (Yo ko, | T Vo o, 20 (e (k) — e(K")).

o s
Using (1.24), the Abel limit® on the right hand side of (1.27) yields
i@/’ W h1/2 (hl/QW_i}W*hl/Z 2w )/}W*hl/Q) hY2W_ s o )
o Wk, £V — - + + o’ k' E
= o Wonal7 = 5T Slorra)
= (W7 S (k)T S (R) g )5k — ),
and we conclude that

1 =~ ~
(Wok s TlWorsok) = 5 (Woe e [Y = S (k)Y S (k) [0 12)' (K). (1.28)

Note that the operator Y acts on the fiber b+ as the matrix

~

Y, O
Y = . 1.29
br+ |: 0 Yr :| ( )

3See footnote 2 on page 19
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Relation (1.28) allows us to write

> ol (1= 05 = D) HSTS = 7)) (8- X) " Tlwe)
o=%

~ ~

= try,, {(1 — (B = X) 7 (Su(k)"Y S, (k) — Y))il

= ;—utrbk“ [log (]l —u(f — )A()il(su(k)*?Su(k) 3 ?))}

Inserting the last identity into (1.26) and integrating over u we derive

~

s(6¥) ==X [iny,, flog (1 (8- 1) 5,07 F 5,00 - 7)) ] S0
p=x"0

~

> | tomdets,, (1= (8= %) 5,0V 5,h) - 7

Remark. The last formula retains its validity in a much broader context. It holds for an arbitrary number
of infinite harmonic reservoirs coupled to a finite harmonic system as long as the scattering approach
sketched here applies. Furthermore, the formal analogy between our Hilbert space treatment of harmonic
dynamics and quantum mechanics suggests that quasi-free quantum systems could be also studied by a
similar scattering approach. That is indeed the case, see Section 6.6.

Invoking (1.23) and (1.29) leads to our final result

(1.30)

9(X,Y) = —klog (1 + (Yr —Y) [(Xr — Xp) — (YR — YL”) .

(B—Xgr)(B—XL)

Note that g(X,Y) is finite for —T;" < Yg — Y7, < T} ! and +oc otherwise. Since e;(a) = g;(X, aX),
one has

o1 B (T, — Tr)?
e(e) = lim ;et(a) = —rlog (1 + TTRQU —a)l,

which is finite provided 2| — 1/2| < (T + Tr)/|Tr — Tr| and +oo otherwise (see Figure 1.4). Note

also the explicit symmetries g(X, X —Y) = g(X,Y) and (1 — «) = e(«) inherited from the finite time
Evans-Searles symmetries (1.14) and (1.17).

Exercise 1.8. LetR > z — A(x) be a differentiable function with values in the trace class operators
on a Hilbert space. Show that if || A(x)|| < 1 then z — trlog(1 + A(z)) is differentiable at 2 and

= tr((1 + A(zo)) A’ (x0))-

T=Tq

/11
(il 1 :/ - dt,
og(1 +a) ) <t t+a)

d
atr log(1 + A(x))

Hint: use the formula

valid for |a| < 1.
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Figure 1.4: Solid lines: the generating function o +— t~te; () for various values of ¢ and finite reservoirs
(N = 20, M = 300). The slope at a = 1 is wx (X*), compare with Figure 1.3. Dashed line: the limiting
function o — e(«) for infinite reservoirs.
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1.12 The central limit theorem

As a first application of the generalized Evans-Searles functional g(X,Y"), we derive a central limit theorem
(CLT) for the current fluctuations. To this end, let us decompose the mean currents into its expected value
and a properly normalized fluctuating part, writing

I I 1,
; o @j’sds:g ; UJX((PJ’S)dS‘F%(s(DJ,

for j € {L, R}. By Definition (1.16), the expected mean current is given by

1

t
1
*/ wX(‘I)j,s)dS:—ayj*gt(X,Y)
t Jo t

)

Y=0

while the fluctuating part is centered, wx (6®;) = 0, with covariance

1
wx (5‘1’25‘1’2) = Oy, Oy, th (X,Y)

Y=0
For large ¢, the expected mean current converges to the NESS expectation
t

1
Jim ; wx (®j,s) ds = wx 1(P;).

To study the large time asymptotics of the current fluctuations §®* = (§®% , §®%,) we consider the charac-
teristic function ' Lo
wx (eiY~6<I>t) =wy (el Zj Y; Vi fo/(éj,s —wx (®j,s)) ds) , (131)

i.e., the Fourier transform of their distribution. To control the limit ¢ — oo, we need a technical result
which is the object of the following exercise.

Exercise 1.9. Show that for a given $;, > 0 and Sr > 0 there exists € > 0 such that the function
Y = ¢,(X,Y) is analytic in D, = {Y = (Y, Yr) € C?||YL| < ¢,|YRr| < €} and satisfies

1
sup gt(X,Y)‘ < 00. (1.32)
veD, |t
t>0

Hint: start with (1.18) and use the identity logdet(1 — T') = tr(log(1 — T")) and the factorization
log(1—2) = —zf(z) to obtain the bound | log det(1—T")| < |T||1 f(||T||) where ||T||; = tr(v/T*T)
denotes the trace norm of 7.

The convergence result of the preceding section and the uniform bound (1.32) imply that
1
tILIEO Egt(Xv Y) - g(Xv Y)v

uniformly for Y in compact subsets of D,, that all the derivatives w.r.t. Y of % g:(X,Y) are uniformly
bounded on such compact subsets and converge uniformly to the corresponding derivatives of g(X,Y")
(see Theorem B.1 in Appendix B). For Y € C% and ¢ > 0 large enough, Equ. (1.31) can be written as

) el (1 ) () ).

and the Taylor expansion of g¢(X,Y) around Y = 0 yields

L Y)Y (g, 1 1 B
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from which we conclude that

tlif&wX (eiY-&}t) _ e—%Y-DY’ (1.33)

with a covariance matrix D = [D;;] given by

) 1
Djk = tli{go (6)/Jayk tgt) (X, 0) = (8}/Jaykg) (X,O)
Evaluating the right hand side of these identities yields
D11 = D22 = —D12 = —D21 =K (Tz + le?) .

Since the right hand side of (1.33) is the Fourier transform of the centered Gaussian measure on R? with
covariance D, the Lévy-Cramér continuity theorem (see e.g., Theorem 7.6 in [Bi1]) implies that the current
fluctuations § ®* converge in law to this Gaussian, i.e., that for all bounded continuous functions f : R2 —

R
. e do
Jim wx (f(0@")) = / f(¢,~¢)e™? mﬁ, (1.34)

where 0 = &« (Tf + TI%). Note in particular that the fluctuations of the left and right mean currents are
opposite to each other in this limit.

Exercise 1.10. Use the CLT (1.34) and the results of Exercise 1.7 to show that

1 t
7/ (q>L,s+(bR,s) dS—)O,
0

t
> e}) , (1.35)

in probability as ¢ — oo, i.e., that for any € > 0 the probability

1 t
wx <{‘t/ (®L75 +‘1>R,s) ds
0

tends to zero as t — oo.

It is interesting to compare the equilibrium (77 = T'g) and the non-equilibrium (T}, # Tg) case. In the
first case the expected mean currents vanish (recall that in this case wx 4 is the equilibrium state) while in
the second they are non-zero. In both cases the fluctuations of the mean currents have similar qualitative
features at the CLT scale ¢t~ /2. In particular they are always symmetrically distributed w.r.t. 0.

1.13 Linear response theory near equilibrium

The linear response theory for our harmonic chain model follows trivially from the formula for steady heat
fluxes derived in Exercise 1.7. Our goal in this section, however, is to present a derivation of the linear
response theory based on the functionals g;(X,Y) and g(X,Y"). This derivation, which follows the ideas
of Gallavotti [Ga], is applicable to any time-reversal invariant dynamical system for which the conclusions
of Exercise 1.9 hold. For additional information and a general axiomatic approach to derivation of linear
response theory based on functionals g:(X,Y") and g(X,Y") we refer the reader to [JPR].
Starting from
1
— tllglo 8YL/R;9t(Xa Y) - = wx,+(®L/R),
and using the fact that the derivative and the limit can be interchanged (as we learned in the previous
section) one gets
— v, n9(X, V)|, _y = wx +(PL/R)- (1.36)
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Remark. The main result of Section 1.11, which expresses the Evans-Searles function g(X,Y) in terms
of the on-shell scattering matrix, immediately implies

WX,+((I)L/R)

which can be interpreted as a classical version of the Landauer-Biittiker formula (see Exercise 6.13).
The Onsager matrix L = [L;x]; re(r,r} defined by
Ljk = 0x,wx +(®5)|x—g »
describes the response of the system to weak thermodynamic forces. Taylor’s formula

wx +(®;) =Y LipXy + o(X), (X = 0),
k

expresses the steady currents to the lowest order in the driving forces. From (1.36), we deduce that

Ljx = _anang(X’Y)‘X:Y:O :

The ES symmetry g(X, X —Y) = g(X,Y) further leads to

8Xk8ng(X, Y) = 8Xk5'ng(X7X — Y)
= *an(ay;g)(X,X*Y)
= —(0x,0v;9)(X, X =Y) — (0y,0v,9)(X, X =Y,

so that

1

X=Y=0

)|X:Y:O =

and hence

1
ij = iaykang(o,Y) (1.38)

Y =0

Since the function g(0,Y) is C% at Y = 0, we conclude from (1.38) that the Onsager reciprocity relation
Lk = Ly,

hold.

Exercise 1.11. In regard to Onsager relation, open systems with fwo thermal reservoirs are special.
Show that the Onsager relation follow from the conservation law

wx,+(<I’L) + wx,+(<I>R) =0.

Time-reversal invariance plays no role in this argument! What is the physical origin of this derivation?
Needless to say, the derivation of Onsager reciprocity relation described in this section directly extends
to open classical systems coupled to more than 2 thermal reservoirs to which this exercise does not

apply.
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The positivity of entropy production implies

0<wxy(ox) =Y wx(®)X; = LjX; Xy +o(| X,
J J.k

so that the Onsager matrix is positive semi-definite. In fact, looking back at Section 1.12, we observe
that the Onsager matrix coincide, up to a constant factor, with the covariance of the current fluctuations at
equilibrium,

This is of course the celebrated Einstein relation.

For our harmonic chain model the Green-Kubo formula for the Onsager matrix can be derived by an
explicit computation. In the following exercises we outline a derivation that extends to general time-reversal
invariant dynamical systems.

Exercise 1.12. Show that the Green-Kubo formula holds in the Cesaro sense

1t e
ij = lim - 5 wo(@j(bk,T) dr| ds.

t—oo t /g s

Hint: using the results of the previous section, rewrite (1.38) as

. 1
Ljy = lim 9y, dy, Egt(oy Y)

)

Y=0

and work out the derivatives.

Exercise 1.13. Using the fact' that (5,]e*V/=2|5,) = O(t'/2) as t — oo (J, is the Kronecker
delta at z € Z), show that wo(®; Py +) = O(t'). Invoke the Hardy-Littlewood Tauberian theorem
(see, e.g., [Ko]) to conclude that the Kubo formula

1 t
ij = lim 5 Wo(q)jq)k,T) dT7
=i

t—o0

holds.
This follows from a simple stationary phase estimate.

1.14 The Evans-Searles fluctuation theorem

The central limit theorem derived in Section 1.12 shows that, for large ¢, typical fluctuations of the mean
current P with respect to its expected value wx (®*) are small, of the order t=1/2. In the same regime
t — oo, the theory of large deviations provides information on the probability of occurrence of bigger
fluctuations, of the order 1. More precisely, the existence of the limit?,

1
9(X,Y) = lim glog / eV dQ!(s), (1.39)

4The distribution Q? of the mean current ®* was introduced in Exercise 1.4
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and the regularity of the function Y — ¢(X,Y") allow us to apply the Gértner-Ellis theorem (see Exercise
1.15 below) to obtain the Large Deviation Principle (LDP)

1 1
_ < liminf = HG) < i = HG) < — i X
seilnrif(- )IX(s) htmmf . log Q*(G) hinsup ; log Q' (G) selcrll(f )I (s),

for any Borel set G C R?. Here, int(G) denotes the interior of G, cl(Q) its closure, and the rate function
Ix : R? — [—00,0] is given by

Ix(s) = = jnf (Y -5+ g(X.Y)).

The symmetry g(X,Y) = g(X, X —Y) implies
Ix(—s) =X s+ Ix(s). (1.40)

The last relation is sometimes called the Evans-Searles symmetry for the rate function.

Exercise 1.14. Show that

4+oo  ifsp +sgr #0,

Ix(sL,sr) = K
F(9) ifsp, =—sr= —sinh#,
Bo
where P 52 ;
F(0) =« |2 sinh? = — —sinh 6 — lo ((1 = ) cosh? )} ,
Bo=p0—(Xr+Xg)/2and 6 = (X1 — Xg)/2. Show that I x(sy,, sr) is strictly positive (or +00)
except for s;, = —sp = wx, 4+ (®r) where it vanishes. Compare with Figure 1.5.

Figure 1.5: The rate function Ix (s, —s) (solid line). Notice the asymmetry which reflects the fact that
X1 > Xpg. The dashed vertical line marks the position of the mean current wy 4 (®1) > 0. In contrast,
the rate function I'x (s, —s) in the absence of forcing, X;, = Xg, (dotted line) is symmetric around zero.
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The LDP provides the most powerful formulation of the Evans-Searles or transient fluctuation theorem.
In particular, it gives fairly precise information on the rate at which the measure Q! concentrates on the
diagonal {(¢, —¢)| ¢ € R} (recall Exercise 1.10): the probability (1.35) decays super-exponentially as
t — oo for any € > 0. Taking this fact as well as the continuity of the function F'(#) into account, we
observe that for any interval J C R one has

o1 ¢ .
tlinologlogQ (JxR) = —;gf}[x(s,—s).

A rough interpretation of this formula

1 t
(R
0

identifies Ix (—¢, ¢) as the rate of exponential decay of the probability for the mean current to deviate from
its expected value wx 1 (®r,). More precisely, one has

lin Jim 5 10g Q" (16— 6,0+ 8] x R) = —Ix (6, ~0). (141)

The symmetry (1.40) implies

Ix(=¢,¢) = Ix(), =) + (X1 — XRg)p > (X1, — XR)&,
and it follows that

it L1og Q0= 8,648 xB) _
R T PR ) R (142

or, in a more sloppy notation,

wx ({% fot Or,sds = _¢}) ~ et XL =XR)o

o ([ imenie=)

This shows that the mean current is exponentially more likely to flow from the hotter to the colder reservoir
than in the opposite direction, i.e., on a large time scale, the probability of violating the second law of
thermodynamics becomes exceedingly small. Note also that (1.42) is (essentially) a considerably weaker
statement then (1.41). Relation (1.42), after replacing lim with lim sup /lim inf can be derived directly
from the finite time symmetry g;(X,Y) = g;(X, X —Y') and without invoking the large deviation theory.

Exercise 1.15. Check that the Giértner-Ellis theorem (Theorem A.6 in Appendix A.3 applies to
(1.39), i.e., show that the function Y +— ¢(X,Y") given in Equ. (1.30) is differentiable on the domain
D ={(Yg,Yg) € R?| - Tx' < Ygp — Y, < T, '} where it is finite and that it is steep, i.e.,

DSI;H;YO |Vyg(X,Y)| = oo,

for Yy € 0D.

Exercise 1.16. Apply the Girtner-Ellis theorem to the generating function e(«) to derive a LDP for
the mean entropy production rate X%, i.e., for the probability distribution P? of Section 1.6.
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1.15 The Gallavotti-Cohen fluctuation theorem

In this section we briefly comment on the Gallavotti-Cohen fluctuation theorem for a thermally driven
harmonic chain. Let us consider the cumulant generating function of the currents in the NESS wx 4,

g4 (X,Y) = wx 4 (e_tyl@t) :
Evaluating the Gaussian integral yields

1 .

g40(X,Y) = = log det (11 — Dx+ (e“ k(Y )etl — k(Y))) .
Proceeding as in Section 1.11, one shows that
X,Y)=1 ! XY)= 1l ! X,Y)=g(X,Y
g+(X,Y) = lim —g. (X, Y) = lim —g(X,Y) = g(X,Y).

Hence, g+ (X,Y) and the corresponding rate functions Ix 4 (s) = Ix(s) inherit the symmetries

g+(X,)Y) =g (X, X =Y),  Ix4(=s) =X s+Ix(s)

Via Girtner-Ellis theorem, the functional Ix ;4 (s) control the fluctuations of dtast — cowrt. w x,+ and,
after replacing wx with wx 4 (so now Q'(f) = wx +(f(®?), etc) one can repeat the discussion of the
previous section line by line. The obtained results are called the Gallavotti-Cohen fluctuation theorem.

Since wx 4+ is singular w.r.t. wx in the non-equilibrium case X # Xp, the Gallavotti-Cohen fluctu-
ation theorem refers to configurations (points in the phase space) which are not seen by the Evans-Searles
fluctuation theorem (and vice versa, of course). The identity g4 (X,Y) = ¢(X,Y’), which was for the
first time observed in [JPR], may seem surprising on the first sight. It turned out, however, that it holds
for any non-trivial model for which the existence of g1 (X,Y’) and g(X,Y’) has been established. This
point has been raised in [JPR] to the Principle of Regular Entropic Fluctuations. Since we will not discuss
quantum Gallavotti-Cohen fluctuation theorem in these lecture notes, we refer the reader to [ , ]
for additional discussion of these topics.
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Chapter 2

Algebraic quantum statistical
mechanics of finite systems

We now turn to the main topic of these lecture notes: quantum statistical mechanics. This section is devoted
to a detailed exposition of the mathematical structure of algebraic quantum statistical mechanics of finite
quantum systems.

2.1 Notation and basic facts

Let /C be a finite dimensional complex Hilbert space with inner product (¢|¢) linear in the second argu-
ment'. Recall the Schwarz inequality (1)|¢) < [|1/|| [|#||, where equality holds iff 1) and ¢ are collinear.
In particular [|¢|| = supjy=1(1|¢). We will use Dirac’s notation: for 1) € K, (1| denotes the linear
functional £ 3 ¢ — (¢|¢) € C and |4} its adjoint C > o — at) € K.

We denote by O the x-algebra® of all linear maps A : K — K. For A € O, ||A| = sup| =1 |49 ||
denotes its operator norm and sp(A) its spectrum, i.e., the set of all eigenvalues of A. Let us recall some
important properties of the operator norm. Since || Ay < || A]| ||+/|, it follows that ||AB|| < || A]| || B|| for
all A, B € O. Since

[A%¢|| = sup (p|A"¢) sup (Ay[¢) <[IA]l[¢],
llll=1 ll#ll=1

and A** = A, one has ||A*|| = ||A|| for all A € O. Finally, from the two inequalities ||A*A| <

[ A*[[]|A]l = [| A||* and

1Al* = Sup [A]* =

sup sup (Av[Av) = sup (V14" A) < [|4"A].

ll 1l ll=1
on deduces the C*-property || A* Al = || A||*.
The identity operator is denoted by 1 and, whenever the meaning is clear within the context, we shall

write « for a1 and o € C. Occasionally, we shall indicate the dependence on the underlying Hilbert space
K by the subscript x (O, 1, etc).

To any orthonormal basis {eq,...,en} of the Hilbert space /C one can associate the basis {E;; =
lei)(ej| 4,5 =1,...,N}of O so that, for any X € O,
N
X =Y XiE;,
i,j=1

where X;; = (e;|Xe;). Equipped with the inner product
(X]Y) = tr(X"Y),

"Many different Hilbert spaces will appear in the lecture notes and in latter parts we will often denote inner product by ( - | -)
2See Exercise 2.1 below.
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O becomes a Hilbert space and { E;; } an orthonormal basis of this space.
The self-adjoint and positive parts of O are the subsets

Oselt = {A S (9|A>°< = A},
Oy ={A€O|{¥|AY) > 0forallp € K} C Ogeis.

We write A > 0if A € Oy and A > Bif A—B > 0. Note that A € O, iff A € Oger and sp(A) C [0, 0f.
If A > 0and Ker A = {0} we write A > 0.

A linear bijection ¥ : O — O is called a x-automorphism of O if ¥(AB) = ¥(A)J(B) and ¥(A*) =
Y(A)*. Aut(O) denotes the group of all x-automorphisms of O and id denotes its identity. Any ¥ €
Aut(O) preserves Ogr and satisfies 9(1) = 1 and 9(A~!) = 9(A4)~! for all invertible A € O. In
particular, 9((z — A)71) = (z — 9(A))~! and sp(V(A)) = sp(A). It follows that ©J preserves O and is
isometric, i.e., |[#(A)| = ||A| forall A € O.

Let K1 and K3 be two complex Hilbert spaces of dimension N7 and N5. Let {e(l) ...,eg\}l)} and
{e?), ceey 65\2,2)} be orthonormal basis of Ky and /C5. The tensor product K7 ® Ko is defined, up to iso-
morphism, as the IN; X Na-dimensional complex Hilbert space with orthonormal basis {ez(-ll) ® eg) lip =
1,...,Ny;ia =1,..., No}, ie., K; ® Ko consists of all linear combinations

N1 N»
v=3"3 vine wel?,
i1=11ix=1

the inner product being determined by (e;, M) & 6(2)|€ ® e( )> = 0i, 4,0y, The tensor product of two
vectors ¢ = Zl 1 Yie (1) € Ky and ¢ = Z 1 D€, (2) € Ko is the vector in K1 ® Ko defined by

N1 Ny

VRo= Y i diel @el.

11 1 12 1

The tensor product extends to a bilinear map from Iy x Iy to K1 ® Ko. We recall the characteristic
property of the space K1 ® Ko: for any Hilbert space K3, any bilinear map F' : Iy x Ko — K3 uniquely
extends to a linear map F:K®Ky— KCs by setting F’(/) ® ¢ = F(, ).

The tensor product of two linear operators X € Oy, and Y € Oy, is the linear operator on K ® Ko
defined by

XeY)oe=X)paYe,

and Ok, ® Ok, is the x-algebra generated by such operators. Denoting by {EZ(EZQ} and {E 512])2} the basis
of Ok, and Oy, corresponding to the orthonormal basis {egl)} and {e§-2)} of K1 and Ko, the NZ x N2
operators

Buyiniin = B, @ B, = el @ e)(el)) @ 2],

1J1 1272

form a basis of Ok, gx,- This leads to a natural identification of Ok, gk, and Ok, ® Ok, .

If A € sp(A) we denote by Py the associated spectral projection. When we wish to indicate its depen-
dence on A we shall write Py (A). If A € Ogci¢, we shall denote by A;(A) the eigenvalues of A listed with
multiplicities and in decreasing order.

If f(z) = >°,°anz" is analytic in the disk |z| < r and ||A|| < r, then f(A) is defined by the analytic

functional calculus,
= dw
~Yaa = ) a)g
0 |w|=r" 2mi
forany ||A]| <7’ <r.If A € Ot and f : R — C, then f(A) is defined by the spectral theorem, i.e.,

> FR

A€sp(A)
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In particular, for A € O,
log A = Z log(A) Py,

AE€sp(A)
where log denotes the natural logarithm. We shall always use the following conventions: log 0 = —co and
0log 0 = 0. By the Lie product formula, for any A, B € O,
A8 = lim (eA/”eB/”) = lim <eA/2”eB/"eA/2”> . 2.1
n—oo n—oo

Forany A € O, A*A > 0 and we set |A| = VA*A € O and denote by 1;(A) the singular values of A
(the eigenvalues of | A|) listed with multiplicities and in decreasing order. Since || A%||? = ||| A|+||? one has
Ker|A| = Ker A and Ran |A| = Ran A*. It follows that the map U : Ran A* 3 |A|¢) — Ay € Ran A is
well defined and isometric. It provides the polar decomposition A = U|A|.

Exercise 2.1. A complex algebra is a complex vector space .4 with a product A x A — A satisfying
the following axioms: for any A, B,C € A and any « € C,

(1) A(BC) = (AB)C.

Q) A(B+C)=AB+ AC.

(3) a(AB) = (aA)B = A(aB).

The algebra A is called abelian or commutative if AB = BA for all A, B € A and unital if there
exists 1 € Asuchthat Al = 14 = Aforall A € A

A x-algebra is a complex algebra with a map A 5 A — A* € A such that, for any A, B € A and
any o € C,

4) A = A.

(5) (AB)* = B*A*.

(6) (kA + B)* =@A* + B*.

A norm on a *-algebra A is a norm on the vector space A satisfying ||AB|| < || A|| || B|| and ||A*|| =

| A for all A, B € A. A finite dimensional normed x-algebra A is a C*-algebra if |A* A|| = || A|?
forall A € A. (If A is infinite dimensional, one additionally requires .4 to be complete w.r.t. the norm

topology).

Show that if C is a finite dimensional Hilbert space then the set O of all linear maps A : L — K is a
unital C*-algebra.

Exercise 2.2. Prove the Lowner-Heinz inequality: if A, B € O are such that A > B then A% > B®
for any s € [0, 1].
Hint: show that (B +t)~! > (A +t)~! forall t > 0 and use the identity

sinms [ 1 1
A° — B = t° —— — ——— | dt.
T /0 <B+t A-l—t)

Exercise 2.3.
1.Let A, B € O. Prove Duhamel’s formula

1
el —ed = / e*B(B — A)e'=94 ds.
0
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Hint: integrate the derivative of the function f(s) = e*Be(1=9)4,

2. Iterating Duhamel’s formula, prove the second order Duhamel expansion
1 1 s
eB —et = / e*B(B— A)e'=98 ds + / / e"B(B — A)el~WA4(A — B)e1=9)B duds.
0 o Jo

3. Let P be a projection and set Q = 1 — P. Apply the previous formula to the case B = PAP to
show that

1 u
PeP = pePAPp —|—/ / e(=9IPAP P A0e(1=1 A0 A PesPAP dsdu.
o Jo

Exercise 2.4. Let 9 € Aut(O). Show that there exists unitary Uy € O, unique up to a phase, such
that 9(A) = Uy AU, .

Hint: show first that if P is an orthogonal projection, then so is ¥(P) and tr(P) = tr(J(P)). Pick
an orthonormal basis {e1, - - ,en} of K and show that J(|e;) (e;]) = [e])(€]|, where {e],--- , ey} is
also an orthonormal basis of IC. Set Uye; = e} and complete the proof.

Exercise 2.5.

1. Let A € Oge)¢. Prove the min-max principle: for j = 1,...,dim K,

Ai(4) =siy ol (Y] Adp),
g =1

where supremum is taken over all subspaces S C K such that dim S = dim /X — j (recall our
convention A1 (A) > A2(A) > -+ > Adimk(A).

2. Using the min-max principle, prove that for A, B € O,

1A (4) = 2;(B)| < [[A = Bl.

2.2 Trace inequalities

Let {;} be an orthonormal basis of . We recall that the trace of A € O, denoted tr(A), is defined by
tr(A) =) (¥;|Ag;).

J
For any unitary U € O, tr(A) = tr(UAU 1) and tr(A) is independent of the choice of the basis. In
particular, if A is self-adjoint then tr(A) = >, \;(A) € Randif A € O, then tr (4) > 0.
For p €]0, co[ we set
1/p
141l = (el APV = | D (A ] (22)
J

|Al|oo = max; p1;(A) is the usual operator norm of A. The function ]0, c0[ 3 p + || A]|, is real analytic,
monotonically decreasing, and
lim_ ([ Allp = [|A]loc- 2.3)
p—o0
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For p € [1,00], the map O 5 A — ||A||, is a unitary invariant norm. Since dim K < oo, all these norms
are equivalent and induce the same topology on O.

Let A = U|A| be the polar decomposition of A and denote by {v; } an orthonormal basis of eigenvec-
tors of |A|. Then

J

tr(BA) =Y (1| BUIAJ;) = > i (A) (5| BUY;),
J
from which we conclude that

ltr(BA)| < Zuj(A)IWjIBU%H < Bl Zuj(A) = [IBI1[Al}x- 2.4

J

In particular,
[tr(A)[ < [|A]1-

The basic trace inequalities are:
Theorem 2.1 (1) The Peierls-Bogoliubov inequality: for A, B € Ogels,

tr(edeB) _ tr(AeP)
log tr(eB) — tr(eB) -

(2) The Klein inequality: for A, B € O,
tr(Alog A — Alog B) > tr(A — B),
with equality iff A = B.
(3) The Holder inequality: for A, B € O and p, q € [1, 00| satisfyingp™* + ¢t =1,
IAB|lx < [|Allp ]| Bllg-

(4) The Minkowski inequality: for A, B € O and p € [1, 0],

A+ Bllp < [[Allp + Bl

Proof. (1) For A € sp(A) we set
tr(Py(A)e?)
PA= ——
tr(eB)
so that py € [0,1] and }_, px = 1. The convexity of the exponential function and Jensen’s inequality
imply

tr(e?eB ,
A

(2) If Ker B ¢ Ker A, then the left-hand side in (2) is +o0c and the inequality holds trivially. Assuming
Ker B C Ker A, we set
Pap = tr(PA(A)Pu(B)),

for (A, 1) € sp(A) x sp(B) so thatpy ., € [0,1], >y , pa,u = Land px o = dx,0p0,0- Then, we can write

tr(Alog A — Alog B) = Z Aog(A/ w)pap-
A p
u#0
The inequality x log xz > = — 1, which holds for z > 0, implies that for A > 0 and u > 0,

A A A A
)\log—/ilog>y<—1> =A\—pu,
K K H H
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and so
tr(Alog A — Alog B) > 3" (A= p)paye = (A = w)pr = tx(A — B).
A W)
H#0

If the equality holds, then we must have

A A A
E u{log—(-l)]m\,u—oa
WA AN
u#0

where all the terms in the sum are non-negative. Since xlogz = = — 1 iff z = 1, it follows that py , = 0
for A # 1 # 0. We have already noticed that py ¢ = 0 for A # 0, hence we have p, , = 0 for A # p and it
follows that

PA(A)Pu(B)PA(A) = 0 = Pu(B)Px(A)P.(B),

for A # p. Since
Py(A) = > PA(A)Pu(B)PA(A) = PA(A)P\(B)P\(A),

we must have Py (B) > Py(A) and sp(A) C sp(B). By symmetry, the reverse inequalities also hold and
hence B = A.

(3) Equ. (2.3) implies that it suffices to consider the case 1 < p < co. Denote by AB = U|AB|, A = V| 4]
and B = W|B)| the polar decompositions of AB, A and B. Then

|AB||y = tr|AB| = tr(U*AB) = tr(U*V|A|W|B|) = liigtr(U*V(|A| +e)W(|B| +¢)).
The function
F.(2) = tr(U "V (|A| + )P*W (| B| + €)1 7)),
is entire analytic and bounded on the strip 0 < Re 2z < 1. For any y € R, the bound (2.4) yields
|Fe(iy)] < tr((IBl+€)7),  [Fe(1 +iy)| < tr((JA] + €)P).
Hence, by Hadamard’s three lines theorem (see, e.g., [ ]), for any z in the strip 0 < Rez < 1,
[Fe(2)] < [te((JA] + ") [te((|B] + €))7
Substituting z = 1/p we get
tr(UV(JA] + )W (| B| + €))| < [|A] + ellpll| Bl + ellg,
and the limit € | 0 yields the statement.

(4) Again, it suffices to consider the case 1 < p < oo. Let ¢ be such that p~! + ¢~! = 1. We first observe
that

[All, = sup [tr(AC)|. (2.5)
lollg=1

Indeed, the Holder inequality implies

sup [tr(AC)| < sup [[AC[y < [[All,-
IC1lg=1 IC1lg=1

On the other hand, if C' = ||4]|,” /9| A|P/207* where A = U|A| denotes the polar decomposition of A, then
[IC]lg =1 and tr(AC) = ||A||p, and so (2.5) holds. Finally, (2.5) implies

|A+ Bll, = sup ) tr((A+ B)C)[ < sup [tr(AC)|+ sup [e(BO) = 1Al + 1 Bllp-

ICllq= ICllq=1 IClla=

We shall also need:
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Theorem 2.2 The Araki-Lieb-Thirring inequality: for A,B € O4, p > 0andr > 1,

tr ((A/2BAY2)P) < tr ((A2Br ATy

Proof. By an obvious limiting argument (replacing A and B with A + € and B + ¢) it suffices to prove the
theorem in the case A, B > 0. We split the proof into four steps.

Step 1. If A, B > 0, thenfor 0 < s < 1, ||A*B®|| < || AB]|*.
Proof. Let ¢, € K be unit vectors and

(9lA*B*y)

P& = a5

The function F'(z) is entire analytic and bounded on the strip 0 < Re z < 1. For y € R one has |F(iy)| <
1, |F(1 +iy)| < 1, and so by the three lines theorem, |F'(z)| < 1 for 0 < Rez < 1. Taking z = s, we
deduce that

((9lA*B*y)| < ||ABJ|*,

and
|A*B*|| = sup [(¢|A°B*yY)| < |AB]°.
lll=[l[=1

Step 2. If A, B > 0, then for s > 1, || A*B®|| > || ABJ|°.

Proof. Let A = A%, B = B*. Then by Step 1, | A'/*B'/%|| < ||AB||'/*, and the result follows.

Step 3. Set X, = B"/?A7/2)Y, = XX, = A"/?B"A"/2, Let N = dim K and denote by A\ () > --- >
An (r) the eigenvalues of Y. listed with multiplicities. Then for 1 <n < N,

ISR | BV O (2.6)
j=1 j=1

Proof. Let H = K\"* be the n-fold anti-symmetric tensor product of K and ', (Y;) = Y,*" (the reader not
familiar with this concept may consult Section 6.1). Step 2 yields the inequality

T (Vo) = [T (X)) T (X0) | = 1T (X[ = [T (B) /2T (4)7/2 2
> [T (B)/20, (A) 22 = [T (X0)|*" = [T (Y1),

Since [T (Y;)|| = [Tj—; Aj(7), (2.6) follows.
Step4. For1 <n < N,

n n

SN =D N 2.7)
j=1

7=1
Proof. Set a;(r) = log A;(r). Then, by Step 3, a;(r) is a decreasing sequence of real numbers satisfying

n

> as(r) = 3 ras(1),

Jj=1

for all n. We have to show that for all n,

n

Z &P () >

j=1

ePrai(l), (2.8)

-

<
Il
—

Let y; = max(y,0). We claim that for all y € R and all n,

n

Z(%‘(T) —Y)t =

j=1

-

(raj(1) —y)+. (2.9

<
Il
—_
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This relation is obvious if ra; (1) — y < 0. Otherwise, let & < n be such that
ra1(l) —y>--->rag(l) —y > 0> ragp1(1) —y > - >ra,(l) —y.

Then }77_, (ra;(1) —y)+ = Z?:I(Taj(l) — y) and it follows that

n k k
D (i) —y)e =Y (a5(r) =) = D (a5(r) — )

j=1 j=1 j=1

The relation (2.9) and the identity
=1 [ (o= ) e,
R

imply (2.8) and (2.7) follows. In the case n = N the relation (2.7) reduces to the Araki-Lieb-Thirring
inequality. (]

Theorem 2.2 and the Lie product formula (2.1) imply:

Corollary 2.3 For A, B € Ogs the function
[1,00[3 p s [[eP/PeAlP|E = tr(je?/7e2P /e /)
is monotonically decreasing and

; B/p,Alp|p — A+B
Tim [}oB/7eA/P = tr(e ).

In particular, the Golden-Thompson inequality holds,

tr(e?e®) = ||eB/2e4/2|12 > tr(e?TP).

Exercise 2.6.

1. Prove the following generalization of Holder’s inequality:

[ABIl, < [|Allp [[Bllq: (2.10)

for p,q,r € [1,00] such that p~% + ¢~ = 1.

Hint: use the polar decomposition B = U|B| to write |AB|> = |B|C?|B| with C = /U*|AJ]2U.
Invoke the Araki-Lieb-Thirring inequality to show that tr(|JAB|") < tr(|C"|B|"|) = ||C"|B|"|1.
Conclude the proof by applying the Holder inequality.

2. Using (2.10), show that
n
1Az - Anlle < TT 14511,

j=1

provided Y. p; ! =171,

Exercise 2.7. Show that for any A € O and p € [1,00] one has ||A*||, = ||4||,. In particular, if
A, B € Ogqs then
IAB|l, = | BAllp- (2.11)
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Exercise 2.8. Let A, B € Ogei¢. Prove that the function
[1,00[ p > [¢B/7eA/P||7 = tr(je/re?B/meAlrlor2)

is strictly decreasing unless A and B commute (in which case the function is constant). Deduce that
the Golden-Thompson inequality is strict unless A and B commute.

Hint: show first that the function is real analytic. Hence, if the function is not strictly decreasing, it
must be constant. If the function is constant, then its values at p = 2 and p = 4 are equal and

tr(ede®) = tr(e?/2eB/2eA/2e8/2),

This identity is equivalent to tr([e?/2eB/2 — eB/2e4/2][eA/2eB/2 — ¢B/2eA/2]*) = 0, and so
0A/26B/2 — oB/25A/2.

Corollary 2.4 For A, B € O and p > 1 the function
RS« log [|[A*B'~*||P,
is convex.
Proof. As in the proof of Theorem 2.2 we can assume that A and B are non-singular. We first note that for

any s €]0, 1] the Araki-Lieb-Thirring inequality implies

||ASBS||£ —tr ([BSA2sBs]P/2> =tr ({(BSAQSBS)I/S}PS/2>

< tr ([BAQB]”S/Q) — | ABz:.
Applying the Holder inequality (2.10), the identity (2.11) and the previous inequality one gets, for a, 3 € R
and X €]0,1],
HAAa+(1—A)ﬁBl—(>\oz+(1—>\)ﬁ) Hg — HA)\aA(l—)\)BB(l—)\)(1—ﬁ)B)\(1—a) Hg
_ HB)\(l_a)A)\aA(l_)\)ﬂB(l_)\)(l_B)||£
< HB)\(lfa)A)\a”p HA(lfA)ﬁB(lfA)(lfﬁ)Hp
= /A

p/(1=X)
Aa RpA(l—a 1-X 1-2)(1—
= ||A**B ( )”;Z;/A HA( )8 g(1=A)( B)Hz/u—x)
apl—a| BRl—361(1—X
< ABITO P AP B O R,
Taking the logarithm of both sides yields the result. O
2.3 Positive and completely positive maps on O
Denoting by {e1, ..., en} the standard basis of CV, a vector ¢ € K ® C" has a unique representation
N
Y=Y v ®e
j=1

where 1; € K is completely determined by (¢|v;) = (¢ ® e;|¢) for all ¢ € K. Accordingly, an operator
X € Oxgen can be represented as a [NV x N block matrix

X1 X2 - Xan
Xo1 Xoo - Xon

X = . . . )
Xnvt Xy2 -+ Xpyn

39



Jaksié, Ogata, Pautrat, Pillet

where X;; € Ok is completely determined by (¢|X;;1) = (¢ ® e;| X ® e;) for all ¢, € K, so that

N
X =Y (Xijih)) @ e

ij=1

In particular, X is non-negative iff

> (Wil Xijas) > 0,

0.
for all 91,...,9%n € K. Note that since Ox ® O¢n is isomorphic to Oxgcr, the same block matrix
representation holds for X € Ox ® Ocn.

Let ® : Ox — Ok be a linear map. & is called positive if ®(Ox4) C Oks4. One easily shows
that if ® is positive, then ®(X*) = &(X)* for all X € Ok. P is called N-positive if the map ¢ @ 1y :
Ox @ Ocn — Ok ® Ocn is positive, where 1 is the identity map on O¢~ . Note that if X € O ® O¢w
has the block matrix representation [X;;], then ® ® In(X) € Oxs ® Ocn is represented by the block
matrix [®(X;;)]. If ® is N-positive for all IV, then it is called completely positive (CP). & is called unital
if ®(1x) = Lx and trace preserving if tr (®(X)) = tr (X) for all X € Ok.

Example 2.1 Suppose that L = K1 ® K3 and let & : O — O, be the unique map satisfying
tre((B® 1k,)A) = trc, (BE(A)),

forall A € Ok, B € O, . ®(A) is called the partial trace of A over KC and we shall denote it by tric, (A).
If {x;} is an orthonormal basis of Ko, then the matrix elements of tri, (A) are

(Pltrec, (A)e) = > (¥ @ x| A ® ).
B

The map A — tri, (A) is obviously linear, positive (in fact A > 0 implies that tri, (A) > 0) and trace
preserving. To show that it is completely positive, we note that if [X;;] is a positive block matrix then

Zwi\t% (Xij)¥5) = ZZ(%‘ ® Xk|Xij ¥; ® xx) > 0.

.3 ko i,j

Exercise 2.9. Show that the following maps are completely positive:
1. A x-automorphism ¢ : O — O.

2202 X = d(X) =X ® 1k € Okgir-

3.0k 5 X — (I)(X) =VXV* € Ok, where V € O.

The following result, due to Stinespring, gives a characterization of CP maps.

Proposition 2.5 The linear map ® : Ox — Oy is completely positive iff there exists a finite family of
operators Vy, : K — K' such that

O(X) = VuXVy, (2.12)

forall X € Ox. Moreover, ® is unital iff Y V.V = 1xs and trace preserving iff >, ViV, = 1k.

Remark. The right hand side of (2.12) is called a Kraus representation of the completely positive map .
Such a representation is not unique.
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Example 2.2 Let U be a unitary operator on K ® Ko. By Example 2.1 and Exercise 2.9, the map

 trg, (U(X @ 1k, )U™)
(I)(X) - dlm’CQ ’

is completely positive and unital on Oy, . A Kraus representation is given by

dim o
(I’(X): E Vi-,jX i:kja
i,j=1
where
dim Cy

1
i = 7 U ] 9
J AT I;l:l ler)(ex ® filUer @ fj){e]

and {e;}, { fi} are orthonormal basis of K; and .

Vi

Proof of Proposition 2.5. The fact that a map ® defined by Equ. (2.12) is completely positive follows
from Part 2 of Exercise 2.9. To prove the reverse implication, let ® : Ox — O be completely positive
and denote by F;; = |x;)(x;| the basis of Oy associated to the orthonormal basis {x;} of IC. Since

dim K dim K 2
> WilByy) = Y @Wiba)| >0,
ij=1 i=1

the block matrix [Ej;] is positive and hence so is the block matrix A/ = [®(E;;)], an operator on K" &
CdmK  Let e; be the standard basis of C1™X and define the operator Q; : K’ ® CI™X — K’ by
Q; Zj ¥; ® e; = 1y, so that ‘I)(EL]) = QzMQ; If

dim K xdim K’
M= > Mlor) o,
k=1
is a spectral representation of M, then
dim K xdim K’
(B = > Qilor)(6k]Q]. 2.13)
k=1

Foreach k = 1,...,dim K x dim K’ define a linear operator V}, : K — K’ by Vie; = VA, Q;¢y for
i=1,...,dim K. Then, we can rewrite (2.13) as

dim K xdim K’
(B = Y VeByW,
k=1

and since any X € Oy can be written as X = Zi j X;;jE;; we have

dim K xdim K’
oX)= > VXV
k=1
The last statement of Proposition 2.5 is obvious. (]

Definition 2.6 A linear map ® : Ox — Oy such that, for all X € O,
O(X)"P(X) < P(X*X), (2.14)

is called a Schwarz map and (2.14) is called the Schwarz inequality.
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Proposition 2.7 Any 2-positive map ® : Ox — Oy is a Schwarz map.
Proof. For any X € Oy, the 2 x 2 block matrix
1 X
is non-negative. Indeed, for any 11,9 € K one has
D @il Aijibs) = [l + Xebo||* > 0.
0,J
If ® is 2-positive, then the block matrix [®(A;;)] is also non-negative and hence
D (dilAiyy) = ll61 + (X2 + (92l (R(X*X) — D(X)*B(X))da) >0,
2%}
for all ¢, ¢2 € K'. Setting ¢p1 = —P(X )¢ yields the Schwarz inequality. O

Exercise 2.10. Let ® : Ox — Ok be a linear map and denote by ®* its adjoint w.r.t. the inner
product (- |- ), that is

(X[@(Y)) = trir (X*@(Y)) = trxe(7(X)"Y) = (@*(X)[Y).

1. Show that ®* is positive iff ® is positive.
2. Show that ®* is [N-positive iff ® is N-positive.
3. Show that ®* is trace preserving iff ® is unital.

2.4 States

An element p € O, is called a density matrix or a stafe if tr(p) = 1. We denote by & the collection of all
states. We shall identify a state p with the linear functional

p: O — C
A = tr(pA).

With this identification, & can be characterized as the set of all linear functionals ¢ : @ — C which are
positive (¢(A) > 0 for all A € O,) and normalized (¢(1) = 1). In models that arise in physics the
elements of O describe observables of the physical system under consideration. The physical states are
described by elements of &. If A is self-adjoint and A = Zaesp( A) aP, is its spectral decomposition,
then the possible outcomes of a measurement of A are the eigenvalues of A. If the system is in a state p,
the probability that « is observed is tr(pP,) = tr(P,pP,) € [0,1]. In particular,

p(A) = tr(pA),

is the expectation value of the observable A and its variance is

Ap(A) = p((A = p(A))?) = p(A?) — p(A?).
Note thatif A € O, then p(A) > 0. For A, B € Og.r the Heisenberg uncertainty principle takes the form

SI0GIA, B < \/2,(4)y/2,(B).

If ® : Ox — Ok is a positive, unit preserving map, then its adjoint ®* is positive and trace preserving. In
particular, it maps states p € Gy into states P*(p) € S in such a way that

p(®(A)) = ©*(p)(A),
ie, ®*(p) =pod.
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2.5 Entropy

Let p be a state. The orthogonal projection on the subspace Ran p = (Ker p)* is called the support of
p and is denoted s(p). We shall use the notation p < v iff s(p) < s(v), that is, iff Ranp C Ranv, and
p L viffs(p) L s(v), that is, iff Ran p C Ker v. Two states p and v are called equivalent if p < v and
v < p. A state p is called faithful if s(p) = 1, i.e., if p > 0. The set G and the set of all faithful states S¢
are convex subsets of Q.. A state p is called pure if p = |¢)) (1| for some unit vector 1. The state

1

o = 7 2.15
Peh dim IC ( )
is called chaotic. If A is self-adjoint, we denote

pa= tr(ed)’

The state p 4 is faithful and p4 = pp iff A and B differ by a constant. If £ = K1 ® K5 and p € G, then

pr, = tri, (l)) € 6)C1 and Pr, = trr, (p) € 61C2'
The von Neumann entropy of a state p, defined by

S(p) = —tr(plogp) = — Y AlogA.
Xesp(p)

is the non-commutative extension of the Gibbs or Shannon entropy of a probability distribution. It is
characterized by the following dual variational principles.

Theorem 2.8 (1) For any p € &, one has

S(p) = min logtr(s(p)e”) — p(A).

(2) For any A € Ogeit, one has
log tr(e?) = maé(p(A) + S(p).
pPe

Remark. Adopting the decomposition K = Ran p & Ker p, the minimum in (1) is achieved at A iff
A = (log(p|ranp) @ B) + ¢ where B is an arbitrary self-adjoint operator on Ker p and ¢ an arbitrary real
constant. An alternative formulation of (1) is

_ Ay
S(p) =, inf logtr(e”) — p(A).

The maximizer in (2) is unique and given by p = p4.
Proof. (2) Let G 4(p) = p(A) + S(p). Since log pa = A — log tr(e?), Klein’s inequality implies
log tr(e®) — Ga(p) = tr(p(log p —log pa)) > tr(p — pa) =0,
for any p € G, with equality iff p = p4. Thus,
Galp) < logtr(e?), (2.16)

with equality iff p = p4.

(1) We decompose K = Ran p @ Ker p and set P = s(p) and Q = 1 — P. Since Ga(p) = Gpap(p), we
can invoke (2.16) within the subspace Ran p to write

Gal(p) < logtr(Pe”A7P),
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where equality holds iff p = Pe AP P/tr(PeP AP P), i.e., PAP = log(p|ran ) + ¢ for some real constant
c. A second order Duhamel expansion (see Part 3 of Exercise 2.3) further yields

1

tr(PeAP) = tr(PeP AP P) —l—/ utr (e“PAP/2PAQe(l_")AQAPe“PAP/Q) du,
0

so that tr(PeP AP P) < tr(Pe” P) with equality iff QAP = 0. We conclude that G 4 (p) < log tr(Pe*P)

and hence S(p) < log tr(Pe P) — p(A) where equality holds iff A = (log(p|ran,) ® B) + c. O

An immediate consequence of Theorem 2.8 is

Corollary 2.9 (1) The function S > p — S(p) is concave.
(2) The function Ogq; > A +— log tr(e?) is convex.

Further basic properties of the entropy functional are:

Theorem 2.10 (1) The map S > p — S(p) is continuous.

(2) 0 < S(p) < logdim K. Moreover, S(p) = 0 iff p is pure and S(p) = log dim K iff p is chaotic.

(3) For any unitary U, S(UpU 1) = S(p).

4) S(pa) = logtr(e?) — tr(Apa).

O)IfFK = K1 ® Ka, then S(p) < S(pk,) + S(pic,) where the equality holds if and only if p = pxc, ® pic,
(recall that pxc, = tric,(p))-

Remark. To (1): the Fannes inequality

dim IC
Sp)—=Sw)| < |lp—v|1ilog —,
15(p) = SW)| < llp — vl o=l

holds provided ||p — v|1 < 1/3. See, e.g., [OP].

Proof. The proofs of (1)-(4) are easy and left to the reader. To prove (5) we invoke the variational principle
to write

< i 1 5(p)eA®1TI®BY _ (A 1+ 11 B).
S(p)—m,g?éi%xoz og tr(s(p)e )—p(A®1+1®B)

Setting p; = px, . the support s(p ) satisfies 1 = trx, (s(p1)p1) = tri((s(p1) ® 1)p) and, by the definition
of the support, we must have s(p;) ® 1 > s(p) and a similar inequality for s(pz). It follows that s(p;) ®
s(p2) > s(p) and therefore

tr(s(p)e”#HHEEE) < tr(s(pr)e” @ s(p2)e”).

Thus, we can write

. A By _ _
S(p) S(AvB)rgnglogtr(S(m)e ) +logtr(s(pz)e”) — p1(A) — p2(B)

= S(p1) + S(p2)-

Moreover, equality holds iff the variational principle has a minimizer of the form A ® 1 + 1 ® B, which,
by the remark after Theorem 2.10, is possible only if p = p1 ® ps. O

2.6 Relative entropies
The Rényi relative entropy (or a-relative entropy) of two states p, v is defined for « €]0, 1] by

Sa(plv) = logtr(p®v=®).
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This quantity will play an important role in these lecture notes. According to our convention log(p|ker p) =
—00, and
pa — ® logp _ e log(p|rRan p) o) O|Kerp~

The Holder inequality implies that S, (p|v) € [—00,0]. S, (p|lv) = —o0iff p L v (that is, if p and v are
mutually singular). In terms of the spectral data of p and v,

Sa(plv) = log > A*p! = tr(Pa(p) Pu(v)) | (2.17)

(A,p)€sp(p) xsp(v)
A#0,u7#0

and so if p £ v, then]0,1[3 a — S, (p|v) €] — 00, 0] extends to a real-analytic function on R. The basic

properties of Rényi’s relative entropy are:

Proposition 2.11 Suppose that p J v. Then:
(1) So(plv) =logv(s(p)) and S1(p|v) = log p(s(v)).
(2) The map R 3 a — S, (p|v) is convex.
(3) So(UpUUvUY) = S, (p|v) for any unitary U.
(4) Suppose that s(p) = s(v). Then the map R 3 o — S, (p|v) is strictly convex iff p # v.
() Salplv) = S1-a(vlp).

Proof. (1), (3) and (5) are obvious. (2) Follows from the following facts, easily derived from (2.17),

8a5a(p|y) = Z P, IOg(/\/:u) = 904;
(Au)€sp(p) xsp(v)
0284 (plv) = Z P [log(A/p) — 6a)” > 0,

(A1) E€sp(p) Xsp(v)

where

A pt=tr(Py(p) P,
. pu(BRY)

S A u(Pap) Pu(v)
(A,u)€sp(p) xsp(v)

Z p)\,u =1.

(A1) €sp(p) Xsp(v)

(4) Invoking analyticity, we further deduce that either 925, (p|v) = 0 for all @ € R, or 825, (p|v) > 0
except possibly on a discrete subset of R. In the former case S, (p|v) = (1 — a)So(p|v) + aS1(p|v) is an
affine function of «. In the latter case S, (p|v) is strictly convex.

Suppose now that s(p) = s(v). Without loss of generality, we can assume that p and v are faithful.
If p = v then S,(p|v) = 0 for all @ € R. Reciprocally, if 925, (p|v) vanishes identically then § =
DaSa(p|v) is constant and X = e’ ;i whenever tr(Py(p) P, (v)) # 0. It follows from

L=tr(p) = > Atxe(Pa(p)Pu(v)) = €* Y ptr(Pr(p) Pu(v)) = e’tr(v) = ¢,
A, A,

that & = 0. Repeating the argument in the proof of Part (2) of Theorem 2.1 leads to the conclusion that
p=v. O

The following theorem, a variant of the celebrated Kosaki’s variational formula ([ , OPY)), is deeper.

The result and its proof were communicated to us by R. Seiringer (unpublished). The proof will be given
in Section 2.12 as an illustration of the power of the modular structure to be introduced there.
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Theorem 2.12 For o €]0,1],

sin To

o = inf 1
Salel) = _nf og[ -

/OOC et (1P(A(t)*2) +u(]1 - A(t)2)> dt} 7

where C (R, O) denotes the set of all continuous functions Ry > t — A(t) € O. Moreover, the infimum
is achieved for

A(t) = t/oo e *Pre*"ds,
0
and this is the unique minimizer if either p or v is faithful.
An immediate consequence of Kosaki’s variational formula is Uhlmann’s monotonicity theorem, [Uh]:

Theorem 2.13 If ® : Ox — Ox is a unital Schwarz map, then

Sa(po ®lvo®) = Sa(plv),
foralla € 10,1] and p,v € Sx.
Proof. With p = po ® and 7 = v o ®, Kosaki’s formula reads

sin T

S.(plD) = inf I
Sl0) =t og[

>~ a— 1 ~ * ~
[T e (ot + o - awp)) ar]
Since @ is a unital Schwarz map, for any A € Ok one has

pIAT?) = p(®(AA")) = p(D(A)B(A)") = p(|B(A)"[),

as well as
(|1 = AP?) = v(2((1 - A)*(1 - A)))
> y(®(1 — A)* (L - A))
=v((1-2(A)"(1—-2(4))) =v(1 - 2(A4)]).
It follows that

sin T

/0 T (1p<|<1><A<t>>*|2> (1 - @(A@))z)) dt}

sin T

Sa(pl?) >  inf 1
(pl?) = L. og[

e (ot + v - AP o]

= inf og {
A€®(C(R4+,0k))

where ®(C(R4+,0k)) = {®Po A|A € C(R4,Ok)}. Since ® is continuous, one has (C (R4, Ok)) C
C(R4, Ok), and the result follows from Kosaki’s formula. O

Another consequence of Theorem 2.12 is the celebrated Lieb’s concavity theorem.

Theorem 2.14 For « € [0, 1], the map & x & > (p,v) — Sa(p|v) is jointly concave, i.e.,
Sa(Ap+ (1= N)p' A + (1 = M) = ASa(plv) + (1 = N)Sa(p[V),
Sforany p,p’ v,V € & and any X € [0, 1].

Proof. The result is obvious for A = 0 and for A = 1. Hence, we assume A €]0, 1] in the following. For
a = 0 and for a = 1, the result follows from Part (1) of Proposition 2.11, the concavity of the logarithm,
and the fact that s(Ap + (1 — A)p’) > s(p). For « €]0, 1] and A € C(R, O), the map

sin T

(0o Falpo) = 7% [0t (o100 P) + (1 - AOP)) .

™
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is affine. The concavity of the logarithm implies that the map (p, ) — log F4(p, v) is concave. Therefore,
the function (p, v) — S, (p|v) being the infimum of a family of concave functions, it is itself concave (see
the following exercise). O

Exercise 2.11. Let C' C R™ be a convex set and F a nonempty set of real valued functions on C'. Set
F(x) =inf{f(z)| f € F}.
1. Show that if the elements of F are concave then F' is concave.

2. Show that if the elements of F are continuous then F' is upper semi-continuous, i.e.,

limsup F(z) < F(xo),

T—>To

for all xy € R™.

3. Show that the function (p, v) — S (p|v) is upper semi-continuous on & x S.
The relative entropy of the state p w.r.t. the state v is defined by

S(ol) tr(p(logv —logp)) if p K v.
plv) =
—00 otherwise.

Equivalently, in terms of the spectral data of p and v, one has

S(plv) = > Alogu —log \tr(Pa(p) Pu(v)).
(A1) €sp(p) Xsp(v)

For v € G and A € Og¢, we define

n
eA+logV: lim (eA/nyl/n) )
n—00

It s not difficult to show that, according to the decomposition £ = Ranv & Ker v,

eA—Hog vo_ es(y)As(u) |Ran v +1og(V|Ran v) e OKer .
With this definition, the relative entropy functional has the following variational characterizations:

Theorem 2.15 (1) For any p,v € S, one has

S(plv) = N inf logtr(e1°8¥) — p(A).

€0self

(2) Forany A € Ogef and v € S, one has

log tr(e1°8 ") = max S(p|v) + p(A).
peS

Remark. If p and v are equivalent, then the infimum in (1) is achieved at A iff s(v)As(V)|Rany =
log(p|ranv) — log(V|Ranv) + ¢ where ¢ is an arbitrary real constant. The maximizer in (2) is unique
and given by p = eAt1o8Y /tr(eAtlos V),

Proof. (2) Set G, 4(p) = S(p|lv) + p(A) and 7 = eA+1°8¥ /tr(eAF198 V). Note that G, 4(p) = —oo if
p & v while G, a(v) = v(A) > —oo. Thus, it suffices to consider p < v in which case one has

p(log7) = p(A) + p(logv) — log tr(e”F18").
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Klein’s inequality yields
log tr(e 8 ") — G, 4(p) = tr (p (log p — log¥)) > tr(p — V) = 0,

with equality iff p = .

(1) We first consider the case p & v. Then, there exists a projection P such that Ran P L Ranwv and
p(P) > 0. Since e’ *1°8¥ = y it follows that

log tr(e*'*1°8¥) — p(AP) = —Ap(P) = —o0 = S(p|v),
as A — 00. On the other hand, for any p < v and A € Ogs, (2) implies that
S(plv) < log tr(eA 18 — p(4),
with equality iff p = eAF1°87 /tr(eA+198¥) If v < p, this means that equality holds iff s(/) As(v)|Ran» =
log(p|Ranv) — 10g(V|Ran») up to an arbitrary additive constant. If v & p, ie., if s(p) < s(v), then
Ay = log(plranp) ® Akerp — l0g(V|Ran 1) B Oxer v is such that, with d = dim Ran v — dim Ran p,
log tr(e™>1°8¥) — p(Ay) = log (1 + e*d) + S(plv) = S(p|v),

as A — —oo. O
As an immediate consequence of Theorem 2.15 we note, for later reference

Corollary 2.16 For any state v € S and any self-adjoint observable A € O one has

tr(elog V+A) > eIJ(A) )
The basic properties of the relative entropy functional are:

Proposition 2.17 (1) S(p|v) < 0 with equality iff p = v.
2) S(plpen) = S(p) — logdim K.
(3) S(UpU Y UvU—Y) = S(p|v) for any unitary U.
“

T eA
S(palps) = log o) — trpa(4 = B)

(5) Forany p,v € G one has

_ i Salp) o Salplv)
Stoh) =iy == 75 = lm T @18

In particular, if p < v then Sy(v|p) = S1(p|v) = 0 and

d d
= Sa(wlp)| = Salplv)| (2.19)

S(pl) = < =

a=1
©6) If ® : Ox — Ok is a unital Schwarz map then, for any p,v € Sk,

S(po Bly o ®) = S(ply).

(7) The map (p,v) — S(p|v) is continuous on & x S¢ and upper semi-continuous on S x 6.
(8) Ifs(v) =s(p), then S, (p|v) > aS(v|p).
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Proof. Part (1) follows from Klein’s inequality. Parts (2), (3) and (4) are obvious. Part (5) is easy and left to
the reader. Part (6) follows from (2.18) and Uhlmann’s monotonicity theorem (Theorem 2.13). The upper
semi-continuity of the map (p, ) — S(p|v) follows from (5) and part 3 of Exercise 2.11. A direct proof
goes as follows. Let us fix (pg, 1) € & x &. Define Ay = min{\ € sp(vp) | A > 0}, and for v € & set

QV = E P)\(l/).
Ae€sp(v)
)\>>\0/2

Let 0 < & < A\g/2. We know from perturbation theory that

lim Q, = s(w), lim vQ, = vy,
v—1g v—g

and that
V& =vQ, + (1 -Q,)e > v,

provided v is close enough to 1. It follows that
S(plv) = p(logv) — S(p) < p(log'®)) — S(p).

Since v(€) > ¢ > 0 it follows from the analytic functional calculus that

lim log () = log ( lim V(E)> = log(vo|Ran vy ) ® 10g &|Ker 1y 5

v—1g v—rvo
and hence, using Theorem 2.10 (1), we deduce

limsup S(pl|v) < lim plog ) — S(p)
(psv)—(po,vo) (p;v)—(po,vo)

= po(log VOlRanVo @ Olkervo) — S(po) + (1 — po(s(ro))) loge.
If pg & vp then 1 — po(s(vp)) > 0 and letting € | 0 we conclude that

limsup S(plv) < —oo = S(polvo).
(p,v)—=(po,vo)

If pg < vg then 1 — po(s(p)) = 0 and Ker vy C Ker pg so that

limsup  S(plv) < po(logvo) — S(po) = S(polvo).
(p,v)—(po,vo)
Finally, we observe that if vy > 0, then v > A\ /2 for all v sufficiently close to 1. Hence lim, _,,, logv =
log vy and
lim S(plv) = S(polvo).

(p,l/)%(po,llo)

Property (8) is a direct consequence of the convexity of a — S, (p|v) and Equ. (2.19). (]
Remark. The following example shows that the function (p, ) — S(p|v) is not continuous on & x &.
Setting
| 1-1/n O yo— 10
p’ﬂ - O 1/7'l 9 n — 0 O 9

one has S(pp|vy,) = —oo forall n € N*, so

lim S(pn|vn) = —00 # S( lim p,| lim v,) =0.

n—oo n—oo n—oo

As a direct consequence of Theorem 2.14 and Relation (2.18), we have:

Theorem 2.18 The map & x & > (p,v) — S(p|v) is jointly concave, that is, for A € [0,1] and
p,pl,l/,l/' €6,

SAp+ (L= Np'[Av + (L= M) = AS(plv) + (1 = N)S('[).
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Exercise 2.12. Use Uhlmann’s monotonicity theorem to show that
Sa(podlveod) = Sa(plv),

forall p,v € G and ¥ € Aut(O).

2.7 Quantum hypothesis testing

Since the pioneering work of Pearson [Pc], hypothesis testing has played an important role in theoretical
and applied statistics (see, e.g., [Be]). In the last decade, the mathematical structure and basic results of
classical hypothesis testing have been extended to the non-commutative setting. A clear exposition of the
basic results of quantum hypothesis testing can be found in [ , 1.

It was recently observed in [ ] that there is a close relation between recent developments in the
field of quantum hypothesis testing and the developments in non-equilibrium statistical mechanics. In this
section we describe the setup of quantum hypothesis testing following essentially [ ]. We will discuss
the relation to non-equilibrium statistical mechanics in Section 5.6.

Let v and p be two states and p € ]0, 1[. Suppose that we know a priori that the system is with probabil-
ity p in the state p and with probability 1 —p in the state v. By performing a measurement we wish to decide
with minimal error probability what is the true state of the system. The following procedure is known as
quantum hypothesis testing. A test P is an orthogonal projection in O. On the basis of the outcome of the
test (that is, a measurement of P) one decides whether the system is in the state p or v. More precisely, if
the outcome of the test is 1, one decides that the system is in the state p (Hypothesis I) and if the outcome is
0, one decides that the system is in the state v (Hypothesis II). p(1 — P) is the error probability of accepting
ITif I is true and v(P) is the error probability of accepting I if IT is true. The average error probability is

Dy(p,v, P) =pp(1 — P) + (1 —p)v(P),
and we are interested in minimizing D, (p, v, P) w.r.t. P. Let
Dp([), V) = inf{D}?(pv v, P) ‘ Pe Oself» P2 = P}

The set of all orthogonal projections is a norm closed subset of O and so the infimum on the right-hand
side is achieved at some projection P. The quantum Bayesian distinguishability problem is to identify the
orthogonal projections P such that D,(p,v, P) = D,(p,v). Let P,y be the orthogonal projection onto
the range of

(A=pv—pp)y,

where x4 = (|z| 4+ x)/2 denotes the positive part of . The following result was proven in [ 1, where
the reader can find references to the previous works on the subject.

Theorem 2.19 (1)

1
Dy(p,v) = Dy(p, v, Popt) = 5 (1 =11 =p)v—ppl1)-

Moreover, Py is the unique minimizer of the functional P — D, (p, v, P).

2
D, (p,v) =min{D,(p,v,T)|T € Oge1r,0 < T < 1}.

(3) Fora €10,1],
Dy(p,v) <p*(1 = p)'~tr(p™v' ™).
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Remark. Part (1) is the quantum version of the Neyman-Pearson lemma. Part (3) is the quantum analog
of the Chernoff bound in classical hypothesis testing. In quantum information theory the quantity

) = _1 i t apt-e = - i SO& )
Cees(p,v) og min r(p®v ) min, (plv)

is called the Chernoff distance between the states p and v. We shall prove a lower bound on the function
D,(p,v) in Section 2.12.

Proof. (1)-(2) Set A = (1 — p)v — pp so that, for T' € Ogeir, 0 < T < 1, we can write
Dy(p,v,T) = tr (pp(1 = T) + (1 = p)vT) = p + tx(T'A) = p+ tr(TA4),

where equality holds iff RanT C Ker A_ = Ran A . It follows that P, is the unique minimizer and
1 1
Dy(p, v, Pope) = p+ tr(A4) = p+ 5 (A + |A]) = 5 (1 + tr (|A]).

(3) (Following S. Ozawa, private communication. The original proof can be found in [ ). Setting
B =ppand C = (1 — p)v and given (1), one has to show that

tr(B“C*™*) > %tr(B +C - |B-C)),
forall B,C € O4 and « € [0,1]. With A = C' — B, one clearly has
B<B+A,, (2.20)
and since C' — B < (C' — B), one also has
C<B+A.. 2.21)

We shall make repeated use of the Lowner-Heinz inequality (Exercise 2.2). From (2.20) and the fact that
B> > 0 we get
tr(B¥(B*™® — ') < tr(B*((B+ Ay )™ = ¢ ). (2.22)

From (2.21) we deduce that
(B+ A+)1’a — ' >0.

Thus, (2.20) and (2.22) imply

(BB — C') < tr((B+ A)* (B + A)' ™ - C'%)
— (B + Ay) — tr((B + A)°C'°).

Using again Inequality (2.21), and the fact that C' > 0, we obtain

tr(BY(B*™* - C') <tr(B+ Ay) —tr(C°C ) =tr(B - C + Ay).
This inequality can be rewritten as

tr(B*C') > tr(C — Ay),

andsince Ay = A+ A_,

tr(B*CT ) >tr(C—A—-A_)=tr(C—(C-B)—A_)=tr(B—A_).
Combining the last two inequalities we finally get

tr(B*Ct™) > %tr(B +C A, —A )= %tr(B +C—|B-C)),

as required. O
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2.8 Dynamical systems

A dynamics on the x-algebra O is a continuous one-parameter subgroup of Aut(Q), i.e., amapR > ¢
7t € Aut(O) satisfying 71 o 75 = 7¢%5 for all ¢, s € R and lim;_,¢ || 7*(4) — A|| = 0 forall A € O. Such
a map automatically satisfies 70 = id and (%)~ = 7 for all ¢ € R. Moreover, since 7 is isometric and
O is a finite dimensional vector space, the continuity is uniform

lim sup |7'F¢(A) —7(A)| =0,
e—0 —
lAll=1
teR

and the map ¢ — 7%(A) is differentiable (in fact entire analytic). In terms of the generator

d

0(A) = aT

"4

t=0

one has 7t(A) = e!9(A). Clearly, §(1) = 0, §(AB) = §(A)B + A§(B) and §(A)* = §(A*) hold for all
A, B € O. We call dynamical system a pair (O, 7t), where 7t is a dynamics on O.
If H € Oget, then
Tt (A) = el Ae™1H (2.23)

is a dynamics on O. One of the special features of finite quantum systems is that the converse is true. Given
a dynamical system (O, T%), there exists H € Qg such that (2.23) holds for all ¢ € R. Moreover, H is
uniquely determined up to a constant. It can be explicitly constructed as follows. Let § be the generator of
7t. Let {¢;} be an orthonormal basis of K and E;; = |;)(¢);| the corresponding basis of O. Let

1
H=< Z §(Eji) Eij.
j
The relation }©; E;;i E;; = >, Ej; = 1 implies
> 0(Ep)Eij + > Ejid(Eij) = 6(1) =0,
j j

and

i[H, By = Z§(Eji)EijEkl + B Eji0(E;; )
J

= 6(Eri) By + Epid(Eqy) = (ExiEq) = 0(Ex).
Hence i[H, X] = 6(X) for all X € O and (2.23) follows.

Remark. From the above discussion, the reader familiar with the theory of Lie groups will recognize that
Aut(0O) is a simply connected Lie group with Lie algebra

aut(0) = {dx = i[X, ]| X € Osarr},
and bracket [dx,dy] = dijx,y]- Since dx = dy iff X —Y is a real multiple of the identity, the dimension

of Aut(0) is given by dimg (Ogelr) — 1 = (dim K)? — 1.

According to the basic principles of quantum mechanics, if H is the energy observable of the system,
i.e., its Hamiltonian, then the group 7(A) = e'* Ae=#H describes its time evolution in the Heisenberg
picture. If the system was in the state p at time ¢t = 0 then the expectation value of the observable A at time
t is given by

tr(pr'(A)) = p('(A)) = po r'(A).
In the Schrodinger picture the state p evolves in time as 7(p) and in what follows we adopt the shorthands
Ay =T7HA), pe=1"(p)=port".

Clearly, p:(A) = p(Ay).
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2.9 Gibbs states, KMS condition and variational principle

For the dynamical system (O, 7¢), with Hamiltonian H, the state of thermal equilibrium at inverse temper-
ature [3 is described by the Gibbs canonical ensemble

Note that, for any A, B € O, one has

tr(e PTAB)  tr(Be PA)  tr(e PHr71%(B)A)
tr(e=PH) tr(eFH) tr(e=AH)

p(AB) = = ps(r7P(B)A).

We say that a state p satisfies the Kubo-Martin-Schwinger (KMS) condition at inverse temperature (3, or,
for short, that p is a 5-KMS state if

p(AB) = p(r~*(B)A), (2.24)

holds for all A, B € O. The $-KMS condition (2.24) plays a central role in algebraic quantum statistical
mechanics. For the finite quantum system considered in this section it is a characterization of the Gibbs
state pg.

Proposition 2.20 p is a 3-KMS state iff p = pg.

Proof. It remains to show that if p is 3-KMS, then p = pg. Setting X = pe” and A = ?# C in the KMS
condition
tr(pe? Be PH A) = tr(pAB),

yields tr(X BC) = tr(XCB) for all B,C € O. Since this is equivalent to tr([X, B]C') = 0, we conclude
that [X, B] = 0 for all B € O and hence that X = a1 for some constant cv. This means that p = ae™PH.
The constant « is now determined by the normalization condition tr(p) = 1. O

The Gibbs canonical ensemble can be also characterized by a variational principle. The number E =
pp(H) is the expectation value of the energy in the state pg. Since

d

@pﬁ(H) = —ps((H - E)*) <0,

the function 8 — pg(H) is decreasing and is strictly decreasing unless H is constant. If En; =
minsp(H) and Ep,ax = maxsp(H), then

lim pg(H) = Emax, lim pg(H) = Emin-
B—00

B——o0
Note also that limg_, 4+ pg = p+oo Where

Prin / max

erOO/*OO - tr(—Pmin/max)

)

and P, / max denote the spectral projection of H associated to its eigenvalue Epi, / max- Hence to any
E € [Emin, Emax] One can associate a unique 3 € [—oo, oo] such that

ps(H) = E. (2.25)

We adopt the shorthands
S(B) = S(pp), P(B) = log tr(e™#H).

The function P(f) is called the pressure (or free energy). Note that

S(8) = BE + P(B). (2.26)
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If6g={peS|p(H)=E}andv € &, then

S(v) = S(v) - Bv(H) + BE < max{S(p) — Bp(H)} + BE = log tr(e™"") + BE,

and so
S(v) < S5(8),

where equality holds iff v = pg. Hence, we have proven the Gibbs variational principle:
Theorem 2.21 Let E € [Ewin, Emax] and let 8 be given by (2.25). Then
max S(p) = S(B),

pEGE

and the unique maximizer is the Gibbs state pg.

Note that neither the KMS condition nor the Gibbs variational principle require 5 to be positive. The
justification of the physical restriction § > 0 typically involves some form of the second law of thermo-
dynamics. Recall that 5 = B(F) is uniquely specified by (2.25). Considering S(F) = S(B(F)) as the
function of F, the differentiation of relation (2.26) w.r.t. F yields

ds
@_ﬁa

and the second law % > 0 (the increase of entropy with energy ) requires S > 0. An alternative ap-

proach goes as follows. Let an external force act on the system during the time interval [0, 7] so that its
Hamiltonian becomes time dependent, H(t) = H + V(t). We assume that V (¢) depends continuously
on ¢ and vanishes for ¢ ¢]0,T[. Let U(t) be the corresponding unitary propagator, i.e., the solution of the
time-dependent Schrodinger equation

.d
i—
dt
Suppose that at ¢ = O the system was in the Gibbs state pg. At the later time ¢ > 0, its state is given by

ps,t = U(t)pgU(t)* and the work performed on the system by the external force during the time interval
[0,T7]is

Ut)=HBOU®), U0 =1.

T
d

AE:PB,T(H)_P,B(H):/ &Pb’,t(H)dt-

0

The change of relative entropy S(pg,.|pg) over the time interval [0, T'] equals

T T
d d
AS = S(psrlps) — S(pslps) = / 35 (Ps.tlps) dt = —ﬁ/ qPoeH) dt,
0 0

and so
AS = —[AE.

If V (¢) is non-trivial in the sense that pg r # pg, then AS = S(pg r|ps) < 0. The second law of ther-
modynamics, more precisely the fact that one can not extract work from a system in thermal equilibrium,
requires that AF > 0. Hence, negative values of 3 are not allowed by thermodynamics.

The above discussion can be generalized as follows. Let N € Og¢ be an observable such that [H, N| =
0 (N is colloquially called a charge). Let 3 and p be real parameters and let

e~ B(H—uN)
PBu = tr(e=BH=uN))’

be the 5-KMS state for the dynamics generated by H — puN. Denote pg ,(H) = E, pgu(N) = o,
S(B,1) = S(ppu)> P(B, 1) = log tr(e PH=1N)) Then

S(B, 1) = B(E — po) + P(B, ). (2.27)
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If&p,={pc&|p(H)=E,p(N)= o}, then

péngaggs(p) = S(B, 1),

with unique maximizer pg ;. The parameter 1 is interpreted as chemical potential associated to the charge
N and the state pg,, describes the system in thermal equilibrium at inverse temperature 3 and chemical
potential . Considering 5 = B(E, o) and p = u(E, o) as functions of E and p we see from (2.27) that

03 95

@:ﬁ, %——BM

Although in general pg , is not a 5-KMS state for the dynamics 7*, if A and B commute with N, then
Tt(A) = et (H=1N) e~ 1t(H=1N) and the 5-KMS condition

pﬂvu(TiiB (B)A) = pp,u(AB),

is satisfied. In other words, if p # 0, the physical observables must be invariant under the gauge group
719 (A) = €N Ae=1%N | The generalization of these results to the case of several charges is straightforward.

2.10 Perturbation theory

Let (O, %) be a dynamical system with Hamiltonian H and let V' € Og¢ be a perturbation. In this section
we consider the perturbed dynamics 7{, generated by the Hamiltonian H + V,

H(A) = St (HAV) po—it(H+V)
If § denotes the generator of 7*, then the generator of 7{, is given by
Sy =i[H+V,-]=6+1i[V, - ]=d +dv,
and one easily checks that the map R 2 ¢ — ~{, € Aut(O) defined by

’Y%/ _ 7_‘1&/ o7t — ot(6+dv) 4 e—té,

has the following properties:

) 1, =+t o7t

@ () =rroylor .
G3) W= or oy 0T
4 ) =idand Oy, =7l o dpe(y).

Integration of Relation (4) yields the integral equation

¢
7 =id +/ Yy 0 drs(vy ds,
0

which can be iterated to obtain
N—1
7%/:1d+2/ d7—57l(v)O-.-Od_rsl(v)dsl...dsn
0<s1<--<s, <t

n=1

+/ ’Y{G/NOd.,_sN(V)O~-~Odel(V)d$1"'dSN.
0<s1<-<sny<t

Since 7, is isometric and ||d.+ (v = [[i[7*(V), -]|| < 2||[V||, we can bound the norm of the last term by

21V 16N
/ (2||V||)Nd51...dsN§M7
0<s1 < <sn<t N!
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and conclude that the Dyson expansion

o}

f')/‘t/ =id+ Z/ d.,_sn(v) 0.--0 del (V) dsl v dSn,
0<s1 < <sp <t

n=1

converges in norm for all ¢ € R, and uniformly for ¢ in compact intervals. Using Relation (1), we conclude
that

o0
t t

t
Vv =T + E / drsnvyo - rodrsi(yyo T dsy - dsy,
o1 ossi<<sast
which we can rewrite as

o0

)= [ [P V), [ V)7 A s - ds

=0 0<s1< <5 <1

Finally, we note that since 7%(V'), 7%(A) and 7(,(A) are entire analytic functions of z and ||77| <
e2ltm 2l 11l " the above expression provides an expansion of 7% (A) which converges uniformly for z in
compact subsets of C.

Similar conclusions hold for the interaction picture propagator

Ev(t) _ eit(H+V)e—itH.

It satisfies:
(1") etHHV) = By ()™ and 7, (A) = Ey ()71 (A)Ey (t) 1.
2) Ev(t)"! =Ev(t)" = 7(Ev(-1)).
(3") Ev(t+s) =Ev(s)m°(Ev(t)).
4) Ev(0) = 1 and ;Ey (t) = iEy (t)74(V).

Integrating relation (4°) yields, after iteration,

oo

Ey(t) = (it)" / P (V) - (V) dsy - dsy.

=0 0<s1 << <1

This expansion is uniformly convergent for ¢ in compact subsets of C. In particular,

Ev(ig) = > (-8)" /0 B (V). 7B (V) dsy - - - dsy. (2.28)
n=0

<s1<--<sp<1

Using Relation (1”) with ¢ = i3 we can express the perturbed KMS-state
o—B(H+V)

PV = G (e—BE+VYY

in terms of the unperturbed one pg = e A /tr(e FH) as

_ rs(AEv(if))

Using this last formula one can compute the perturbative expansion of pgy (A) w.r.t. V. To control this
expansion, we need the following estimate.

(2.29)

Proposition 2.22 The bound
108 (Bav (iB)) — 1] < el*flIVI—1, (2.30)

holds for any B € R, V € Ogeis and o € C.
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Proof. Using Duhamel formula

B
i e—ﬁ(H+saV) _ —Oé/ e—(ﬁ—u)(H+so¢V)Ve—u(H+saV) du,
ds 0
we can write
1 d 1
pp(Eav (i)~ 1) = [ Lpa(Buar(8)) ds = —a8 [ fals)ds, 231)
0 0

where
tr(ve—ﬂ(H+saV) )

fﬁ(s) = tI‘(C_ﬁH)

Starting with the simple bound
<V ”e—B(H-i-saV)Hl
5 < VI ey

and setting o« = a + ib with a,b € R, we estimate the numerator on the right hand side by the Holder

inequality (Part 2 of Exercise 2.6) applied to the Lie product formula,

—B(H+saV+isbV) H 1=

le = lim_[[(ePUTHoaV) iV /myn

< lim sup [Je= P+ )/m 1 o550V n |1 (o P(HHsaV))

n—oo
For s € [0, 1], the Golden-Thompson inequality further leads to

tr(e—AH+saV)) § tr(e~PHe FsaV) (
tr(e=PH) = tr(e FH) pe

e—ﬁsa\/) < eslBal HVH’
so that, finally,

\£5(s)] < |[V]| esBl IV

Using Equ. (2.31), we derive

1
Ev(i8)) — 1| < |ag|||V eSlaBlIVIlgs = elaBlVI 1.
lps(Ev(
0

Replacing V' with oV and using the expansion (2.28), we can write
oo
ps(AEav(i8)) = Y a’ca(A),
n=0
where ¢o(A) = ps(A) and

cn(A)=(—/3)"/0< ey <1pﬂ(Ariﬁsn(V)~-.Tiﬂ81(V))dsl.-.dsn.

It follows from the estimate (2.30) that the entire function C 3 o — pg(Eqv (i5)) has no zero in the disk

log 2
< =
1BVl

|

Hence, Equ. (2.29) shows that the function C > a + pg(qv)(A) is analytic on this disk. Writing

Paav)(A) = Z o b (A),

n=0
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Relation (2.29) yields

Zoc”cn(A) = (Z oz"bn(A)> <Z oz”cn(]l)> ,
n=0 n=0 n=0

and we conclude that for all n,
n

Cn(A) = b](A)Cn_](]l)
7=0

Thus, with coefficients b,,(A) given by the recursive formula

n—1
bo(A) = co(A) = ps(A), n(4) = ea(A) = bj(A)eny (1),
7=0
we can write -
pv(A) = ba(A), (2.32)
provided |G| || V]| < log 2.
Exercise 2.13. Show that the expression
“iBs = [ patar () as = 5 [ paarr(m)ds, 233)
0 0

defines an inner product on O. It is called Kubo-Mari or Bogoliubov scalar product, Duhamel two
point function or canonical correlation.

Exercise 2.14. Show that the first coefficients b; (A) and bz (A) can be written as
bi(4) = —B(V|A)g,

= 8 / ds / ds' [p (A9 (V)ri# (V) = pg(Ar9 (V))pa(V) = pa(AT (V))ps (V)]

where A = A — ps(A).

2.11 The standard representations of O

In this and the following sections we introduce the so called modular structure associated with the -
algebra O = Oy. Historically, the structure was unveiled in the work of Araki and Woods [ ] on the
equilibrium states of a free Bose gas and linked to the KMS condition by Haag, Hugenholtz and Winnink
[ ]. After the celebrated works of Tomita [To] and Takesaki [T2a], modular theory became an essential
tool in the study of operator algebras.

For us, the main purpose of modular theory is to provide a framework which will allow us to describe a
quantum system in a way that is robust enough to survive the thermodynamic limit. While familiar objects
like Hamiltonians or density matrices will lose their meaning in this limit, the notions that we are about to
introduce: standard representation, modular groups and operators, Connes cocycles, relative Hamiltonians,
Liouvilleans, etc, will continue to make sense in the context of extended quantum systems. As a rule of
thumb, a result that holds for finite quantum systems and can be formulated in terms of robust objects of
modular theory will remain valid for extended systems.

58



Entropic Fluctuations in Quantum Statistical Mechanics

Let H be an auxiliary Hilbert space and denote by £(H) the x-algebra of all linear operators on H. A
subset A C L(H) is called self-adjoint, written A* = A, if A* € Aforall A € A. A self-adjoint subset
A C L(H) is a x-subalgebra if it is a vector subspace such that AB € Aforall A, B € A. A representation
of O in H is a linear map ¢ : O — L(H) such that p(AB) = ¢(A)p(B) and ¢(A*) = ¢(A)* for
all A,B € O. A representation is faithful if the map ¢ is injective, i.e., if Ker¢p = {0}. A faithful
representation of O in H is therefore an isomorphism between O and the *-subalgebra ¢(O) C L(H). A
vector 1) € H is called cyclic for the representation ¢ if H = ¢(O). It is called separating if ¢p(A)y) =0
implies that A = 0. Two representations ¢1 : O — L(H1) and ¢ : O — L(Hz) are called equivalent if
there exists a unitary U : H; — Hg such that U¢ (A) = ¢2(A)U forall A € O.

Let A and B be subsets of £L(H). AV B denotes the smallest x-subalgebra of £(#) containing .4 and
B. A’ denotes the commutant of A, i.e., the set of all elements of £(#) which commute with all elements
of A. If A is self-adjoint, then A’ is a x-subalgebra.

A cone in the Hilbert space # is a subset C C #H such that A¢Yp € C forall A > O and all ¢ € C. If
M C H, then .

M = {6 € H| (]6) > 0 forall 4 € M},

is a cone. A cone C C H is called self-dual if C = C. We have already noticed that O, viewed as a complex
vector space, becomes a Hilbert space when equipped with the inner product

(&ln) = tr (& n).

In the sequel, in order to distinguish this Hilbert space from the *-algebra O we shall denote the former
by Ho. Thus, O and He are the same set, but carry distinct algebraic structures. We will use lower case
greeks &, 7, ... to denote elements of the Hilbert space o and upper case romans A, B, ... to denote
elements of the x-algebra O.

Remark. Let ¢) — 1) denote an arbitrary complex conjugation (i.e., an anti-unitary involution) on the
Hilbert space K. One easily checks that the map |1){¢| — 1 ® @ extends to a unitary operator from Ho,
to K ® K. Thus, the Hilbert space H,. is isomorphic to K ® K.

To any A € O we can associate two elements L(A) and R(A) of L(He) by
L(A): & Ag, R(A): & — EA™.

The map O 3 A — L(A) € L(Ho) is clearly linear and satisfies L(AB) = L(A)L(B). Moreover, for all
&,m € Ho one has

(EIL(A)n) = tr (€7 An) = tr ((A™€)"n) = (L(A™)E[n),
so that L(A*) = L(A)*. In short, L is a representation of the x-algebra O on the Hilbert space He. In

the same way one checks that R : O — L£(0O) is antilinear and satisfies R(AB) = R(A)R(B) as well as
R(A*) = R(A)*.

Proposition 2.23 (1) The maps L and R are isometric and hence injective.
(2) L(O) ={L(A)| A € O} and R(O) = {R(A) | A € O} are *-subalgebras of L(H o) isomorphic to

(3) L(O) N R(O) = CL.
) L(O) Vv R(0) = L(Ho)
(6 L(0) = R(0)

(6) R(O)" = L(O).

Proof. (1)-(2) For A € O, one has

IL(AP = sup [[L(A)E|* = sup tr((A€)"(A¢E))
leli=1 r (€°6)=1

= sup tr((€67)(A"A)) < [|AA| = [|lA]”.
r (667)=1
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On the other hand, if ¢ is a normalized eigenvector of A*A to its maximal eigenvalue ||A*A| and £ =
|4) (1|, then ||¢]| = 1 and

IL(A)E]l = [[AL]| = (p| A" Agp) = [|A A,

so that we can conclude that ||L(A)|| = || A]|. L is a linear map and Ker L = {0}. Thus, L is injective and
is an *-isomorphism between O and its image L(O). The same argument holds for R.

QB)IfT € L(O) N R(O), then there exists A, B € O such that A{ = ¢B forall £ € Hp. Setting§ = 1
we deduce A = B. It follows that [A,&] = 0 for all ¢ € O and hence A must be a multiple of the identity.

(4)Let T € L(Hp) and denote by {E;;} the orthogonal basis of H ¢ associated to some orthogonal basis
{e;} of K. Setting T;; x; = (E;;|T Ey;), one has

TEy = E Tij ;.
1,5,k,1

Since E;; = |e;){e;| = |es){exler){eiler)(ej| = EixEwEr; = L(Ex)R(Ej;)Ey, we can write

T = Z Tij i L(Ei ) R(Ej1),
il

which shows that the subalgebras L(O) and R(O) generate all of L(Hp).

(5)-(6) For any A, B € O and £ € Hp on has L(A)R(B){ = A(B = R(B)L(A)¢ which shows that
R(O) C L(O) and L(O) C R(O)'. Let T € L(O)" so that [T, L(A)] =0 forall A € O. Set B =T1,
then

T¢ = TL(E)1 = LT = L()B = £B = R(BY)E,

for all £ € Ho. Hence, T = R(B*) and we conclude that L(O)" C R(O). A similar argument shows that
R(O) c L(O). O
Proposition 2.24 (1) The map J : £ — & is a anti-unitary involution of the Hilbert space Ho.

2) JL(O)J* = L(O)".

(3) H{, = O, is a self-dual cone of the Hilbert space Ho.

4) JE=Eforall € € HE,.

(5) JXJ=X*forall X € L(O)N L(O)".

(6) L(A)JL(AYHE C HS forall A € O.

Proof. (1) J is clearly antilinear and involutive. Since

(€]Jn) = tr (&™n") = tr (§n) = (JEn),

J is also antiunitary.

(2)Forall A € O and £ € Hp one has JL(A)JE = (AE*)* = €A* = R(A)¢ which implies JL(A)J =
R(A).

(3) The fact that Hg;, = O is a cone is obvious. It is also clear that if £, € H, then (£|n) > 0 so that

HE C ’H+ To prove the reverse inclusion, let £ € 7—[+ Then (n|€) > 0 for all n € H{,. In particular, with
n= |1/)><1/J| we get (n]€) = (1|€) > 0 from which we conclude that € H.

(4)—(5) are obvious and (6) follows from the fact that
L(A)JL(A) = AEA* > 0,

forall ¢ > 0. ]
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The faithful representation L : O — L(He) is called standard representation of O, J is called the
modular conjugation and the cone Hg is called the natural cone. The map

691/»—>§V:1/1/2€’H('5,
is clearly a bijection between the set of states and the unit vectors in ’Hg. For all A € O, one has
(&|L(A)&) = tr (V1 /2AV12) = (A).

&, is called thevector representative of the state v in the standard representation. Note that a unit vector
e ’Hz is cyclic for the standard representation iff & > 0, i.e., iff the corresponding state is faithful and in
this case, for any 7 € Hp, one has p = L(A)¢ with A = né~1. Since L(A)¢ = 0iff Ran& C Ker 4, £ is
a separating vector iff & > 0.

Exercise 2.15. (The GNS representation) Let v be a state and define H,, to be the vector space of all
linear maps & : Ranv — I, equipped with the inner product

(€In)y = trran. (V€ n) = tric(MrE™).

1. Show that #,, is a Hilbert space and that 7, : O — L(#, ) defined by 7, (A){ = AE is a represen-
tation of O in H,,.

2. Denote by 7, : Ranv — K the canonical injection 7,,¢) = 1. Show that 7, is a cyclic vector for
the representation 7, and that

v(A4) = (|m (A1),
forall A € O.

3. A cyclic representation of O associated to a state v is a representation 7 of O in a Hilbert space H
such that:
(i) there exists a vector ¥ € H which is cyclic for 7.
() v(A) = (Y|r(A)y) forall A € O.
Show that any cyclic representation of O associated to the state v is equivalent to the above represen-
tation 7, .
Hint: show that w(A)y — m,(A)n, defines a unitary map from H to H,,.

Thus, up to equivalence, there is only one cyclic representation of O associated to a state v. This
representation is called the Gelfand-Naimark-Segal (GNS) representation of O induced by v.

4. Show that the map U : H, > ¢ + £v'/? € Ho is a partial isometry which intertwine the GNS
representation and the standard representation

Um,(A)§ = L(A)US.

Show that if v is faithful, then U is unitary so that these two representations are equivalent.

5. Let ¢ ~ 1) be a complex conjugation on }C. We have already remarked that the map U (|¢) (p|) =
1) ® P extends to a unitary operator from He, to K ® K. Show that under this unitary the standard
representation transforms as follows.

ODURAUI=A®1andUL(AU ! =1 A.

(HUIU W ¢=0¢ .

(iii) UE, = Y, )\;/ *1; @ ; /tr(v)'/2, where \;’s are the eigenvalues of v listed with multiplicities
and v;’s are the corresponding eigenfuntions.

Let 7¢ be a dynamics on O generated by the Hamiltonian H. Since

L(Tt(A)) _ L(eitHAe—itH) — L(eitH)L<A)L(e—itH) _ eitL(H)L(A)e_itL(H)7
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the self-adjoint operator L(H ) seems to play the role of the Hamiltonian in the standard representation. If
visastateand &, € ”Hzg its vector representative, then

v(r'(4)) = (& IL(r'(A4))6,) = (e g, [L(A)e g, ).

The state vector thus evolves according to e~ *L(F)¢, = e~H ¢ Note that this vector is generally not an
element of the natural cone. Indeed, since v; = e~ pei its vector representative is given by

&, = th/2 = e itH 1/26itH _ [ (o=itH)pe=itH )¢

which is generally distinct from e~*//¢,,. On the other hand, by Part (5) of Proposition 2.23, one has
L(eM)R(&") L(AYR(e™ ") L(e™T) = L) L(A)L(e™ ") = L(+'(4))
so that the unitary group (recall that R is anti-linear)
L(e*H)R(eH) = Qi L(H) g=itR(H) _ Git(L(H)=R(H))
also implements the dynamics 7! in the standard representation. We call the self-adjoint generator
K = L(H) - R(H) = [H, -]

the standard Liouvillean of the dynamics.

Exercise 2.16.

1. Show that if v is a faithful state on O then the natural cone of H o can be written as
HE = {L(A)JL(A)E, | A € O).

Conclude that the unitary group e*X preserves the natural cone iff JX + XJ = 0.

2. Show that the standard Liouvillean K is the only self-adjoint operator on He such that, for all
AeOandt € R, . .
S L(A)eTK = 1(7(4)),

with the additional property that e 1% 7-[2 - 7—[5. (See Proposition 3.4 for a generalization of this
result.)

3. Show that the spectrum of K is given by

sp(K) = {A— p| A, u € sp(H)}.

Note in particular that if dim K = n then 0 is at least n-fold degenerate eigenvalue of K.

2.12 The modular structure of O

2.12.1 Modular group and modular operator

In Section 2.9 we have shown that, given a dynamics 7 generated by the Hamiltonian H, e =## /tr(e=#H)
is the unique 5-KMS state. Modular theory starts with the reverse point of view. Given a faithful state p,
the dynamics generated by the Hamiltonian — 37! log p is the unique dynamics with respect to which p is
a 0-KMS state. This dynamics might not be in itself physical but it will lead to a remarkable mathematical
structure with profound physical implications. For historical reasons the reference value of 3 is taken to be
—1. The dynamics

§;(A) — et log P Ao it log p’
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is called the modular dynamics or modular group of the state p. Its generator is given by
5,(A) = illog p, A].
The (8 = —1)-KMS condition can be written as
P(AB) = p(s}(B)A).

According to the previous section, the standard Liouvillean of the modular dynamics is the self-adjoint
operator on Ho defined by

K, = L(log p) — R(log p),
and one has . 4
L(ct(A)) = ATL(A)A, Y,

K

where the positive operator A, = e"~ is called the modular operator of the state p. Its action on a vector

& € Hop is described by
Apg = et orn=RER e — L(p)R(p™")E = pép™",
More generally, for z € C,
A = exblosn)= RO g = L(p*) R(p™*)¢ = p&p™7,

and in particular
JAYRAE, = (AY2AE,)" = (p/2(Ap!/2)p7 ) = %, 234

for any A € O. The last relation completely characterizes the modular conjugation J and the square root

of the modular operator A,l,/ ? as the anti-unitary and positive factors of the (unique) polar decomposition
of the anti-linear map A&, — A*¢,.
Generalizing the Kubo-Mari inner product (2.33), we shall call

(A|B), = /0 p(A*s,(B))du,

the standard correlation of A, B € O w.r.t. p

2.12.2 Connes cocycle and relative modular operator

The modular groups of two faithful states p and v are related by their Connes’ cocycle, the family of unitary
elements of O defined by
[Dp . Dl/]t _ pity—it _ eit log pe—it log v

Indeed, one has
[Dp = Dy)'s,(A)[Dv : Dp]" = g;(A), (2.35)
forall A € O and any t € R. The Connes cocycles have the following immediate properties:
(1) [Dp: Dv)t[Dv : Dw]" = [Dp : Dw]".
(2) ([Dp: Dv]t)~! = [Dv : Dp]t.
(3) [Dp: Dv)tst([Dp: D,]*) = [Dp: Dv]tts.
They are obviously defined for any ¢t € C and (2.35) as well as (1)—(3) remain valid. The operator

[Dp: Dv]™ = pr71,

satisfies ,
v(A[Dp : Dv|™") = p(A),
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and is the non-commutative Radon-Nikodym derivative of p w.r.t. v. The Rényi relative entropy can be
expressed in terms of the Connes cocycle as

Sa(plv) =logv([Dp : Dv]7'%).

The relative modular dynamics of two faithful states p and v is defined by

§;|U(A) _ pitAy—it _ eit log pAe—it logy.
It is related to the modular dynamics of p and v by the Connes cocycles,

Soiw(A) = [Dp : DV’ (A) = ¢, (A)[Dp : Dv".
Its standard Liouvillean is given by
Kp|l/ = L(logp) - R(log V)>

and the corresponding relative modular operator A |, = effelv is a positive operator acting in Ho as

Ap|l/§ = L(p)R(V_1)§ = pgl/_l'
More generally, for z € C,
€= L(p*)R(v™*)¢ = p*ev ™7,
and in particular
JAMZAg, = A%E,,

plv

for any A € O. Again, this relation characterizes completely A;‘/ ,/2 as the positive factor of the polar
decomposition of the anti-linear map A&, — A*E,,.
In the standard representation of O the relative modular dynamics is described by

L(sy,(A4)) = AJ, L(A)ALY

plv?

and the relative entropies of p w.r.t. v are given by

Salplv) = 10g(§u|A§‘\V§u),

S(ﬂ'”) = (£p| log Au\pgp)'

The relative Hamiltonian of p with respect to v is the self-adjoint element of O defined by

1d
ly = ——[Dp: Dv]* =logp —logv. (2.36)
idt 0
Since 6, = 6, +i[l,)u, -], 5}, is the perturbation that links the modular dynamics ¢! and gf,, i.e., with the
notation of Section 2.10,
ot = Spe

Further immediate properties of the relative Hamiltonian are:
(1) Forany ¥ € Aut(O), £pop-1jpo9—1 = V(lp,).
@) S(plv) = =p(lop).
(3) log A,y =log Ay + L(£,),).
@ logA, =logA, + L(£,) — R(L,).
) Loy + Ll =Ly
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At this point, the reader could ask about the need for such abstract constructions. To answer these
concerns let us make more precise the introductory remarks made at the beginning of Section 2.11. Af-
ter taking the thermodynamic limit, the Hamiltonian H generating the dynamics and the density matrices
defining the states will lose their meaning. So will any expression explicitly involving H or density ma-
trices. What will remain is an infinite dimensional algebra O describing the quantum observables of the
system, a group 7° of *-automorphisms of O describing quantum dynamics and states, positive, normalized
linear functionals on O. The modular group ¢, will also survive as a group of *-automorphisms of O and
the modular operator A, will survive as a positive self-adjoint operator on the Hilbert space carrying the
standard representation of O. In the same way, relative modular groups and operators will be available af-
ter the thermodynamic limit. These objects will become our handles to manipulate states. Modular theory
allows us to recover, in the infinite dimensional case, the algebraic structure of the set of states which is
clearly visible in the finite dimensional case. For example, the formula

[0,1] 3 a+ Sa(plv) = logtr (p*v'™%),

obviously makes sense if p and v are density matrices (even in an infinite dimensional Hilbert space—it
follows from Hélder’s inequality that the product p®v'~¢ is trace class). Thinking of p and v as linear
functionals, it is not clear how to make sense of such a product. The alternative formula

Sa(plv) = log(&/‘AgW&J)’

provides a more general expression which makes sense even if p and v are not associated to density matri-
ces.

From a purely mathematical point of view, modular theory unravels the structures hidden in the tradi-
tional presentations of quantum statistical mechanics. These structures often allow for simpler and math-
ematically more natural proofs of classical results in quantum statistical mechanics with an additional ad-
vantage that the proofs typically extend to the general von Neumann algebra setting. We should illustrate
this point on three examples at the end of this section’.

Exercise 2.17. Let p and v be two faithful states on O.
1. Show that Ap“i =JA,,J.

2. Let 7 be a dynamics on O. Show that
—itK itk
ApOTtll,OTt =e ! Ap‘yel .

where K is the standard Liouvillean of 7?.

2.12.3 Non-commutative /”-spaces

For p € [1, 00], we denote by LP(O) the Banach space O equipped with the p-norm (2.2). It follows from
Holder’s inequality (Part (3) of Theorem 2.1) that if p~% + ¢=! = 1 then L%(0O) is the dual Banach space
to LP(O) with respect to the duality (£|n) = tr(£*n). Note in particular that L2(0) = Ho.

While the standard representation will provide a natural extension of L?(Q) in the infinite dimensional
setting that arises in the thermodynamic limit, there are no such extensions for the Banach spaces L? (O) for
p # 2. Infinite dimensional extensions of those spaces which depend on a reference state were introduced
by Araki and Masuda [AM]. We describe here their finite dimensional counterparts and relate them to the
spaces LP(O).

Let w be a faithful state. For p € [2, 0o] we set

1_1
wp = MAX [AJ "€z

v|w

€]

3 A perhaps most famous application of modular theory in mathematics is Alain Connes work on the general classification and
structure theorem of type III factors for which he was awarded the Fields medal in 1982.
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One easily checks that this is a norm on O and we denote by LP(O,w) the corresponding Banach space.
Note that [|£]|,2 = [|€]|2 so that L?(O,w) = L*(0) = He for any faithful state w. For p € [1,2],
we define LP(O,w) to be the dual Banach space of LY(O,w) for p~! + ¢=! = 1 wrt. the duality

(&ln) = tx(&™n).
Theorem 2.25 For p € [1,00] one has ||{]|w p = [|€w/P~1/2||,, ie., the map

Lr(0) — LP(O,w)
§ — £w1/2—1/p’

is a surjective isometry.

Proof. For p € [2,00] one has r = p/(p — 2) € [1,00] and if v € &, then =2/ ¢ L7(O) with
|vP=2/P||,. = |||y = 1. By definition of the relative modular operator, one further has

p—2 _ _ _ _ B B
18,7 €3 = (v 0™ b ™) = tr(v7 €W 6.

Noting that 1 — 1/r = 2/p, we can write

_p=2 % —p=2 _p=2
lels » = e tr(n€*w™"7 &) = €W T Ellpe = llo™ T &|l5
We conclude using the fact that [|lw™ % &||, = ||€w™ % ||, (recall Exercise 2.7). For p € [1,2] we have,

withg= ! =1—p~t € [2,00],

q—2
tr(§*n) ltr(§*n tr(§*w 2 v) . a2
”5“%17 = sup ‘ ” = sup _a—2 )| = sup | ( | = H§ w 24 ”P
n#0 77”qu n#0 ||w 2q an v#£0 HVHQ

Since (¢ — 2)/2q = —(p — 2)/2p, we get

_p=2 _p=2 _p=2
1€llw.p = [I€°w™ = [lp = flw™ = &llp = [[€w™ 2 |l

Exercise 2.18.

1. Denote by L% (O, w) the image of the cone L% (O) = {£{ € LP(O)|£ > 0} by the isometry of
Theorem 2.25,
LP(O,w) = {Aw/? 1P| Ac O, }.

Show that, with p~* + ¢! = 1, the dual cone to L% (O,w) is L% (O, w), i.e., that

(nl§) >0

forall £ € L¥ (O, w) iff n € L1 (O, w). (Note that L% (O, w) = H, the natural cone.)

2. Show that
I2(0,w) = {AAYPe, | p e &, 1> 0}.

plw

We finish this section with several examples of applications of the modular structure. The first one is a
proof of Kosaki’s variational formula.
Proof of Theorem 2.12. We extend the definition of the relative modular operator to pairs of non-faithful
states. As already noticed (just before Exercise 2.15), if v € & is not faithful then its vector representative
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& € Hop is not cyclic for the standard representation. In fact O, = {A¢&, | A € O} is the proper
subspace of Hp given by

0¢, ={neHo|KernDdKerv} ={neHo|nl-s(v) =0}
Accordingly, one has the orthogonal decomposition
Ho = Of,, S [Ogu}L>

where
[(’)51,]l ={n € Ho|Kern D Ranv}={n e Hp|ns(v) =0}.

For p, v € &, we define the linear operator A |, on Hep by

Ap\u : g — pg[(V‘Ranu)_l 3] O‘Keru]-

One easily checks that A, is non-negative, with Ker A, = {{ € Ho|s(p)&s(v) = 0}. We note in
particular that
TA LA, 1) = s(v)L(A)"6,. (2.37)

plv

forany A € O and n € [0¢,]*.
Starting from the identity tr(p®v!=®) = (&v|A7;,&v) and using the integral formula of Exercise 2.2

we write, for « €]0, 1],

sin T

/O (A (A )16, dt.

s

For A € O one has,
p(|A?) = [IL(A)*&|* = lIs(w)L(A)*E|1* + [QL(A) &, 1%,
where Q = 1 — s(v) is the orthogonal projection on Ker v. By Equ. (2.37), we obtain
p(A°P) = IITA P LGP + 1QL(A)E, |1
= (&[L(A)A,, L(A)Ey) + p(AQAY),

from which we deduce

1 * *

(AT + (11— AP) = 2 (&IL(AAL LA + (&L = AP)E,)

+

= | =

p(AQA™).
With some elementary algebra, this identity leads to
. 1 .
(6180 (B +0716) = 300A°R) + w(11 = AP) - R,

where 1 2
Ra = 7p(AQA") + @+ 20 /2 (L(A) = (L4 By /)78

Since R4 > 0, we get

sin To

t alfoc<
(") < —

/oo " Bp(lA(w*lQ) + (|1 - A(t>|2>] d,
0

for all A € C(Ry,0), with equality iff Ry = 0 for all ¢ > 0. Since A, > 0, this happens iff
(L+ A, /t)L(A(t)E, = & and p'/2A(t)Q = 0 for all ¢ > 0. The first condition is equivalent to

(1 A(B)w = L pA(Ds(0).
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An integration by parts shows that the function
oo
Aopt(t) =t / e *PreS (s,
0

satisfies this condition as well as Aqpt(1)Q) = 0 so that R4
principle.

Suppose that B(t) € C(R4, O) is such that A(t) = Aqpi(t) + B(¢) is also minimizer. It follows that
B(t) satisfies the two conditions

) = 0. This proves Kosaki’s variational

opt

tB(t)v + pB(t)s(v) =0, (2.38)
p'2B()(1 —s(v)) =0, (2.39)
for all ¢ > 0. Let ¢ be an eigenvector of v to the eigenvalue p > 0. Condition (2.38) yields (p +

tp)B(t)¢ = 0 which implies B(t)¢ = 0. We conclude that B(¢)s(v) = 0 and Condition 2.39 further
yields p'/2B(t) = 0. It follows that if either v or p is faithful then B(t) = 0. O

As a second application of modular theory, we give an alternative proof of Uhlmann’s monotonicity
theorem.
Proof of Theorem 2.13. To simplify notation, we shall set # = ®*(v) and p = ®*(p). In terms of the
extended modular operator, one has

Sa(plv) = logtr(p®v' =) = log(&,| A%, &),
and we have to show that
(€o1A5:65) > (§ulA5E), (2.40)

forall o € [0, 1].
Consider the orthogonal decomposition Hp,. = Ox&s @ [Oxés]t. For A € Ok and 1 € [Ox&s]t,
the Schwarz inequality (2.14) yields

[D(A)E1* = (&]D(A)*D(A)E,)
< (&|P(AA)E,) = v(P(A*A)) = D(A™A)
= (64" AL) = || A& |1?
< A&7 + [Inll* = A& @ nll?,

which shows that the map A&, @ n — ®(A)E, is well defined as a linear contraction T,, : Ho, — Ho,.,-
The map 7, is defined in a similar way.
For A € Oy and 1) € [O€5] ™, one has

JAYT,(Ag, @) = TAYPT, (As(0)&s @ )

plv plv

= A2 (As(0))€,
)*

=s(v)2(As(0))*E, = s(v)P(s(7)A")&,
=s()Tps(P)A"E;
= s(V)T,J AL (Ag +1),

1/2

from which we conclude that A = KAY 3 where K = Js(v)T,J is a contraction. It follows that for

¢>0 1/2 1/2 1/2, 4 1/2
-1

AT (AN + o) = KAYHAL? +e)7

1/2 (A1/2

and since sup, > /(z +¢) = 1 one has ||A so €)1l < 1. The entire analytic function

F(2) = (€(AYZ + )" Ty A%, T (A7 +2) 7€),

plo
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thus satisfies
1 . .
[FE) < 1A +1]] IEl?, RG] <iEl”, [P +it)] < €)%

on the strip 0 < Re z < 1. By the three lines theorem |F(z)| < ||€||* on this strip. Setting z = « € [0, 1],
we conclude that
(TLEIAS,T,€) < (E[(AY7 +¢)%).
Letting € | 0 we get
(&AL TLE) < (§1A7156),

and (2.40) follows from the fact that 7,,{;, = ®(1)¢, = &,. O

As a last illustration of the use of modular theory, we prove a lower bound for quantum hypothesis
testing which complements Theorem 2.19. Our proof is an abstract version of similar results proven in
[ s ], where reader can find references for the previous works on the subject. The extension of
our proof to the general von Neumann algebra setting can be found in [ 1.

Let Dy(p,v) = Dy(p, v, Popt) be as in Section 1.3.7. Let A, be the modular operator defined in the
proof of Theorem 1.14, and let j,|,, be the spectral measure for A, and &,,.

Proposition 2.26
Dy(p,) > 5 min(p, 1~ Py (1, ).
Proof. Let P be an orthogonal projection (a test). By Equ. (2.37), one has
Dy(p,v,P) = pll(1 = P)&,|* + (1 - p)||P& |
> plls()(1 = P)&,|1* + (1 = p)|| P& ||
> p| AL = P& |2 + (1 = p)l P&

> min(p, 1 — p) <||A1/2(]1 - P)quQ + ||P€u||2)

plv

> min(p, 1 —p)(& /(L — P)A,j, (L — P) + PLP)E,).

Let F be the characteristic function of the interval [1, 00[. Since 1 > F(A,,) and A, > F(A,),), we
further have

Dy(p, v, P) > min(p,1 — p)(&[((1 — P)F(A,)(1 = P) + PF(A,,)P)E).
From the identity

(]]- - P)F(Ap\u)(]]- - P) +‘PF‘(AMV)F) - F(Aplu) = (]]- - QP)F(AP\V)(]]- - 2P)7

1
2
>

we deduce (1 — P)F(A,,)(1 — P) + PF(A,,)P F(A,),) which allows us to conclude

3
Dy(p,,P) > 5 min(p, 1~ p)(E|F(Ay)6,),
for all orthogonal projections P € O. Finally we note that
Dy(p.v) = min Dy(p,, P) > L minp, 1~ p)(EF(B0,)6,)
= min(p, 1~ (1, <),

which concludes the proof. O
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Exercise 2.19. Prove the following generalization of Kosaki’s variational formula: for any p,v € G,
B € O and « €]0, 1] one has

sin T

tr (B*p"‘BVl_O‘) =

/m e EPUA(t)*I?) +v(|B - A@®)P) | dt.
0

in
AeC(R,0) T
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Chapter 3

Entropic functionals and fluctuation
relations of finite quantum systems

3.1 Quantum dynamical systems

Our starting point is a quantum dynamical system (O, ¢, w) on a finite dimensional Hilbert space X, where
R > ¢t — 7t is a continuous group of *-automorphisms of O, and w a faithful state. We denote by ¢ the
generator of 7t and by H the corresponding Hamiltonian.

As in our discussion of the thermally driven harmonic chain in Chapter 1, time-reversal invariance (TRI)
will play an important role in the sequel. An anti-linear x-automorphism © of O is called time-reversal of
(0,7 if

000 =id, '@ =0o071""
A state w is called TRI iff w(©(A)) = w(A*). The quantum dynamical system (O, 7%, w) is called TRI if
there exists a time-reversal © of (O, 7%) such that w is TRL

Exercise 3.1. Suppose that © is a time-reversal of (O, 7!). Show that there exists an anti-unitary
Us : K — K, unique up to a phase, such that ©(A) = Ug AUg " and deduce that tr(©(A)) = tr(A*).
Show that ©(H ) = H and that a state w is TRI iff O(w) = w.

Hint: Recall Exercise 2.4.

3.2 Entropy balance
The relative Hamiltonian of w; w.r.t. w, £,,,), = logw; — logw, is easily seen to satisfy:

Proposition 3.1 (1) Forallt,s € R the additive cocycle property

Ew,urslw :gw”w +Tﬁt(£ws\w)a 3.1

holds.

2) If (O, 7,w) is TRI, then
®(£wt‘w) = _Tt(gwﬂw)? (32)

forallt e R.
Differentiating the cocycle relation (3.1) we obtain

L o = 74(0),

dt
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where
d

= 784.0 w
dt !

g

= _i[H7 logw] = 50.)(H)7
t=0

(recall that 6, denotes the generator of the modular group of w). Thus, we can write
t
L) = / o_sds, 3.3)
0
and the relation S(w|w) = —w¢(£,,|.,) yields the quantum mechanical version of Equ. (1.5),

S(erle) = - | wlon)ds.

We shall refer to this identity as the entropy balance equation and call o the entropy production observable.

Proposition 3.2 w(o) = 0 and if (O, 7%, w) is TRI then ©(c) = —o.

Proof. w(o) = —itr(w[H,logw]) = itr(H[w,logw]) = 0. Differentiating (3.2) at ¢ = 0 one derives the
second statement. O

An immediate consequence of the entropy balance equation is that the mean entropy production rate
over the time interval [0, ¢],
1 t
=2 / osds,
t Jo

has a non-negative expectation

1 t
w(Xh) = E/ w(og)ds > 0. (3.4)
0
Introducing the entropy observable S = — logw (so S; = 7¢(S) = — logw_;), we see that
1 d
Et == E(St — S), &Stltzo = 0. (35)

The observable S cannot survive the thermodynamic limit. However, the relative Hamiltonian and all other
objects defined in this section do. All relations except (3.5) remain valid after the thermodynamic limit is
taken.

Exercise 3.2. Assume that the quantum dynamical system (O, 7%, w) is in a steady state, w(7t(A)) =
w(A) forall A € O andt € R. Denote by K the standard Liouvillean of 7* and by §,, the generator of
the modular group of w: ¢!, = e®~. Consider the perturbed dynamical system (O, T, w) associated
to V € Ogerr (see Section 2.10).

1. Show that its entropy production observable is given by

o= 0,(V).

2. Show that its standard Liouvillean is given by

Kyé=KE+VE-JVIE.
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3.3 Finite time Evans-Searles symmetry

At this point, looking back at Section 1.6, one may think that, for TRI quantum dynamical systems, the
universal ES relation (1.13) holds between the spectral measure P? of ¥ associated to w

W(f(5) = PH(f) = / f(s)dPY(s),

and its reversal Pt( ) = w(f(=2%%)). To check this point, we first note that, by Proposition 3.2,

1

CIORE ;/0 O(r°(0))ds = 71/0 775(0)ds = —77H(XH),

which is the quantum counterpart of Equ. (1.10) and (1.12). Note that this relation implies that s € sp(%?)
iff —s € sp(X!) and that the eigenvalues +s have equal multiplicities. Furthermore,

-t

P (f)=wiom "(f(=E") =wi 0 O(f(Z")) = w_i(f(E") = w(f(Z)w_sw ™),
which, using (3.3), can be rewritten as

t

P =w (f(zt)elogwftE”eflogw> .

If w is not a steady state then logw and ¥* do not commute and hence we can not conclude, as in the
. =t . . .

classical case, that P (f) equals w ( f (Zt)e_t2t>. Our naive attempt to generalize the ES relation (1.13)

to quantum dynamical systems thus failed because quantum mechanical observables do not commute.

Exercise 3.3. Show that the ES-relation

w (e—atEt) —w (e—(l—a)tZ}t) )

holds for all ¢ if and only if [H,w] = 0.
Hint: the relation implies w(e‘tzt) = 1. By Golden-Thompson inequality,

w(e—tZt) _ tr(elogwelogw,t—logw) > tr(elogwft) =1,

and equality holds iff w and w_; commute (recall Exercise 2.8). Differentiating ww; = ww att = 0
deduce that Hw? = w?H.

As noticed in Section 1.6, the ES relation (1.13) is equivalent to the ES-symmetry (1.14) of the Laplace
transform of the measure P!. We recall also that this Laplace transform is related to the relative entropy
through Equ. (1.9). It is therefore natural to check for the ES-symmetry of the function

a > So(w|w).
Assuming TRI, we have
tr(wfw! =) = tr(O(w' %w?)) = tr(w! %w?*,) = tr(w; *w®),
where we used that tr(©(A4)) = tr(A*) (Exercise 3.1). Thus,
S (wiw) = logtr (ww' ™) = log tr (w(l_a)/zw?w(l_a)p),

satisfies the ES-symmetry.
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In our non-commutative framework one may also define the entropy-like functional
(1-a)/p, 20/p (1-a)/p\ "/’
R > a— ep(a) =logtr (w PuyPw p) .

For reasons that will become clear later, we restrict the real parameter p to p > 1. Since logw; = logw +
£4,)w» Corollary 2.3 yields

e(l—a) logw—&-(xlogwt) logw-f—ozﬂw‘w).

S plggo ep.t(a) = log tr(

= log tr(e
We shall call the e, ; () entropic pressure functionals. Their basic properties are:

Proposition 3.3 (1) The function [1,00] 5 p +— e, (c) is continuous and monotonically decreasing.

(2) The function R > « — e, (@) is real-analytic and convex. It satisfies e, +(0) = ep, +(1) = 0 and

<0 forael0,1],
Pt >0 otherwise.

3) epi(a) =ep (1 — ).

@) O0aep,t()|a=0 = W(ly,|w) = S(wlwi) and Ogep i () |a=1 = wi(ly,|w) = —S(we|w).
(5) Dzeoot(@)laz0 = (bu i) = Wl )

(6) 0%ea.t()]am0 = w(fit‘w) —w(ly,1w)*

(7) If (O, 7%, w) is TRI, then the finite time quantum Evans-Searles (ES) symmetry holds,

epi(a) =ep (1 —a). (3.6)

Proof. (1) Continuity is obvious. Writing
ept(@) = log P =71, (3.7)

monotonicity follows from Corollary 2.3.

(2) Analyticity easily follows from the analytic functional calculus and convexity is a consequence of
Corollary 2.4. The value taken by e, ; at « = 0 and o = 1 is evident and the remaining inequalities follow
from convexity.

(3) Unitary invariance of the trace norms and Identity (2.11) give
Hwta/pw(ka)/p”p _ ”efitHwa/peitHw(lfa)/p”p
— Hwa/peitHw(l—a)/pe—itHHp

« 11—« 11—« «
= [lw®/ Pl VP, = Wl P/,

(4) We consider only p € [1, 00[. The limiting case p = oo will be treated in the proof of Assertion (5).
We set T(a) = w(1=0)/p,2%/P,(1=a) /P s that
Oacpa(a)| = 0atr(T(a)’?)|

Let I" be a closed contour on the right half-plane Re z > 0 encircling the strictly positive spectrum of
T(0) = w?/P. Since o ++ T(«) is continuous, I" can be chosen in such a way that it encloses the spectrum
of T'(«) for a small enough. Hence, with f(z) = 2P/2 we can write

dz

2mi’

() = ;4 F2)tr (= = T(a) ™)
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so that q
= fr@ele- 1) TOE - T0) ] 5
o= I

Datr (T(a)P/?) ot

An elementary calculation gives

2
T'(0) = gw“fmww”a

and the cyclicity of the trace allows us to write

dz

Qutr (D)) _ == § ) [ =) 2utlre, ] 32
2

2mi

= Etr [f’(wz/p)wwpﬁwt‘w} = trwly, |, = S(w|w;).

The second statement also follows by taking (3) into account and observing that S(w|w_;) = S(w;|w).

(5) Setting T'(r) = el°&8“tfuiiv we have T'(0) = w and
= tr (17(0)),

a=0

= tr (17(0)) = (tr (77(0)))*.

a=0

OnCoo,t()

aieooyt(a)

Iterating Duhamel’s formula (recall Exercise 2.3), we can write

1 1 u
T(a)=w+ a/ wl_sﬁw”wws ds + o? / / wl_ufwdwwsﬁwdww“_s dsdu + O(a?),
0o Jo

0
so that .
tr (T(0)) = / b [l 00®] ds = w(lu) = S(wlwr),
0

which proves (4) in the special case p = oo, and
1 u
tr (T"(0)) = 2/ / tr [wl_sﬁwt‘wwsﬁwt‘w] dsdu
o Jo
1,1
= 2/ / tr [wl_sfw‘wwsﬁwt‘w} duds
0 s
1
= 2/ (1= s)tr [w' ™50y, jwwly, 0] ds
0

1
_ 2/ str [stwt\wwl_sgwdw] ds.
0

Taking the mean of the last two expressions, we get
1
tr (T7(0)) = / tr [wlfséwt‘wwsﬁwt‘w} ds
0

1
- / w (gz,ij(gwt‘w)gwt‘w) ds,
0

and hence

8(2)[6007t(04)

a=0

= /0 [w (§S(£wt‘w)£wt‘w) — W(Ewt\w)ﬂ ds.

(6) Follows easily from the fact that es () = S, (wi|w) = log tr (wfw! ~).
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(7) Under the TRI assumption one has O(w) = w, O(w;) = w_+,

o ((wu—a)/pwga/pw(l—avp)p/ 2) _ (wu—a)/pwgc;/pw(l—avp)p/ ?

and hence e, ;(a) = ep, (). The result now follows from Assertion (3). O

According to our rule of thumb, we reformulate the definition of the functionals e, ; () in terms which
are susceptible to survive the thermodynamic limit. We first note that

e2,4(0) = Sa(wilw) = log (€, A2, L&),
while Theorem 2.15 (2) yields the variational principle

€oo,t(a) = max S(plw) + ap(ly,|w)-
Moreover, Equ. (3.7) and Theorem 2.25 immediately lead to

epi(@) = log [|AP |17,

wi|w

forp € [1, 00].

Exercise 3.4. Show that
eoo,t(a) — log(§w|e1°g Au+aL(fw|w)§w)_

Exercise 3.5. Show that the function [1,00] 5 p — e, () is strictly decreasing unless H and w
commute.
Hint: recall Exercise 2.8.

3.4 Quantum transfer operators
For p € [1, 00| we define a linear map U,(t) : Ho — Ho by
Up(t)€ = e_itH§w7%+%eitHw%7%.
In terms of Connes cocycles and relative modular dynamics, one has
) ) 11 . LG5
Uy ()¢ = e g™ Doy Dw]l(ifﬁ) = ¢ tH geltew (H) (3.8)
One easily checks that R > ¢ — Up,(¢) is a group of operators on 7 which satisfies

(€U ()n) = Uy (=)&[n), (3.9)

for all £, € Ho with p~! + ¢! = 1. The following result elucidates the nature of this group: it is
the unique isometric implementation of the dynamics on the Banach space LP(O, w) which preserves the
positive cone L% (O, w).

Proposition 3.4 (1) t — U,(t) is a group of isometries of L (O, w).
(2) Up(t) LA (O,w) C LE (O, w).
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(3) Up(—t)L(A)U,(t) = L(7*(A)) forany A € O.
(4) U,(t) is uniquely characterized by Properties (1)-(3).

The groups U, are natural non-commutative generalizations of the classical Ruelle transfer operators.
We call LP-Liouvillean of the quantum dynamical system (O, 7%, w) the generator L,, of U,

Uy(t) = e ithe,
From Equ. (3.8) we immediately get
Lyg = HE—€6y* 7 (H).
Interpreting (3.9) in terms of the duality between L? (O, w) and L1(O, w), we can write

Li =L,

Note that, in the special case p = 2, Ly = L3 coincide with the standard Liouvillean K of the dynamics

Tt.

Theorem 3.5 For any p € [1, 00| one has

sp(Ly) = sp(K) = {\ — p |\, p € sp(H)}.

Exercise 3.6. This is the continuation of Exercise 3.2. Show that the L”-Liouvillean of the perturbed
dynamical system (O, 7{,, w) is given by

L& =KE+Ve—Jo P W)

Interestingly enough, one can relate the groups U, to the entropic pressure functionals introduced in
the previous section. The resulting formulas are particularly well suited to investigate the large time limit
of these functionals.

Theorem 3.6 For o € [0, 1],
ep,t(a) = log ||e_ltLp/afw||€z,p’

holds provided p € [1,00[. In the special case p = 2, this reduces to

eai(a) = log (&, le Hharag,).

With the help of Theorem 2.25, the proof of the last theorem reduces to elementary calculations.

Proof of Proposition 3.4 and Theorem 3.5. Let K be the standard Liouvillean of (O, 7, w). Since
e K¢ = o7 tH¢oltH it is obvious that e 71X is a group of isometries of LP(Q) which preserves the
positive cone L% (O). Denote by V), : LP(O) — LP(O,w) the isometry defined in Theorem 2.25. Theorem
3.5 and Properties (1) and (2) of Proposition 3.4 follow from the facts that Up(t) = V,e "<V, ~! and
LY (O,w) = V,LE (O). To prove Property (3) we note that V,, € R(O) = L(O)’, so that
Up(—t)L(A)U(t) = Vo KV, L(A) Ve RV !
— ‘/;)eitKL(A)efitK‘/pfl
=V, L(r"(A)V, ! = L(7"(A)).
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(4) Let R > t + U? be a group of linear operators on Ho satisfying Properties (1)-(3) and set V! =
L(e™)U*. The group property implies that

(Vt)fl _ (Ut)flL(eitH)fl — UftL(efitH)’

so that, by Property (3),

L(T"(A)) = U L(A)U" = (V) L(e"™)L(A)L(e ) V*

_ (Vt)—lL(eitHAe—itH)Vt _ (Vt)_lL(Tt(A))Vt,
forall A € O. Setting A = 7-%(B) we conclude that
V'L(B) = L(B)V",

forall B € O, ie., V' € L(O)" = R(O). Using the group property of U’ one easily shows that t > V* is
also a group. It follows that V! = R(e!'!) for some H € O. Thus, for any A € O, one has

1_1 3 1_1 g 3 —_; # 1_1
UtAwQ > :eltHsz ve itH :eltHAe itH w2,

where H# = ggi(éig)(ﬁ*). Exercise 2.18 (1) and Property (2) imply that oitH Ae—itH” ¢ O for any
A € O4. Since any self-adjoint element of O is a real linear combination of elements of O, it follows
that
GitH go—itH? _ (eitHAefitH#>* = H? goitH
for any A € Ogeis. This identity extends by linearity to arbitrary A € O. Differentiation at ¢t = 0 yields
(H— H**)A = A(H* — H). (3.10)

Setting A = 1, we deduce that H# + H#* = 2H, and hence that H# = H + iT with T € Ogqs.
Relation (3.10) now implies TA = AT for all A € O so that T = A1 for some A € R. It follows that

H#* = 27YP)(F)* _ i) and hence Ut = e*U,(t). Property (1) finally imposes A = 0. O

3.5 Full counting statistics
The functional
e2.4(0) = Sa(wilw) = log(£u|Af, ,6u) = log(€ule ESurlg,),

can be interpreted in spectral terms. If we denote by ¢ the spectral measure of the self-adjoint operator

1 1 1 1
-7 IOg Awt|w =7 IOg Aw - 7L(€wt|w) =7 IOg Aw - L(Eit)v
t t t t
for the vector &, then
ez, (a) =log [/ e_o‘tsth(s)} . (3.11)
R
As explained at the end of Section 1.6, the ES symmetry (3.6) can be expressed in terms of the measure Q*
in the following familiar form (see [TM]). Let v : R — R be the reflection t(s) = —s, and let @t =Qlor

be the reflected spectral measure.

Proposition 3.7 Suppose that (O, 7, w) is TRI. Then the measures Q' and @t are mutually absolutely
continuous and

aQ’

d762t (5) = eits.
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The measure Q* is not the spectral measure of any observable in O and on the first sight one may question
its physical relevance. Its interpretation is somewhat striking and is linked to concept of Full Counting
Statistics (FCS) of repeated quantum measurement of the entropy observable S = — log w. To our knowl-
edge, this interpretation goes back to Kurchan [Ku] (see also [ D.

At time ¢ = 0, with the system in the state w, we perform a measurement of S. The possible outcomes
of the measurement are eigenvalues of S and s € sp(SS) is observed with probability w(P;), where P; is
the spectral projection of .S onto its eigenvalue s. After the measurement, the state of the system reduces to

W(PS)7

and this state now evolves according to
e—itHwP eitH
S
W(PS)

A second measurement of S at time ¢ yields the result s’ € sp(S) with probability

tr (e " wP e Py )
w(Ps)

Thus, the joint probability distribution of the two measurement is given by
tr (e Pt P |
and the probability distribution of the mean rate of change of entropy, ¢ = (s’ — s)/t, is given by
P(p) = Z tr (e_itHiseitHPs/) .
s'—s=te
It follows that
tr(w “w®) = Z e =)ty (e_itHwPSeitHPS/) = Z P, (¢p)e b9,
5,8’ ®

and we conclude that

ez, —¢(a) = ez (1 —a) = log ZPt(qﬁ)e’tw
¢

Comparison with Equ. (3.11) allows us to conclude that the spectral measure Q¢ coincide with the
distribution P;(¢). Consequently, applying Proposition 3.3, the expectation and variance of ¢ w.r.t. IP; are
given by

1

]Et(d)) = _zaael—t(a) !

- _Zw(gwft\“’) = w(zt)’

a=0
2 (B 0) — ol 1)) = w(E7) — (D).

E(67) ~ B = Res (o) =

a=0
They coincide with the expectation and variance of X! w.r.t. w. However, we warn the reader that such a
relation does not hold true for higher order cumulants.

Note that time-reversal invariance played no role in the identification of @_t with P;(¢). However if
(O, 7,w) is TRI, then @_t = Q! and Proposition 3.7 translates into the fluctuation relation

Pi(~¢) _ 1o

P:(¢) 7
where ¢ € (sp(S) — sp(5))/t.
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3.6 On the choice of reference state

Starting with entropy production, all the objects that we have introduced so far depend on the choice of the
reference state w. In this subsection we shall indicate by a subscript this dependence on w (hence, o, is the
entropy production of (O, ¢, w), etc.).

If w and p are two faithful states on O, then

. d

Ow—0p= l[éw‘p,H] = —&Tt(pr) ,

t=0
and hence ; t(g -
1 d T -

zt_zt:,/f S(0,,) ds = —lp? — "wle.
W B =g g7 ) ds t
Consequently,

||Ectu - ZZH = ”Ew\pHO(t_l)-
Thus, 3¢, and ZZ become indistinguishable for large ¢. A similar result holds for the properly normalized

entropic functionals. For example:

Proposition 3.8 Forall a € R andt € R one has the estimate

1 1 ”Ew\p”

;eoo,t,w(a) - %eoc,t,p(a) S (ll - O‘| + |OéD t .

Proof. We have
tI"(QIOg w+a€w‘|w) = tl"(elOg p""o‘eﬁtIp""(l_a)ew\p"‘("éwlm)
S tr(elOg p+aﬁpt|pe(lfa)€_,‘p+a€_,t|pt )
< e(ll—al-ﬁ-loé\)H&J\p\Itr(elozf;p+o%mp)7
where we have used the Golden-Thompson inequality (Corollary 2.3). Taking logarithms, we get
€o0,tw (@) = €oo,t,p(@) < (|1 = + |a)[[luy -

Reversing the roles of w and p and using that ||£,,,|| = [/£,..|| we deduce the statement. O

plw

3.7 Compound systems

Consider the quantum dynamical system (O, 7%, w) describing a compound system made of n subsystems.
The underlying Hilbert space is given by a tensor product

K= é K,
j=1
and

n
0= 0, (3.12)
j=1
where O; = Ok is the algebra of observables of the j-th subsystem. We identify A; € O; with 1,1, ®

Aj ® 1@;‘:j+11€¢ e 0.
We assume that the reference state w has the product structure

WA ® - ® Ap) = [Jwi(4), (3.13)
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where wj is a faithful state on O;. According to the above convention, w; is identified with the positive
operator o1, ® w; ® Lgr  k;, so that log wj is a self-adjoint element of O and
i=1""1 =7

logw = Z logw.
j=1

Accordingly, the entropy production observable of the system can be written as

o =lillogw, H] = Zaj,

where ¢; = i[logw;, H]. Similarly, the relative Hamiltonian £,,, |,, decomposes as

wt\w z :Zw]ﬂw]

where .
Cigjilo; = T ' (logw;) — logw; :/ T %(o;)ds.
0

If the system (O, 7%, w) is TRI with time-reversal ©, we shall always assume that

@(CL}j) = Wwj.
This implies
@(0']‘) = —0j.
Fora = (a1, -+, ap) € R™ we denote w™ = wi'* - - - w@n. Similarly,
wta — e—ltH [ 1tH Hw]t
We also denote 1 = (1,...,1)and 0 = (0, ...,0). The multi-parameter entropic pressure functionals are

defined fort € Rand o € R" by

P

2a —a )\ 2
log tr [(w Pow,” wlp> ] forl <p < oo,
(o) =

log tr (elongij a_ifwjt\WJ) for p = oco.

Ep,t

These functionals are natural generalizations of the functionals introduced in Section 3.3 and have very
similar properties:

Proposition 3.9 (1) The function [1,00] 5 p — e, () is continuous and monotonically increasing.
(2) The function R"™ > o — e, () is real-analytic, convex, and ep, +(0) = e, (1) = 0.
(3) ep7t(a) = ep,—t(]- — Ot)
(4) aozj ep,t(a)|a:0 = w(gwj-t\wj )
Q)
6ak8aj eoo’t(a)|a:0 = <£Wktlwk ijt\wj>w - w(fwmwk )W(ijf,\wj)~
(6)
1t gt
OniOncai(@lama =5 [ [ w((on ~ wlor)(03 ~ w(o3.))) dsdu
0o Jo
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(7) If (O, 1t,w) is TRI, then the finite time Evans-Searles (ES) symmetry holds:
ept(0) = epi(1 — ).
The proof, which is similar to the proof of Proposition 3.3, is left as an exercise.
In order to express the multi-parameter entropic pressure functionals in terms of the modular structure
of (O, w), we have to extend the definition of relative modular operator. Let us briefly indicate how to
proceed. The main problem is that w; is not a state on O (it is not properly normalized, and cannot be

normalized in the thermodynamic limit since the dimensions of the Hilbert spaces C; diverge in this limit).
However, as a state on O, w; has a modular group ¢,,; and a modular operator A, such that

&, (4) = Al A,

The formula

n
R™ SS:(Sl,...,Sn)H§5:®§3§,
Jj=1

defines an abelian group of *-automorphisms of O. With a slight abuse of language, we shall refer to the
multi-parameter group ¢? as the modular group of w. We denote by

n

A5 = Q)AL

j=1
the corresponding abelian unitary group. Setting

—t t

s s
gwt:T C¢u,OT,

we clearly have ¢3(A) = ws Aw ™' and ¢35, (A4) = wi*Aw; ™.
The two modular groups ¢, and ¢, are related by

o, (A) = [Dwy : Dw]*¢;(A)[Dw : Dwl®,
where the unitary Connes cocycle
[Dwt . Dw]s _ wiswfis _ eiza' szft(logwj)e—iZj sjlogw; _ efitHeitg'f,(H)’ (3.14)
satisfies the two multiplicative cocycle relations
[Dw; : Dw]®¢S ([Dws Dw]s/) = [Duw : Dw]s+sl,
77 ([Dwy : Dw]|®)[Dw; : Dw]® = [Dwyyy : Dw]®. (3.15)

Thanks to the first relation,
R">s—= AZ,, = L([Dw; : Dw]?)AZ,

defines an abelian group of unitaries on Hp. One easily checks that Afjt‘wg = wis¢w™'S. The relative

Hamiltonian £, ,|,, = 77 (logw;) — log w, is given by

1d
Ly, = 75— [Dwy : Dw]®
Tt 1 de s=0

Using Theorem 2.25 and the fact that Ag /p &, = &, itis now easy to show that, for p € [1, 00|,

epi(@) =log AP €12, = log [|[Dwy : Dw] /P, |12 (3.16)

we|w w,p?
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while Theorem 2.15 leads to
eoc,t(@) = maxc | S(ple) + 3 oL,
j=1

In particular, one has
ez.1(a) =10g(£u|AS, |,6w) = logw([Dw; : Dw] ™).

One can also generalize Theorem 3.6 to the present setup. To this end, let K be the standard Liouvillean
of the dynamics 7¢. Withs € R™, the second cocycle relation (3.15) allows us to construct the unitary group

e s — R([Dw; : Dw]®)*e K,
on Hp. By (3.14), one has
efithg _ efitngitH[Dwt . Dw]s _ efitngitgf,(H)’

so that Ky = L(H) — R(s3(H)). Analytic continuation of e %5 to s = i(1/2 — 1/p)1 with p € [1, ]
yields the group U, (t) of isometric implementation of the dynamics on the Araki-Masuda space L” (O, w)
introduced in Section 3.4.

For e € [0,1]" and p € [1, 00, let us define

From the identity
eﬂtLgﬁw _ wta/pwl/%a/p = [Duw; : Dw]*ia/%w,

and Equ. (3.16) we deduce
—itL
epi(@) =loglle a1,

In the special case p = 2, this can be rewritten as

—itL 1

62,75(0’-) = 1Og(£w|e Efw).

Exercise 3.7. Show that the Connes cocycle I'(s, t) = [Dw; : Dw]® satisfies the following differential
equations,

—i%I‘(s,t) =748 (H) — H)I'(s, 1), I'(s,0) =1,
‘%F(s,w = I'(s, )55 (7" (log w;) — log wy), TG =1,
Sj

Exercise 3.8. Assume that H = Hy + V with [Hy,w] = 0, i.e., w is a steady state for the dynamics
74 generated by Hy. Show that

= Ko+ L(V) — R(s{*"Y2(V)),

where K is the standard Liouvillean of 7§.
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3.8 Multi-parameter full counting statistics

We continue with the framework of the last section and extend to compound systems our discussion of full
counting statistics started in Section 3.5.
With 1; = (0,...,1,...,0) (asingle 1 at the j-th entry) we set

=AY

wt\w'

A

wjt|w;
In terms on the joint spectral measure Q! of the commuting family of self-adjoint operators
1 1
7 log Ay fwrs - -+ s 7 log Ay, lwn s

associated to the vector &, one has, for a € R,
(&U'Ast\(uSW) = (§w|ez_7’ ajlog Ay jw; o) = /e—tcx‘s th(S)

Let v denote the reflection t(s) = —s on R”, and let Qt = Q! ot be the reflected spectral measure. The
ES symmetry e3 (1 — &) = ea () translates into

Proposition 3.10 Suppose that (O, 7, w) is TRI. Then the measures Q' and @t are mutually absolutely
continuous and

ao"
Q!

To interpret this result, considered the vector observable

(s) = e 1=,

S=(-logwy, -, —logwy,).

Since the w;’s commute, the components of S can be simultaneously measured. Let P denote the joint
spectral projection of S to the eigenvalue s € sp(S). The joint probability distribution of two measurements
is

tr (e*itHiseitHPS/) .

Denote by P;(¢) the induced probability distribution of the vector ¢ = (s’ — s)/¢ which describes the
mean rate of change of S between the two measurements. For a € R™ one has, by Proposition 3.9 (3),

(EalAZ | 80) = (§w|Ait—‘5§w) = tr(wf ™ *w®)
_ Z e~ Zj a_,»(s;7s_j)tr(efitHwPSeitHPS/)

s,s’

= Z e” Litu%ip, ().
¢

As in Section 3.5, we can conclude that the spectral measure @_t coincide with the probability distribution
P,. Assertion (4) and (6) of Proposition 3.9 yield the expectation and covariance of ¢ w.r.t. Py,

Ei(¢;) = _%8%' e2,-t()

1 I
= _gw(g“’j(—tﬂ“’j) = E/O w(ajs)ds,

a=0

E(650) — Ba(67Ee(08) = 500, 0ace2, ()

a=0
1t
272/0 /0 w (055 — w(0s))(Ohu — W(Oky))) dsdu.

84



Entropic Fluctuations in Quantum Statistical Mechanics

If the system is TRI then Q' = Q' and Theorem 3.10 yields the ES fluctuation relation

P (—¢) et
Py(¢) '

Exercise 3.9. The above formula for the covariance of the full counting statistics implies that

Ay = / / s = o — o) s

is symmetric, A, = Ag;. Prove this directly, starting from the definition o; = —i[H, logw;].
Hint: show that

t ot
/ / [0js, Oku]dsdu = [logw;,logwg] + 7t ([log wj, log wg])
o Jo

— [ (logw;),log wy] — [log w;, 7* (log wy.)].

Exercise 3.10. Check that the tensor product structure (3.12) was never used in the last two sections.
More precisely, replacing Assumption (3.13) with

logw = Z Qj,
j=1

where (Q1, ..., Q) is a commuting family of self-adjoint elements of O, and defining w; = e%i so
that

a Qi
w = esi=1Y%i

show that all the results of the two sections hold without modification.

3.9 Control parameters and fluxes

Suppose that our quantum dynamical system (Ox,Tx,wx) depends on some control parameters X =
(X1,---,Xn) € R". One can think of X;’s as mechanical or thermodynamical forces acting on the
system. We denote by Hx the Hamiltonian generating the dynamics 7%, by ox the entropy production
observable, etc. We assume that wy is 7} invariant and refer to the value X = 0 as equilibrium. Note that
this implies oo = 0. We adopt the shorthands 7 = 7¢, w = wy.

Definition 3.11 A vector-valued observable ®x = (@gp7 e ,@g?)) € OL, is called a flux relation if,
forall X,

ox =Y X;0%.
j=1

In what follows we will consider a family of quadruples (O, 7%, wx, ® x) xern, where ® x is a given flux

relation. Somewhat colloquially, we will refer to @g?) as the flux (or current) observable associated to the
force X;. In concrete models, physical requirements typically select a unique flux relation ® x.
If (Ox, 7%, wx)xern are time-reversal invariant (TRI), we shall always assume that

Ox(®x)=—Dy. (3.17)
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This assumption implies that wx (®x) = 0 for all X.

Notation. For v € &, 9 € Aut(0), A = (Ay,...,A,) € O™, and Y = (Y1,...,Y,) € C" we shall use
the shorthands

v(A) = (v(A1), -+ ,v(An)) € CY,

I(A) = (9(Ar), - 9(An)) € O,

THA) = Ay = (T'(Ar), T (An)) €O,
Y-A= iY;Aj € 0.

The relative Hamiltonian of wx; w.r.t. wx is given by

t t t ‘
Losilwx :/0 T);s(ax)ds:X-/O i’X(,S)ds:ZXj/O Tgs(d)g?))ds.

We generalize the p = oo entropic pressure functional
€oot(@) = logtr (eloBwxtotux lux )

by introducing
e(X,Y) =logtr (elog“XJrY'fot ‘I’X“S)ds) , (3.18)

where Y € R™. The basic properties of e, (X, Y") are summarized in the next proposition.

Proposition 3.12 (1)

et(X,Y) = sup [S(V|wx) +Y- /Ot V(@X(_S))d8:| .

rves

(2) The function R™ 3 Y — e,(X,Y) is convex and real analytic.
B) et (X,)Y) =e (X, X =Y.
4) ,
dv,er(X,Y)|,_, = /O wx (P _,))ds, (3.19)

t t
Oy, Oy, e (X, Y)|Y:O = /0 /0 (<¢)g?z—sl)|@gg)(—sQ)>wx
_ wx(¢§?2_sl))wx(¢§?)<_52))) dsods;. (3.20)
(5) If (Ox, 7%, wx)xern is TRI, then e_(X,Y) = e,(X,Y) and
e(X,)Y)=e(X, X - Y). (3.21)
We shall refer to Relation (3.21) as the finite time Generalized Evans-Searles (GES) symmetry. Notice that
et (X, aX) = logtr(e'8«x Toloxiivx) = e 1(a),

which shows that the ES-symmetry of e ¢ () = e ¢(1 — ) is a special case of the GES-symmetry.
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Proof. (1) follows from Theorem 2.15. (2) Convexity follows from (1) and analyticity is obvious. (3) is a
consequence of the following elementary calculation:

t t
logwx + (X =Y / Dy (_ods =logwx + 4y, jwx — Y / Py (_5ds
0 0
t
:longt—Y-/ (I’X(,S)ds
0
= ¢ itHx (long —Y~/ <I>X(t_s)d5> eltHx
0
. t .
= ¢ itHx (long 7Y~/ @Xsds) eltix
0

—t
= e iHHx (logwx +Y- /0 @X(S)ds) eltHx,

To prove (4) invoke Duhamel formula to differentiate (3.18) (see the proof of Assertion (5) of Proposition
3.3). (5) follows from (2) and Assumption (3.17) which implies that © x (® x(_,)) = —®x., so that

t t
Ox <10ng +Y / @X(S)ds> = 10ng -Y / Py ds
0 0

—t
=logwx +Y~/ Px(_5ds.
0

3.10 Finite time linear response theory

Finite time linear response theory is concerned with the first order perturbation theory (w.r.t. X) of the

expectation values

(Bx): = %/0 wx (P xs)ds.

In the discussion of linear response theory we shall always assume that functions
X — Hx, X — wy, XH‘I’X,

are continuously differentiable. This implies that the function X — (® x); is continuously differentiable
for all ¢.
The finite time kinetic transport coefficients are defined by

Lkt = 5&@?%!;(:0-

Since
(ox)e =Y X @) =3 L X; Xi + o(|X[?) > 0, (3.22)
J g,k

the real quadratic form determined by the finite time Onsager matrix [L ;] is positive definite. This fact
does not depend on the TRI assumption and does not imply that L;z; = Ly ¢. We shall call the relations

Ljre = L,

the finite time Onsager reciprocity relations (ORR). As a general structural relations, they can hold only
for TRI systems.
Another direct consequence of (3.22) is:
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Proposition 3.13 Ler @ x, > x be two flux relations. Then the corresponding finite time transport coeffi-
cients satisfy _ _
Ljit + Liji = Ljge + L.

If the finite time ORR hold, then L;; = Ejkt.

The next proposition shows that the finite time ORR and Green-Kubo formula follow from the finite
time GES symmetry. Recall our notational convention T§(=0 =71t wx—g =w, (I)g?):o = U ), etc.

Proposition 3.14 If (Ox, T ,wx)xern is TRI, then
(D
L s () |s|
L = = [ @®}s @9y, (1- 21 as,
2/, ¢
(2) Ljkt = L.

Proof. By Relation (3.19) and the TRI property one has
; 1
@0y, = —0y, ;XY

so that

ijt anaY ( )|X:Y:0'

The GES-symmetry implies that

1
—axkayj ;et(X, Y)|X:Y:O 3ka €t O Y |Y —0’

(recall the derivation of (1.37)). Since w(®) = 0 and w is 7¢ invariant, Relation (3.20) yields

// @%) 10U) ) dsydsy = —// (@®[0)_ 1y ds;dss.

A simple change of integration variable leads to (1). (2) follows from the equality of the mixed partial
derivatives dy, dy,e;(0,Y) = Jy, 0y, e:(0,Y). O
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Chapter 4

Open quantum systems

4.1 Coupling to reservoirs

Let Rj, 7 = 1,---,n, be finite quantum systems with Hilbert spaces /C;. Each R; is described by a
quantum dynamical system (O, 7},w;). Besides the Hamiltonian H; which generates 7;, we assume the

existence of a “conserved charge” IV, a self-adjoint element of O; such that [H;, N;| = 0. It follows that

Nj is invariant under the dynamics 7/ and that the gauge group 9% (A) = €!*Ns Ae™*Ns commutes with 7.

We suppose that R ; is in thermal equilibrium at inverse temperature 3; and chemical potential y;, i.e., that
e B (Hj—p; Nj)

Wi tr(e—ﬁj(Hj—Mij))'

The modular group of this state is given by

t —Bjt Bjmjt
Swy =T 00

Thus, denoting by d; = i[Hj, -] the generator of 7} and by &; = i[N}, -] the generator of ¥, one has
Ou; = =B (0j — 13&;)-

Note that in cases where there is no conserved charge, one may simply set N; = 1k, so that the gauge
group becomes trivial, £; = 0, and the states w; independent of the chemical potential y;. In such cases,
one can simply set p; = 0.

The joint system R = Ry + - - - + R, is described by

n

(Or, T;Q?WR) = ®(Oj’ T;7wj)'

j=1
The generators of the dynamics 71, the gauge group 9% = ®”_,1% and the modular group ¢, . = ®}L=1<f,j
are given by
or = 2(5] = i[HR, '], Hr = ZHja
i=1 =t
ro= Y.& = ilNg, ], Ngr = Y Nj
=1 =1
60-!72 = Z(Swj = i[logwfk’ -]7 logwR = —Zﬁj(Hj_Mij)a
i=1 =1

with the notational convention of Section 3.7.
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Let S be a finite quantum system described by (Os, 75, ws), the dynamics 75 being generated by the
Hamiltonian Hs. We assume the existence of a conserved charge N such that i[Hs, Ns] = 0 and denote
¥ the corresponding gauge group on Og.

A gauge invariant coupling of S to the system of reservoirs R is a collection of self-adjoint elements
V; € Os ® Oj such that [N; + Ns, V;] = 0. Denoting V' = " . V;, the Hamiltonian

j

Hy =Hr + Hs+V,

generates a perturbation 7{, of the dynamics 7* = 75 @ 7% on O = Os ® Og. Moreover, i, preserves the
total charge N = Nz + Ns and hence commutes with the gauge group ¥ = 9% @ ¥%.

The quantum dynamical system (O, 7{,,w), where w = ws ®wg, is called open quantum system. Open
quantum systems are examples of compound systems considered in Sections 3.7-3.8.

The definition of open quantum system requires some minor modifications if the particle statistics
(bosons/fermions) is taken into account. These modifications are straightforward (see Section 6.6 for an
example) and for simplicity of exposition we shall not discuss them in abstract form.

The entropy production observable of (O, 7{,, w) is

= dw(Hy).
Since
6w = 5w72 +6ws = Zﬂj lu’Jgj [Qa '}7
where () = — log ws, we have
o=— Bi(® —pJj) +os, 4.1
J
where
@ =65;(V), & (V) os =i[Hy, Q]
Observing that
ij = —i[Hv,Hj}, Jj - _i[HV7Nj}v (42)
we derive . .
H]t_H7:_/O ¢]Sd87 th_Nj:_/(; stds. (4.3)

The observables ®; and J; describe the energy and charge fluxes out of the j-th reservoir R ;. The observ-
able 3;(®; — p;J;) describes entropy flux out of R ;.
The entropy balance equation (more precisely Inequality (3.4)) implies

pr(Q) >Zﬁa/ s (®; — 13 73)ds
= Zﬁj p(Hj) — p:(Hj)) — 15 (p(N5) — pe(N;))]

4.4)

for any state p on O. We note in particular that if p is a steady state for the dynamics 7, then both sides of
this inequality vanish as long as the joint system remains finite. However, if the reservoirs become infinitely
extended while the system S remains confined then the observable () remains well defined while H; and
N loose their meaning. A very important feature of the proper mathematical formulation of (4.4) in the
thermodynamlc limit is that the left hand side still vanishes while the right hand side is typically non-zero.

Note also that
wp = Z e @, ﬁj[(Hj*NjJVJ’HfJ(‘I’jus)*#1\71'(75))ds]7 (4.5)

where
Z =tr(e” > Bj(ijHij)).

The density matrix w,; expressed in the form (4.5) is known as McLennan-Zubarev dynamical ensemble.

90



Entropic Fluctuations in Quantum Statistical Mechanics

4.2 Full counting statistics

We continue with the framework of the previous subsection and adapt our discussion of full counting
statistics from Section 3.8 to the open quantum system (O, 7i,,w). We note that the reference state w
factorizes into a product of commuting self-adjoint operators

n n
W= Z_le_Q_Z;;l BjHj“FZ;‘l:l BjniNj — Z_le_Q He_ﬁjHj H BN

Defining, according to Exercise 3.10,

n n
& _ 7=70e=70Q H e~ ViBiH; H eViBiriN;
j=1 ‘

for @ = (70,7,7’) € R x R" x R™ we have,

tr(wf W) = Y e 0t e IIp, (g g v), (4.6)

q,e,v

where P;(q, £, V) is the joint probability distribution for the mean rates of change of the commuting set of
observables

S=(Q,B1Hy,...,BnHyp, —B1p1 N1, ..., —BnpinNn),

between two successive joint measurements at time O and ¢. The sum in (4.6) extends over all (¢, e,v) €
(sp(S) — sp(S))/t. As shown in Section 3.8, the distribution PP; coincide with the joint spectral measure
of a family of commuting relative modular operators.

Expectation and covariance of (g, v) w.r.t. P; are given by

4.7

and,

Ei(ejer) — Ee(e))Eeer) = ﬁjfk

/ / W (D5 — 0(B5)) (Drow — (Bp))) disclu,
0 0

() — Ealy () = D190k / / (Tre = (T5) (Tiw — w(Tea))) dsd,  (48)

ij;“'uk/o /0 w (@55 — w(P)s))(Tku — W(Tku))) dsdu.

In terms of Liouvillean, the moment generating function (4.6) reads

Ei(ejvn) — Eolej)Ee(vi) = —

o a it 1
tr(w; W) = (Cule = &), 4.9)
with (as derived in Exercise 3.8)
L. =Ko+ L(V)— R(Wy), (4.10)

where K denotes the standard Liouvillean of the decoupled dynamics 7,

Wa =\ * (V) =" Tj(a)V;Tj(a) ™"
j=1
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and
Tj(a) = e~ (1/2=70)Q=B;[(1/2=;) Hj—p; (1/2=7;)N;]

If (O, 7{;,w) is TRI, then the fluctuation relation
Pt(—% —&, _V) _ e—t(q+1~€+1-u)
]P)t (Q7 €, V) ’
holds.

4.3 Linear response theory

We continue our discussion of open quantum systems. We now adopt the point of view of Section 3.9
and describe finite time linear response theory. Let S.q and pcq be given equilibrium values of the inverse
temperature and chemical potential. The thermodynamical forces X = (X7, -+, Xo,) are

Xj = ﬂeq - Bja Xn+j = *Beq/‘eq + ﬂjﬂja (] =1,... ,n).

The reference state of the system is taken to be

wx = Z;(lefﬁcq(Hvﬂtqu\f)vLZ}"':l(XjI‘I]‘JanJrjf\’j)7

where N = Ng + Ng and Zy = tr(e Peallv—reaN)+2 5, (X5 Hij+Xn1iNi)) - Clearly,

wy = Zale_ﬁeq(HV_MeqN)7

is the thermal equilibrium state of (O, 7{,) at inverse temperature 3., and chemical potential ji.,. Hence,
we shall use the notation wy = weq. The dynamical system (O, 7, wx ) fits into the framework of Section
3.9 (with 7% = 7{, independent of X).

Note that the family of states wx is distinct from the one used in the previous section: it contains
the coupling V. In particular, wx is not a product state. This is however in complete parallel with our
discussion of linear response theory in classical harmonic chain. If the perturbation V' remains local in the
thermodynamic limit, the product state w and the state wyx describe the same thermodynamics. We shall
discuss this issue in more details in Section 5.9.

The entropy production observable of the dynamical system (O, 7{,,wx) is

ox =illogwx, Hy] = ZXj<I>j + XntiTj, (4.11)
j=1
where the observables
®; = —i[Hv, H;],  J;j=—i[Hv, Ny,

describe the energy and charge flux out of the j-th reservoir. Clearly, (4.11) is a natural (and X -independent)
flux relation. ®; is the flux associated to the thermodynamical force Seq — 3; and J; is the flux associated
to the thermodynamical force —Beqpleq + B ft;-

The generalized entropic pressure is given by

(X, ) = logtr (8x P00 i iodot ¥ [ Tido))
Recall that the equilibrium canonical correlation is

(AB)eq = [ " (5))s.

Proposition 3.14 implies the finite Green-Kubo formulas and finite time Onsager reciprocity relations for
energy and charge fluxes.
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Proposition 4.1 Suppose that (O, T{,,weq) is TRI with time reversal © satisfying ©(V;) = V;, O(H;) =

H; and ©(N;) = N; for all j. Then
I 1/t s
sio=ox (7 [ex@uas)| =3 [ @i (1-1
tJo X=0 ¢ t
1

t
St =0 (7 [ x(@pas)
0

4.12)

1 t 1 t
L= 0 (3 [ ox(@ots)| =5 [ il

X=0 —t

(the indices e/c stand for energy/charge) and

ee __ Tee
jkt — ijta
cc __ ycc
jkt — ijt7
ec __ gce
gkt — Hkjt-

The special structure of open quantum systems allows for a further insight into linear response theory.
Consider the auxiliary Hamiltonian

n

1
Hyx = Hy — jieqN — . > (XGHj + Xni;N;),

ed 4

and note that

— 1 e_BeqHX7

wyx =
Zx

where Zx = tr(e”Peafx). Hence, wy is the Beq-KMS state of the dynamics 7% generated by the Hamil-
tonian Hx. By Equ. (4.3) one has

e . 1
1tHVerltHV — e ﬂeq(HX"FPt)’

wxt = ¢€
Zx

where

1 t t
Pt = —67 Z (XJ/ (I)j(—s)ds + Xn+]/ L73‘(_S)C18> .
eq j 0 0
We conclude that wx is the KMS state at inverse temperature 3. of the perturbed dynamics generated by

Hx + P,. Moreover, the perturbation satisfies P, = O(X) as X — 0. Applying the perturbation expansion
(2.32) and the formula for the coefficient by (A) derived in Exercise 2.14, we obtain

1 .
wxt(A) =wx(A) — ﬂcq/o wx (Pt(T;ﬁe“(A) - wX(A))) ds + O(1X|?).
Since wx = weq + O(X) and P, = O(X), one has

wx (P 1(A) — wx (A))) = weq (Pi(m3 " (A) — weq(A4)) ) + O(1X[?)
(
= Weq (PtT;ﬁeq(A)) — weq (P)weq(A) + O(|X2).
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From the fact that weq(Ps) = Weq(P;) = 0 and weq(Jjs) = wWeq(J;) = 0 we deduce weq(P;) = 0. Since
Fisfon( ) — o= PeaHy—iieaN) goeal HY =ea) 4 O(X),

and [P, N] = 0, we can further write,

1 .
wxt(A) = wx (A) — Beq /O Weq (PtT‘lfﬁeq(A)) ds + O(IX ). 4.13)

By Duhamel’s formula one has

Ny 9Hx

_(Beq_s)(HV_NeqN) d
X ¢ %

Beq
8Xke_ﬁeqHX |X:O — / e_S(HV_Meq
' 0

X=0
from which one easily derives

(Hi|A — weq(A))eq forl <k <mn,

9, A)lx=0 =
XkWX( )|X 0 { <Nk-‘A*Weq(A)>eq forn+1§kg2n

Finally, (4.13) yields that for 1 < k < n,

t
O (A)|x—0 = (Hi|A — weq(A))eq + / (B A, eqds,
0
(4.14)

t
O, 0w (A0)] x—0 = (Ni|A — o (A)yeq + / (Tl A eqdls.
0

These linear response formulas hold without time reversal assumption and for any observable A € O.
Under the assumptions of Proposition 4.1, wx is TRL. If A = ®; or A = J; then wx (A) = 0. This implies
Ix,wx(A)|x=0 = 0for k = 1,...,2n, and (4.14) reduces to the Green-Kubo formulas (4.12). Using
(4.14) it is easy to exhibit examples of open quantum systems for which finite time Onsager reciprocity
relations fail in the absence of time reversal.
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Chapter 5

The thermodynamic limit
and the large time limit

Apart from Section 5.1 and the first part of Section 5.6 which should be accessible to all readers, this
section is intended for more advanced readers and may be skipped on first reading.

We shall describe, typically without proofs, the thermodynamic limit procedure and how one extends
the results of the last two sections to general quantum systems. We shall also discuss the large time limit
for infinitely extended quantum system.

5.1 Overview

From a mathematical point of view, the dynamics of a finite quantum system (O, 7%, w) and that of the
finite classical harmonic chain of Chapter | are very similar: both are described by a linear quasi-periodic
propagator. In particular, the limit

Jim w(r'(A)),

does not exist, except in trivial cases. However, the Cesaro limit

T
wy(A) = lim l/ w(tt(A))dt, 5.1
T 0

exists for all A € O and defines a steady state w of the system.

Exercise 5.1.

1. Show that for a finite quantum system (O, 7%, w) with Hamiltonian H, the limit (5.1) exists and that
the limiting state w_ is described by the density matrix

wi= Y P\(HwP\(H).
A€sp(H)

2. For A € Oget, set 4 = i[H, A]. Show that
w+(®A) = 07
for any A. Conclude that, in particular, the mean entropy production rate vanishes,

wi(o) = tlg(r)lo w(Th) =0.

3. Show that the same conclusions hold if the system is infinite (i.e., the Hilbert space /C is infinite
dimensional) but confined in the sense that its Hamiltonian H has purely discrete spectrum.
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Thus, in order to obtain a thermodynamically non-trivial steady state — with non-vanishing currents and
strictly positive entropy production rate — we need to perform a thermodynamic (TD) limit before taking
the large time limit (5.1). In other words, some parts of the system, e.g., the reservoirs of an open system,
have to be infinitely extended.

There are two difficulties associated with the TD limit: the first one is to describe the reference state
of the extended system, the second one is to define its dynamics. These problems have been extensively
studied in the 70’ and have led to the algebraic approach to quantum statistical mechanics and quantum
field theory. Algebraic quantum statistical mechanics provides a very attractive mathematical framework
for the description of infinitely extended quantum systems.

In algebraic quantum statistical mechanics an extended system is described by a triple (O, 7¢, w), where
O is a C*-algebra with identity 1 (recall Exercise 2.1), w is a state (i.e., positive normalized linear func-
tional on ©) and 7t is a C*-dynamics, that is, a norm continuous group of *-automorphisms of . The
triple (O, 7t,w) is often called quantum dynamical system'. The observables are elements of O, w de-
scribes the initial thermodynamical state of our system and the group 7! describes its time evolution. The
observables evolve in time as A; = 7¢(A) and the states as w; = w o T°.

Infinitely extended systems of physical interest arise as TD limit of finite dimensional systems. There
is a number of different ways the TD limit can be realized in practice. In the next section we describe one
of them that is suitable for spin systems and quasi-free or locally interacting fermionic systems.

5.2 Thermodynamic limit: Setup

One starts with a family {Qps} apren of finite quantum systems described by a sequence of finite dimen-
sional Hilbert spaces Ky, algebras Oy ,,, Hamiltonians Hj; and faithful states wys. ops is the entropy
production observable of Q. In the presence of control parameters X € R™ (Hjs x and wys, x depend
on X), ®, x denotes a chosen flux relation. The number M typically corresponds to the “size" of Q.
For example, Qs could be a spin system or Fermi gas confined to a box [— M, M| of the lattice Z¢.> The
limiting infinitely extended system is described by a quantum dynamical system (O, 7%, w) satisfying the
following:

(A1) For all M there is a faithful representation 75s : Ox,, — O such that
M (O/CM ) C TMm+1 (OKI\/I+1 )

(A2) Oy = Uy (Ox,,) is dense in O. The elements of O, are sometimes called local observables
of O.

(A3) For A € Ooe, limpr_yo0 war 0 7y (A) = w(A) and
li om(A) =144
Mgnooﬂ-MOTMOﬂ-M( ) =71"(A),
where the convergence is uniform for ¢ in compact intervals of R.

(A4) limp; 0o mar(opr) = o, exists in the norm of O. o is the entropy production observable of
(0,7, w).

(A5) In the presence of control parameters X, limps_, oo o (®ar,x) = ®x exists in the norm of O. ® x
is a flux relation of (O, 7%, wx),

ox =Y X;0.
j=1

'Such quantum dynamical systems are suitable for the description of spin systems or fermionic systems. In the case of bosonic
system, O is a W*-algebra, w is a normal state, and ¢ is weakly continuous. We shall not discuss such systems in these lecture notes
(see, e.g.. [Pi]).

2For continuous models one may need to slightly modify this setup. For example, in the case of a free Fermi gas on R, M =
(L, &), where L is the spatial cut-off, £ is the energy cut-off, and M — oo stands for the ordered limit limy,_, o limg_, o, see
Exercise 6.4. The extension of our axiomatic scheme to this more general setup is straightforward.
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(A6) Forp € [1,00] and o, t € R the limit
erp(@) = m enrep(a),

exists and is finite. In the presence of control parameters, the limit

er(X,Y) = lim en(X,Y),

exists and is finitefor all ¢ € Rand X, Y € R".

The verification of (A1)—(AS5) in the context of spin systems and Fermi gases is discussed in virtually
any mathematically oriented monograph on statistical mechanics (see, e.g., [ 1). For such systems, the
proof of (A6) is typically an easy exercise in the techniques developed in 70’s (see Exercise 6.9 below). In
some models e; ,(a)/e; (X, Y") may be defined/finite only for a restricted range of the parameter o/ (X,Y")
and in this case the fluctuation theorems need to be suitable modified (this was the case in our introductory
example of a thermally driven harmonic chain!).

In what follows we assume that (A1)—(A6) hold. For reasons of space and notational simplicity we shall
assume from the onset that all quantum systems Q are TRI. Also, we shall discuss only the TD/large time
limit of the functionals eps 2 () and ear (X, Y).

5.3 Thermodynamic limit: Full counting statistics

The reader should recall the notation and results of Section 3.5 where we introduced full counting statistics.
We have

6M’27t(a) = eM,2,t(1 — a) = log/ eitmﬁdPM’t(gb),
R

where [P, ; is the probability distribution of the mean rate of entropy change associated to the repeated
measurement process described in Section 3.5.
By (A6),
ez(a) = lim epo4(a),
M — o0

exists for all ¢t and «. The implications are:

Proposition 5.1 (1) The sequence of Borel probability measures {Ppr .} converges weakly to a Borel
probability measure Py, i.e., for any bounded continuous function f : R — R,

lim / FdPy, = / #dP,.
M—oo Jp R

(2) Forall o € R,
eg(a) = log/ e_t“¢dIPt(qb).
R

(3) eq2i() is real-analytic and
ez (a) = eg (1 — ). (5.2)

(4) All the cumulants of Py, converge to corresponding cumulants of Py. In particular,

t
Onea,1(a)]a=0 = —/ w(os)ds < 0.
0

(5) Lett : R — R be the reflection t(¢) = —¢ and P, =P, ot the reflected measure. The measures P,
and P, are equivalent and
dPy(¢) 44
=e "%, 5.3)
dP;(¢)
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The limiting probability measure [P, is called full counting statistics of the infinitely extended system
(O, ¢, w). Relations (5.2) and (5.3) are finite time Evans-Searles symmetries.

Recall that Py ; is related to the modular structure of Qs Prre = QFf,, where QY is the spectral
measure for

W, tlwhars

1
—ZlogA
Tt

and the vector £,,,,. Our next goal is to relate P; to the modular structure of the infinitely extended systems
(O, %, w). We start with a brief description of this structure assuming that the reader is familiar with the
topic.

(1) Let (H,, 7, W) be the GNS-representation of O associated to w. M, = 7, (O)"” denotes the en-
veloping von Neumann algebra. A vector £ € H,, is called cyclic if 9,,¢ is dense in ,, and separating if
A¢ =0 for A € M, implies A = 0. &, is automatically cyclic. The state w is called modular if £, is also
separating. We assume w to be modular.

(2) The anti-linear operator S,, : A&, — A*¢, with domain 91,,&,, is closable. We denote by the same

letter its closure. Let S, = J A&/ ? be the polar decomposition of S,,. J is the modular conjugation,
an anti-unitary involution on H,,, and A, is the modular operator of w. A, has a trivial kernel and
¢\ (A) = AT AAZ™ is a group of *-automorphism of 901, the modular group of w.

(3) The set H, = {AJAE, | A € M} (cl denotes the closure in H,,) is the natural cone. It is a self-dual
cone in H,,. A state v on O is called normal (or, more precisely, w-normal) if there exists a density matrix
p on H,, such that v(A) = tr(pm,(A)). N, denotes the collection of all w-normal states. N, is a norm
closed subset of the dual O*. Any state v € N, has a unique vector representative £, € H, such that
v(A) = (& |mw(A)E). &, is cyclic iff it is separating, i.e., iff v is modular.

(4) Let v € N, be a modular state. The anti-linear operator Syjw + A&y = A*E,, is closable on M, &, and

we denote by the same letter its closure. This operator has the polar decomposition Sy, = J Ail/f), where
J is the modular conjugation introduced in (2) and A, > 0 is the relative modular operator of v w.r.t. w.

(5) The Rényi relative entropy of order o € R of a state v w.r.t. w is defined by

log(gw\Ag“wgw) ifv e N,

—00 otherwise.

Sa(Vw) = {

Its relative entropy w.r.t. w is defined by

S(vlw) = { (Eullog Ay &y)  ifv e Ny,

—00 otherwise.

To link the modular structure of the finite quantum systems Qj, to that of (O, 7t w), in addition to
(A1)-(A6) we assume:

(A7) Letd}, ., be the modular group of wy,. Then for all A € Oyqc,
lim m,omy o, omy(A) =, om,(A),

M—o0

and the convergence is uniform for ¢ in compact intervals of R.

Again, the verification of (A7) for spin/fermionic systems is typically an easy exercise. Given (Al)-
(A7), we have:

Proposition 5.2 (1) Let Q' be the spectral measure for —+1og A, |, and &,. Then Q' = P.
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(2) limps— o0 Sal 1) = Sa(wi|w) and limpr—so0 S(war,t|lwar) = S(wi|w). In particular,

swmaz—élwwm

The proof of the last proposition is somewhat technical and can be found in [ ].

Finally, we link e ;(cv) and the full counting statistics P, to quantum transfer operators. To avoid
introduction of the full machinery of the Araki-Masuda LP-spaces we shall focus here on the special case
described in Exercise 3.8 (this special case covers open quantum systems). Suppose that the finite quantum
systems Qs have the following additional structure:

(A8) Hpr = Hpro + Vg, where [Hpy o, wpr] = 0 and
li [) =
Jim v (Var) =V,
in the norm of O. Moreover, for any a > 0,

sup V)| < 0. (5.4)

nglu
|| <a,M

(A8) is essentially an assumption on the structure of the model and is easily verifiable in practice.
(A3), (A8) and perturbation theory imply that the dynamics T}W’O generated by Hjs o converges to the
C*-dynamics ’7'5, i.e., that for A € Oy and uniformly for ¢ in compact intervals,

li LA) = 7L (A).
Mlgl 7TM07'1v10°7TM( ) =T0(A)

Clearly, w o ¢ = w. The assumption (5.4) and Vitali’s theorem ensure that the map
R >t ¢l (m,(V)) € My,
has an analytic continuation to the entire complex plane and that for z € C,

Jim 7, om0 Sy (V) = G o, (V).

Let Ky be the standard Liouvillean of (O, 7, w). Kj is the unique self-adjoint operator on H,, satisfying
mu(Th(A)) = et om, (AT, QHog —
forallt € Rand A € O. For a € R we set
Ly = Ko+ ma(V) = Joi® 2 (m, (V).

L 1 is a closed operator with the same domain as K. Except in trivial cases, L 1 is not self-adjoint unless
a = 1/2. Ly = K is the standard Liouvillean of (O, 7%, w), i.e., the unique self—adjomt operator on H,,
such that ' . .

ﬂ_w(Tt(A)) _ eltK(A)e_ltK7 eltKHJr _ H+’
forallt €« Rand A € O.

The following result, which is of considerable conceptual and computational importance, is the exten-
sion of Exercise 3.8 to the setting of infinitely extended systems.

Proposition 5.3 Forallt and a,
—itL 1

62,15(0‘) = (£w| & Ew)

The extension of the results of this section to the multi-parameter/open quantum system full counting
statistics is straightforward.
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5.4 Thermodynamic limit: Control parameters

By (A6), the limit
e(X,Y) = lim epn(X,Y),
M—o0

exists for all £ and X, Y € R". The basic properties of e;(X,Y") are summarized in:

Proposition 5.4 (1)

t
e(X,Y) = esx/p |:S(V|wx)—|-Y~/0 V((sz)ds] .
v wx

(2) The function R™ 3 Y +— e,(X,Y) is convex and real analytic.

() e(X,Y) = (X, X — Y).

“ )
dv,er(X,Y)|,_, = /0 wx (@))ds,

t t
k j k j
v XV )ly—g = [ (@189, e —x (@0, ox(9L,)) dads

These results are the extension of Proposition 3.12 to the setting of infinitely extended systems. The only
difference is that, for simplicity of the exposition, we have exploited the time reversal in the formulation of
the results.

The proof of Proposition 5.4 can be found in [ ] and we restrict ourselves to several comments.
Part (3), the generalized finite time Evans-Searles symmetry, is of course an immediate consequences of
the same property of the functionals ejr (X, Y). The convexity of Y +— ¢,(X,Y") follows in the same
way (note that convexity also follows from (1)). The most natural way to prove the remaining parts is to
use Araki’s perturbation theory of the KMS/modular structure (this theory is, in part, an extension of the
results of Section 2.10 to general von Neumann algebras). The Kubo-Mari inner product @921 \<I>§?)52>wx
in Part (4) is formally similar to its finite-dimensional counterpart. It is a part of the modular structure
that for all A, B € M, , the function ¢ — (&, |[A*¢, (B)&wy ) has an analytic continuation to the strip
—1 < Im z < 0 which is bounded on continuous on its closure. Then

1
k 1 k —iu ]
(@) [0 Yoy = / (Eure [T (DY) )or 1 (e (8] ) )l

The finite time linear response theory for family of infinitely extended systems (O, 7%, wx) can be
developed along two complementary routes. We shall use the same notational conventions as in Section
3.10: wg = w, 19 = 7, 9 = P. Since

1 [t 1
(Px): = Z/ wx (Pxs)ds = gVYet(Xa Y)|y=o,
0

we have the following:

Proposition 5.5 Suppose that the map (X,Y) — e;(X,Y) is C? in an open set containing (0,0). Then
the finite time kinetic transport coefficients

Ly = Ox, <‘I)g§)>t|X:o = O0x,0v,et(X,Y) x=y=o,

satisfy :
(H

I ;
Ljj = f/ (@F)|pL))y (1 — |S|) ds.
2/, t
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(2) Ljkt = Ly;t and the quadratic form determined by L] is positive definite.

Given Proposition 5.4, the proof of Proposition 5.5 is exactly the same as the proof of its finite dimensional
counterpart (Proposition 3.14 in Section 3.10).

A complementary route is based on the thermodynamical limit of the finite time finite volume linear
response theory. This route is both technically and conceptually less satisfactory and we shall not discuss
it here.

5.5 Large time limit: Full counting statistics

To describe fluctuations of PP; as ¢ — oo we need to assume:

(A9) The limit

ez 4+ () = lim —eq (c
2.+(a) = lim —ep (@),
exists for v in some open interval Z containing [0, 1]. Moreover, the limiting entropic functional

ez2,+ () is differentiable on Z.

The verification of (A9) (and (A10) below) is the central step of the program. Unlike (A1)—(AS8), which
are typically easily verifiable structural/thermodynamical limit properties of a given model, the verification
of (A9) is usually a difficult analytical problem.

The quantum Evans-Searles fluctuation theorem for the full counting statistics follows from (A9) and
the Girtner-Ellis theorem. We describe its conclusions. Without loss of generality we may assume that 7
is centered at & = 1/2 (recall that we assume the system to be TRI).

Proposition 5.6 (1) ez 4 () is convex on Z, the Evans-Searles symmetry

ez +(a) = ez (1 — a),

holds, and
5.(0)=—1lim E =—1 15 =—1 L d
e2+(0) = = lim Be(9) = — lim 3S(wilw) = = fim 2 | w(os)ds.
The non-negative number (o), = —eb , (0) is called the entropy production of (O,7",w). Notice
that (o) + = 0 iff the function ez (o) = 0 for a € [0, 1].
) Let
6 =supey , (o) = — inf €5 , (a).
acz a€l
The function
I(5) = — inf (a5 + 3.4 (a0),
is non-negative, convex and differentiable on'| — 6,0[. 3 1(s) = 0 iff s = — (o) and the Evans-

Searles symmetry implies
I(—s)=s+I(s).
The last relation is sometimes called the Evans-Searles symmetry for the rate function.
(3) For any open set J C| —6,0],

.1 :
Ay plosBl) == )

3If < oo, then I(s) is linear on | — oo, —6] and [f, oo|.
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The interpretation of the quantum ES theorem for the full counting statistics is similar to the classical case.
The full counting statistics concerns the operationally defined “mean entropy flow" across the system. Its
expectation value converges, as ¢ — 00, to the entropy production (o), of the model. Its fluctuations
of order 1 are described by the theory of large deviations. The specific aspect of the ES theorem is that
the time reversal invariance implies the universal symmetry of the rate function which in turn implies that
the “mean entropy flow" is exponentially more likely to be positive then negative, i.e., the probability of
violating the second law of thermodynamics is exceedingly small for large ¢.

We now describe schematically how Proposition 5.3 can be used to verify the key Assumption (A9).

(i) In typical situations where spectral techniques are applicable the standard Liouvillean K has purely

absolutely continuous spectrum filling the real line except for finitely many embedded eigenvalues of
finite multiplicity. This is precisely what happens in the study of open quantum systems describing a
finite quantum system S coupled to an infinitely extended reservoir R. Typically, R will consists of
several independent sub-reservoirs R; which are in thermal equilibrium at inverse temperatures [3;
and chemical potentials /i, but we do not need at this point to specify further the structure of R. The
reservoir system is described by C*-dynamical system (Og, 7, wr ) Where wy, is stationary for the
dynamics 75 and assumed to be modular. Let (Hg,7R,&r) be the corresponding GNS represen-
tation and let Kz be the corresponding standard Liouvillean. Since wg is steady, Krér = 0. We
assume that apart from a simple eigenvalue at 0, K’z has purely absolutely continuous spectrum fill-
ing the entire real line. This assumption ensures that R has strong ergodic properties and in particular
that (O, 7h ,wr ) is mixing, i.e., that

lim wR(AT%(B)) = wr(A)wr(B),

[t]—o00

for A, B € Og. In the simplest nontrivial case, S is a 2-level system, described by the Hilbert space
C? and the Hamiltonian ¢® (the third Pauli matrix). Then the standard Liouvillean of the joint but
decoupled system S + R acts on the Hilbert space H = C? ® C? ® Hx and has the form

Ko=0®91-19¢®)01+1 Kx.

This will be precisely the case in the Spin-Fermion model which we will discuss in Section 6.5. For
simplicity of exposition, we assume in the following that the point spectrum of K is {—2,0,2},
where the eigenvalues £2 are simple and O is doubly degenerate. The rest of the spectrum of Ky is
purely absolutely continuous and fills the real line, see Fig. 5.1.

Figure 5.1: The point spectrum of the uncoupled standard Liouvillean K. The spectrum of the transfer
operator L1 is contained in the grey strip.

(i) An application of the numerical range theorem yields that the spectrum of L 1 is contained in the strip
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{z|[Im 2| < M,}, where

M, = [ 2 (m (V)] + (V)]

Thus, the resolvent (2 — L 1)~ is an analytic function of z on the half-plane Im z > M,,.
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(iii)

(iv)

)

By using complex deformation techniques one proves that for some x> 0 and all vectors &, n in
some dense subspace of H the functions

2= (El(z = L)"'),

have a meromorphic continuation from the half-plane Im z > M, to the half-plane Imz > —p.
This extension has four simple poles located at the points e («), e(«), e1(«), where e(«) is the pole
closest to the real axis, see Fig. 5.2. For symmetry reasons e(«) is purely imaginary. These poles
are resonances of L 1, or in other words, eigenvalues of a complex deformation of L 1. They can
be computed by an gpplication of analytic perturbation theory. For this purpose it is convenient to
introduce a control parameter A € R and replace the interaction term V' with AV. The parameter A
controls the strength of the coupling and analytic perturbation theory applies for small values of A.
One proves that given ap > 1/2 one can find A > 0 such that for o — 1| < ag and [A| < A, p can
be chosen independently of o and A and that the poles are analytic functions of «. In particular, for
small enough,

e(a) =1Y  E,(A)a",

where each coefficient E,, () is real-analytic function of A.

—2 0 +2
ec(a)
e(a)e eei(a)  *erla) 7

Figure 5.2: The resonances of the transfer operator L 1 .

One now starts with the expression

—itL 1

te)= [ el - 1))

where a > M,,. Moving the line of integration to Re z = —u/, where 1/ €]0, p[ is such that the poles
of the integrand are contained in {z|Im z > —u'} for |A| < A and |a — 3| < ap, and picking the
contribution from theses poles one derives

(Eule ae,) = e (1 4 R(t, ), (5.6)

where R(t, ) decays exponentially in ¢ as t — oo. It then follows that

dz
2mi’

(Eule (5.5)

ez +(a) = tlirgo 2627t(0‘) = —ie(a).

A proper mathematical justification of (5.5) and (5.6) is typically the technically most demanding part
of the argument.

Recall that
Dae2, 1 ()la=o = B1 = —(0) 4 = — lim E(¢).

t—o0

Given (iv), an application of Vitali’s theorem yields

2 = —im1 t twao —w(os)w(o sdu
s (0)omo = By = 1 /0/0“”) (02)w(0))dsd

t—oo t

= lim t(Ee(¢?) — (Ee(6))2).

t—o0
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(vi) The arguments/estimates in (iv) extend to complex «’s satisfying o — %| < g and one shows that
for a real,

. . —itL
lim [ e VIO )P, () = lim *VED (g le W E,) =e B
t—oo Jp t—o0

Hence, the central limit theorem holds for the full counting statistics PP;, that is, for any interval [a, ],

. 1 | L
tli)rgchF’t ((U>++tE2[a,b]> :E/a e~z du.

The above spectral scheme is technically delicate and its implementation requires a number of regularity
assumptions on the structure of reservoirs and the interaction V. On the positive side, when applicable
the spectral scheme provides a wealth of information and a very satisfactory conceptual picture. In the
classical case, the quantum transfer operators reduce to Ruelle-Perron-Frobenius operators and the above
spectral scheme is a well-known chapter in the theory of classical dynamical systems, see Section 5.4 in
[JPR] and [Ba].

5.6 Hypothesis testing of the arrow of time

Theorem 2.19 clearly links the p = 2 entropic functional to quantum hypothesis testing. This link, some-
what surprisingly, can be interpreted as quantum hypothesis testing of the second law of thermodynamics
and arrow of time: how well can we distinguish the state w; = w o 7%, from the same initial state evolved
backward in time w_; = w o 7t ? More precisely, we shall investigate the asymptotic behavior of the
minimal error probability for the hypothesis testing associated to the pair (w_¢,w;) as t — oo.

We start with the family of pairs {(wns,—¢,war,) |t > 0}. Again, the thermodynamic limit M — oo
has to be taken prior to the limit ¢ — oc.

Given their a priori probabilities, 1 — p and p, the minimal error probability in distinguishing the states
war,—t/2 and wyy 4/ is given by Theorem 2.19,

(L—tr|(1 = p)war,—t/2 — Pwareal) -

DO =

D p(t) =

We set
Qp(t) = lzi\;[ILiEOf D p(t), D, (t) = limsup Dy (1),

M—o0

and define the Chernoff error exponents by

.1 - ) 1 _
d,= htrgérolf n log D,,(t), d, = limsup n log D (2).

t—o0

Theorem 5.7 For any p €]0,1],
d,=d, = ag[lof,l] ez 4 ().

Moreover; since the system is TRI the infimum is achieved at o« = 1/2.

Proof. We first notice that

[u—y

D p(t) (I—tr|(1 —p)wmo —pwal)-

T2
Theorem 2.19 (3) and the existence of the limiting functional es 4 () (for M — o0) yield the inequality

log Dy(t) < ez,2¢(c) + (1 — &) log(1 — p) + alogp,
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for all « € [0, 1]. Dividing by ¢ and letting ¢ — oo we obtain the upper bound

d, < inf :
p < nf eai(a)

For finite M, a lower bound is provided by Proposition 2.26,

1.
Dj\l,p(t) Z 5 mln(p7 1 _p) PM,t(]OaOOD7

where Py, is the full counting statistics of Qps. As we have already discussed, the convergence of
em,2.t(a) to ez () as M — oo implies that Ppr; converges weakly to the full counting statistics P,
of the extended system. The Portmanteau theorem ([Bi1], Theorem 2.1) implies

l}bﬁnj&fPM-f(]O’ oo[) > P(]0, oof),
and hence . .
D,(t) = B min(p, 1 — p) P¢(]0, 0of) > B min(p, 1 — p) P(]0, 1[).

Assumption (A9) and the Girtner-Ellis theorem (or more specifically Proposition A.4 in Appendix A.2)
imply
1
lim inf — logP;(]0, 1) > —¢(0),

t—oo
where
¢(s) = sup(sa — ez 4 (a)).
acR
Since
¢(0) = — inf ez 4 (a) = — aér[})fl] e2,+(a),

(recall that, by Proposition 3.3, ez 4 () < 0 for a € [0,1] and e3 4 (o) > 0 otherwise) we have

1
d, > liminf — (—log 2 + min(log p, log(1 — p)) +log(P(]0,1[))) > inf es ().
t—oo ¢ acl0,1]

The convexity and the symmetry ez 4 (1 — ) = e 1 (o) imply that the infimum is achieved at o« = 1/2.
U

Note that the above result and its proof link the fluctuations of the full counting statistics P; as t —
oo to Chernoff error exponents in quantum hypothesis testing of the arrow of time. The TD limit plays
an important role in the discussion of full counting statistics since its physical interpretation in terms of
repeated quantum measurement is possible only for finite quantum systems. However, apart from the
above mentioned connection with full counting statistics, quantum hypothesis testing can be formulated
in the framework of extended quantum systems without reference to the TD limit. In fact, by considering
directly an infinitely extended system, one can considerably refine the quantum hypothesis testing of the
arrow of time. In the remaining part of this section we indicate how this can be done, referring the reader
to [ ] for proofs and additional information.

(i) We start with an infinitely extended system Q described by the C*-dynamical system (O, 7%, w). The
GNS-representation of O associated to the state w is denoted (H,,, 7., &, ), and the enveloping von
Neumann algebra is M, = 7,,(O)”. We assume that w is modular. The group 7, o 7¢ extends to a
weakly continuous group 7% of *-automorphisms of 97,,. With a slight abuse of notation we denote
the vector state (| - &) on 9, again by w. The triple (M, 7/, w) is the W*-quantum dynamical
system induced by (O, 7%, w). We denote w; = w o 7. The quantum hypothesis testing of the arrow
of time concerns the family of pairs {(w_¢,w;) | > 0}.

(ii) Consider the following competing hypothesis:
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(iii)

(iv)

)
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Hypothesis I : Q is in the state Wi /25
Hypothesis I : Q is in the state w_; /25

We know a priori that Hypothesis I is realized with probability p and II with probability 1 — p. A test
is a self-adjoint projection P € 91, and a result of a measurement of the corresponding observable
is a number in sp(P) = {0, 1}. If the outcome is 1, one accepts I, otherwise one accepts II. The error
probability of the test P is

Dy(wiy2,w_tj2, P) = pwija(1 — P) + (1 —p) w_y/2(P),
and
Dp(wt/27w7t/2) = i%po(wt/27w7t/2aP)a
is the minimal error probability.

The quantum Neyman-Pearson lemma holds:

1
Dp(wt/QaW—t/2) = Dp(wt/27w—t/2a Popt) = 5(1 —[[(1 - P)w—t/z - Pwt/2||)

. %(1 — (1 = p)w — pur]),

where P, is the support projection of the linear functional ((1—p)w_; /2 —pwy/2) + (the positive part
of (1 — p)w_;/2 — pwy/2). Just like in the classical case, the proof of the quantum Neyman-Pearson
lemma is straightforward.

Let p,, |, be the spectral measure for A, |, and §,,. Then

1 . « - (&3
§m1n(p, 1 _p)th|w([1voo[) < Dp(wt/Qawft/2) <p (1 _p)l ‘(fw‘Awt\wfw)

The proof of the lower bound in exactly the same as in finite case (recall Proposition 2.26). The
proof of the upper bound is based on an extension of Ozawa’s argument (see the proof of Part (3) of
Theorem 2.19) to the modular setting and is more subtle, see [Og].

Assuming (A9), i.e., that
1 o
6274_(0[) = tlggo E 10g(€w|Awt|w€w)a

exist and is differentiable for «v is some interval containing [0, 1], then a straightforward application
of the Girtner-Ellis theorem yields

1 .
tli)rglc n log Dp(wi, w—¢) = aér[lof,l} ea, 4 (). (5.7)
Results of this type are often called quantum Chernoff bounds. Our TRI assumption implies that the
infimum is achieved for a« = 1/2.
The Chernoff bound (5.7) quantifies the separation between the past and the future as time ¢ 1 co.
Taking p = 1/2 and noticing that
1
2
where sy (¢) is the support projection of the positive linear functional (w; — w_;)4 on M, we see
that the Chernoff bound implies

(2 = llwrjz = woiy2ll) = weja(s-(8/2)) + w_r/2(s4(t/2)),

1
limsup = logw(s—(t)) <2 inf ez 1(s),
t—oo t s€[0,1]

1
limsup - logw_;(s4(¢)) <2 inf eg 4 (s).
t—oo U s€[0,1]

Therefore, as ¢t T oo, the state w; concentrates exponentially fast on s, ()91, while the state w_;
concentrates exponentially fast on s_ (¢)01,,.
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(vi) In the infinite dimensional setting one can introduce other error exponents. For € R the Hoeffding
exponents are defined by

— 1 1
B(r) = inf {limsup n logwy/2(1 — P) ‘ 1imsup¥ logw_;/2(P) < r} ,

{Pt} t—o0 t—o0o
B(r) = inf <lim mf 10 wi/o(1 — P, lim su 10 w_¢/2( P ,
50) = jut {imint {logua(1 - P) | timsup }logoya(P) < 1

1
B(r) = inf {lim glogwt/g(]l—Pt) ‘ hmsup logw_;/9(FP;) < —r},

{P:} |t—o0 t—00

where the infimum are taken over families { P; }+~¢ of orthogonal projections in 9., subject, in the
last case, to the constraint that lim;_, .. t~! log w, /2(1 — P;) exists.

The Hoeffding exponents are increasing functions of r, B(r) < B(r) < B(r) < 0, and B(r) =
B(r) = B(r) = —oo if r < 0. The functions B(r), B(r), B(r) are left continuous and upper
semi-continuous. If (A9) holds and (o) > 0, then for all » € R,

B(r) = B(r) = B) =b(r) = - sup =T =22

see [ ]. Results of this type are called quantum Hoeffding bounds.
Let » > 0 and let P, be projections in 21, such that

1
lim sup : logw_¢/2(P;) < —

t—o00

The Hoeffding bound asserts
hmlnf loth/Q(]l — P,) > b(r).
Moreover, one can show that for a suitable choice of F;,
o1
tlggo n logwy/o(1 — P;) = b(r).

Hence, if w_, /5 is concentrating exponentially fast on (1 — P;)00,, with an exponential rate < —r,
then w5 is concentrating on P9, with the optimal exponential rate b(r).

(vil) For e €]0, 1] set

w_ts2(Pr) < 6} )

t—o00

B, = {Ptf} {hmsup logwy /(1 — P)

t—o00

B, = {Pf} {hmlnf —logwy s (1 — ) ’ w_y/2(P) < e} , (5.8)

1
Be = inf { lim glogwt/z(]l —Pt) ‘ w,t/g(Pt) < 6},

{Pt} t—o00

where the infimum is taken over families of tests { P, }¢~o subject, in the last case, to the constraint
that lim;_, o t ! logwy /2 (1 — P,) exists. Note that if

Bi(e) = i%f{wt/g(l — P)|w_¢/2(P) < €},
then

1 —
liginf;logﬁt(e) =B, lim sup flogﬁt( ) = B..

t—o00
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We also define

= . . 1 .
B= 1nf} {hmsupt logwy /(1 — P) ‘ tliglow_t/Q(Pt) = 0} ,

t—o0

. o1 .
B = inf {htrgggft logwy/2(1 — P) ‘ tgrgow_t/Q(Pt) = 0} ,

{Pt} t—o0

. 1 .
B = inf { lim glogwt/z(]l —P) ’ tlgrolow,t/g(Pt) = O},

(5.9)

where again in the last case the infimum is taken over all families of tests { P; }+~¢ for which the limit

limy o0t~ logw; (1 — P;) exists.

We shall call the numbers defined in (5.8) and (5.9) the Stein exponents. Clearly, B, < B. < B,,

B<B<B,B,<B,B.<B, B. < B.If (A9) holds, then for any ¢ €]0, 1],

see [ ]. Results of this type are called quantum Stein Lemma.

Stein’s Lemma asserts that for any family of projections P; such that

sup w_+(P;) < 1,
>0

one has

o1
hglol‘}f n logw:(1 — Py) > —2(0) 4,
and that for any > 0 one can find a sequence of projections Pt(é) satisfying (5.10) and

1
lim — logw (I - POy < —2(0), +6.

t—o00

(5.10)

Hence, if no restrictions are made on P, w.r.t. w_; except (5.10) (which is needed to avoid trivial
result), the optimal exponential rate of concentration of w; as ¢ 1T co is precisely twice the negative

entropy production.

5.7 Large time limit: Control parameters

We continue with the framework of Section 5.4. The infinitely extended systems (O, T7x,wx ) are param-
eterized by control parameters X € R". Recall the shorthands w = wy, 7 = 79, ® = Pg, etc. We
assume

(A10) For all ¢ > 0 the functional (X,Y) — e:(X,Y’) has an analytic continuation to the polydisk
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Ds. ={(X,Y) € C" x C"| max; | X,| < d, max; |Y;| < ¢} satisfying

sup
(X,Y)€eDs, .
t>0

1
et(X,Y)‘ < 00.

In addition, the limit

1
€+(X,Y) = fli>rgo ;et(X?Y)a

exists for all (X,Y) € Ds. N (R™ x R™).
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As in the case of (A9), establishing (A10) for physically interesting models is typically a very difficult
analytical problem. Although (A10) is certainly not a minimal assumption under which the results of this
section hold (for the minimal axiomatic scheme see [ ]), it can be verified in interesting examples and
allows for a transparent exposition of the material of this section.

A consequence of the first part of (A10) is that finite time linear response theory holds for (O, 7%, wx).
By Vitali’s theorem, e (X,Y") is analytic on D;s . and we have:

Proposition 5.8 (1) For any X € R™ such that max; | X;| < 4,

1
<(I>X>+ = lim E/ wx ((I)Xs) ds = Vy€+<X,Y)|y:0.
0

t—o0

(2) The kinetic transport coefficients defined by

Lj, = 0x, <<I>§§)>+ | x =0,
satisfy

1 [t . |s]
o= 1 =1 (k)1 ()
ij thm ijt thm 5 /t<q) |<I>S > (1 7 )ds.

(3) The Onsager matrix [Ljy] is symmetric and positive semi-definite.

(4) Suppose that w is a (1, 3)-KMS state for some 3 > 0 and that (O, T,w) is mixing, i.e., that

lim w(ATY(B)) = w(A)w(B),

t—o0

forall A, B € O. Then

I ,
o — lim = k)
Liji tliglo 5 _tw(CID o)ds.
Parts (1)—(3) are an immediate consequence of Vitali’s theorem (see Proposition B.1 in Appendix B). Part
(4) recovers the familiar form of the Green-Kubo formula under the assumption that for vanishing control
parameters the infinitely extended system is in thermal equilibrium (and is strongly ergodic). For the proof
of (4) see [ ] or the proof of Theorem 2.3 in [ ].

5.8 Large time limit: Non-equilibrium steady states (NESS)

Consider our infinitely extended system (O, 7%, w) and suppose

(A11) The limit
lim w(A) = wy(A4),

t—o0

exists for all A € O. wy is a stationary state called the NESS of (O, 7t, w).

Albeit a hard ergodic-type problem, the verification of (A11) is typically easier then the proof of (A9) or
(A10). In fact, in all known non-trivial models satisfying (A9)/(A10), the proof of (A11) is a consequence
of the proof of (A9)/(A10).

The structural theory of NESS was one of the central topics of the lecture notes [ ] and we will not
discuss it here. In relation with entropic fluctuations, the NESS plays a central role in the Gallavotti-Cohen
fluctuation theorem. We will not enter into this subject in these lecture notes.
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5.9 Stability with respect to the reference state

In addition to (A11), one expects that under normal conditions any normal state v € N, is in the basin of
attraction of the NESS w, i.e., that the following holds:

(A12)
lim v(7'(A)) = wi(4),

t—o00

forallv € N, and A € O.

As for (A11), in all known non-trivial models, (A12) follows from the proofs of (A9)/(A10).

(A12) is a mathematical formulation of the fact that under normal conditions the NESS and more
generally the large time thermodynamics do not depend on local perturbations of the initial state w. More
specifically, in the context of open quantum systems, if the coupling V' is well localized in the reservoirs,
then in the TD limit (the R;’s becoming infinitely extended and the system S remaining finite), the effect
of including V" in the reference state becomes negligible for large times. In other words, the product state w
used in Sections 4.1—4.2 and the state wx of Section 4.3 become equivalent for large times. More generally,
the system loses memory of any localized perturbation of its initial state.

In a similar vein one expects that, under normal conditions, the limiting entropic functionals do not
depend on local perturbations of the initial state. To illustrate this point, we consider the functional e, ()
(and assume that the reader is familiar with Araki’s perturbation theory of the KMS structure). w has a
modular group ¢/, and if wyy is the KMS state (at temperature —1) of the perturbed group <!, for some
W € Oyt (Which, for finite systems, amounts to set wyy = el°8«“+W /tr(elos @+ W) then

_ w(ABw ()
W = e ()

where the cocycle Eyy is given by (2.28). The set of states {wy | W € Ogeie } is norm dense in the (norm
closed) set \V,, of all normal state on O. Since £, |, = W, one has £y, by = luwjw +7 (W) =W
and hence

wi(0w) = Wi (Ouwy ).

Similarly, for « €]0, 1[, Proposition 3.8 holds for infinitely extended systems (this can be proven either via
a TD limit argument or by direct application of modular theory), and so

. 1
Jim = (eoc (@) = o piwny (@) = 0.

Hence,
exists iff

exists and the limiting entropic functionals are equal. Similar stability results for other entropic functionals
can be established under additional regularity assumptions [ 1.

5.10 Full counting statistics and quantum fluxes: a comparison

In this section we shall focus on open quantum systems described in Chapter 4. For simplicity of notation
we set the chemical potentials 11; of the reservoirs R ; to zero and deal only with energy fluxes @ .

Full counting statistics deals with the mean entropy/energy flow operationally defined by a repeated
quantum measurement. It does not refer to the measurement of a single quantum observable. In fact,
surprisingly, it gives a physical interpretation to quantities which are considered unobservable from the
traditional point of view: the spectral projections of a relative modular operator. Full counting statistics is
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of purely quantum origin and has no counterpart in classical statistical mechanics. In contrast, the energy
flux observables ®; introduced in Chapter 4 arise by direct operator quantization of the corresponding
classical observables. In this section, we take a closer look at the relation between full counting statistics
and energy flux observables.

For open quantum systems, the TD limit concerns only the reservoirs R ;, the finite quantum system S
remaining fixed. As discussed in the previous section, if we are not interested in transient properties then
we may assume, without loss of generality, that ws is the chaotic state (2.15). After the TD limit is taken,
the infinitely extended reservoir R ; is described by the quantum dynamical system (O, T;, w;), where w;
is a (7, B8;)-KMS state on O;. The joint system R = Ry + - - - + R, is described by

n

(O, Th,wr) = Q)(0;,75,w;).

j=1
The joint but decoupled system S + R is described by (O, 7, w) where
0 =0s®0g, =1t @7k, W= ws ®WR.

The interaction of S with R; is described by a self-adjoint element V; € Os ® O;. The full interaction
V=> ; V; and the corresponding perturbed C*-dynamics i, finally yield the quantum dynamical system
(O, 7i,,w) which describes the infinitely extended open quantum system. Without further saying, we
shall always assume that all relevant quantities are realized as TD limit of the corresponding quantities
of a sequence {Qps} of finite, TRI open quantum systems. In particular, that is so for the energy flux
observables

(I)j = 5]'(‘/]')1

where 0; is the generator of 7 (’T; = ¢!, and the entropy production observable
g = — Z ﬁj o g5
J

of the infinitely extended open quantum system (O, 7{,, w).

Recall Section 4.2. Let P, be the full counting statistics of the infinitely extended open systems
(O, 7},,w). The probability measure P, arises as the weak limit of the full counting statistics P/ ; of
Q) (this realization is essential for the physical interpretation of ;). Thus, it follows from Relations
(4.7), (4.8), that

(€j)+ = Jim Ei(e5) = —fjw(®;), (5.11)

Dres jb = lim ¢ (Et(ejer) — Et(ej)Ee(er))

=8 [ o (@) — e (0)) (B — o (@1) . (5.12)

— 00

Here, w. is the NESS of (O, 7{,,w) and we have assumed that the correlation function

t= wi (25 — wi(P5)) (Pt — wi (Pr)))

is integrable on R.
The fluctuations of P; as ¢ — oo are described by a central limit theorem and a large deviation principle.
The central limit theorem holds if for all o € R",

n

lim [ Vi e dp, (e) = / ¢ dpp, (€),

t— 00 R
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where up,,.. is the centered Gaussian measure on R™ with covariance Dyes = [Dies ji]. To discuss the
large deviation principle, recall that

ez () = 1og/ e ' EdP,(e).

Suppose that
1
ez+(a) = lim —ei(a),

exists for a € R™ and satisfies the conditions of Girtner-Ellis theorem (Theorem A.6 in Appendix A.3).
Then for any Borel set G C RY,

. | . 1 _
- Seilﬁf(‘c) I(s) < htrr_1>1£f n logP; (G) < h?iilolp n logP; (G) < — selcrll(fG) I(s),
where

I(s)=— aingn (s-a+ei(a)).

Note that I(s) satisfies the Evans-Searles symmetry
I(—s)=1-s+1I(s).

For some models the central limit theorem and the large deviation principle can be proven following the
spectral scheme outlined in Section 5.5 (for example, this is the case for Spin-Fermion model, see Sec-
tion 6.5). For other models, scattering techniques are effective (see Section 6.6). In general, however,
verifications of the central limit theorem and the large deviation principle are difficult problems.

Let now

Xj = Beq _/Bja

be the thermodynamic forces. The new reference state wx is the TD limit of the states wys, x of the finite
open quantum systems Q. Alternatively, wy can be described directly in terms of the modular structure,
see [ ]. wx is modular and normal w.r.t. w. The entropy production observables of (O, T‘t/, wx) is

ox — Zqu)j.
j=1

The NESS wx + also depends on X and, for X = 0, reduces to a (7, Beq)-KMS state wpg,, . Let e;(X,Y")
be the entropic functional of the infinitely extended system (O, 1{,,wx) and suppose that (A10) holds.
Then Proposition 5.8 implies that the transport coefficients

Ljx = 0x,wx+(®;)|x=0,
are defined, satisfy the Onsager reciprocity relations
Ljx = Lyj,

and the Green-Kubo formulas -
1
ij = 5/ Wﬁeq(q)jq)kt)dt-

—0o0
Here we have assumed that the quantum dynamical system (O, 7{,, wg,, ) is mixing and that the correlation
function t + wp, (PP, ) is integrable.
The linear response theory derived for quantum fluxes ®; immediately yields the linear response theory
for the full counting statistics. Indeed, it follows from the formulas (5.11) and (5.12) that

Lics kj = 0x,,(€j)+|x=0 = —BeqLrj = ——5—Dies,kj| x=0-

Beq
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The last relation also yields the Fluctuation-Dissipation Theorem for the full counting statistics. The Ein-

stein relation takes the form )

Lfcs,kj = _Wchs,k:j |X:0-
€q

and relates the kinetic transport coefficients of the full counting statistics to its fluctuations in thermal equi-
librium. The factor — Be_ql is due to our choice to keep the entropic form of the full counting statistics in the
discussion of energy transport. In the energy form of the full counting statistics one considers E;(—¢;/3;)
and then the Einstein relation hold in the usual form Ly r; = %chs7kj |x=0. The disadvantage of the
energy form is that the Evans-Searles symmetry has to be scaled. The choice between scaling Einstein
relations or scaling symmetries is of course of no substance.

At this point let us introduce a “naive" cumulant generating function

Enaive,t(a) = logw (e‘ X el o ‘b-“ds) 7 (5.13)
and the “naive" cumulants

Xt(kla tey kn) = 8211 to azzenaivc,t(a”zxzﬂ

The function epaive ¢ () is just the direct quantization of the classical cumulant generating function for the
entropy transfer

t
St = (Sia ceey S};) = / (7/61@187 ey 7ﬂn,(1)ns)d5;
0

in the state w. Except in the special case & = a1, epaive,: () cannot be described in terms of classical
probability, i.e., enaivet(c) is not the cumulant generating function of a probability measure on R™. If
o = «l, then

enaive,t(al) =logw (ea Jo Usds) — log/ etasd,LLw7t(S),
R

where, in the GNS-representation of O associated to w, y,, ; is the spectral measure for t1 fot 7w (0s)ds
and &,,.

In general the functional epaive,; () will not satisfy the Evans-Searles symmetry, i.e., €naive,t(1 — ) #
€naive,t (), and the same remark applies to the limiting functional

enaive,+(a) = tli>rgo ;enaiveﬂt(a)a

which, we assume, exists and is differentiable on some open set containing 0. One easily checks that the
first and second order cumulants satisfy

8%- Enaive,t ()| a=0 = 5aj e2,t(a)|a=0,
Oy, O €naive,t (0) |a=0 = Oa, Oa,; €2,1 () |a=0,
and if the limits and derivatives could be exchanged,
Oa; Enaive, + ()| a=0 = Oa, €2, 4+ ()] a=o0,
Oy, O naive, + () |a=0 = Oa;,0a; €2, + ()| a=0-
We summarize our observations:

(i) The first and second order cumulants of the full counting statistics are the same as the corresponding
“naive” quantum energy flux cumulants, i.e., the direct quantization of the classical energy flux cumu-
lants. In general, higher order “naive” cumulants do not coincide with the corresponding cumulants
of the full counting statistics.
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(ii)

(iii)

114

The limiting expectation (g), and covariance Dg.s of the full counting statistics are expressed in
terms of the NESS w, and quantized fluxes ®;. They are direct quantization of the corresponding
classical expressions. The same remark applies to the central limit theorem, linear response theory
and fluctuation-dissipation theorem. If the full counting statistics is restricted to the entropy pro-
duction observable, then its limiting expectation, covariance and central limit theorem coincide with
those of the spectral measure for ¢! fg osds and w.

We emphasize: to detect the difference between full counting statistics and the “naive” cumulant
generating function one needs to consider cumulants of at least third order. In Chapter 6 we shall
illustrate this point on some examples of physical interest.



Chapter 6

Fermionic systems

In this section we discuss non-equilibrium statistical mechanics of fermionic systems and describe several
physically relevant models to which the structural theory developed in these lecture notes applies.

6.1 Second quantization

We start with some notation. Let Q be a finite set. EQ(Q) denotes the Hilbert space of all function f : Q —
C equipped with the inner product

(flg) = F(@)g(a)-

q€EQ
The functions {d, |¢ € Q}, where d,(z) = 1 if z = ¢ and 0 otherwise, form an orthonormal basis for
¢2(Q). Any Hilbert space of dimension | Q| is isomorphic to £*(Q).

Let the configuration space of a single particle be the finite set Q. Typically, Q will be a subset of some
lattice, but at this point we do not need to specify its structure further. The Hilbert space of a single particle
is K = (2(Q). If » € K is a normalized wave function, then |¢)(q)|? is probability that the particle is
located at ¢ € Q. The configuration space of a system of n distinguishable particles is Q™ and ¢2(Q") is
its Hilbert space. For ¢ = (q1,...,qn) € Q" we set 0y (z1,...,2,) = 0g, (21) -+ - 8, (xn). {04 ¢ € Q"}
is an orthonormal basis of £2(Q™). Let K®™ be the n-fold tensor product of K with itself. Identifying
84 With 64, ® -+ ® &, we obtain an isomorphism between ¢2(Q™) and K®". In the following we shall
identify these two spaces.

If ¢v € K®" is the normalized wave function of the system of n particles and 1, ...,1, € K are
normalized one-particle wave functions, then |(1[1)1 ® - - - ® 1, )|? is the probability for the j-th particle to
be in the state 1;, j = 1, ..., n. According to Pauli’s principle, if the particles are identical fermions, then
this probability must vanish if at least two of the 1;’s are equal. It follows that the multilinear functional
F(1,...,¢n) = (Y1h1 ® -+ @ 1y,) has to vanish if at least two of its arguments coincide. Hence, for
J#k

F(¢1a7¢3+¢ka7¢k+¢ga7¢n) =0,

for any 11, ..., v, € K. By multilinearity, this is equivalent to

0:F(wla"'ijW'wd)k;“'51;[}”)+F(d}l)"'aqzbja"'aq/}ja"'awn)
+F(wla'"7wk}a"'awk7"'7'¢)n)+F('(/}17"'7'(/)k7"'awja"'awn)
:F(¢17"'7wj7"’>1/}k7"'71/}71)+F(’¢17"'7¢ka"'7¢j7"'7¢n)7

and we conclude that F' must be alternating, i.e., , changing sign under transposition of two of its arguments,

F(z/}lw"aqzbja"'a'l/)ka"'7wn):7F(w17"'7wk>-~'7wj7'"adjn)' (61)

Let S,, be the group of permutations of the set {1,...,n}. For 7w € S,, we set

7T'(/J1®®wn:w7r(1)®®w7r(n)7
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and extend this definition to K®™ by linearity. One easily checks that this action of S,, on X®" is unitary.
If 7 = (jk) = w1 is the transposition whose only effect is to interchange j and k, then (6.1) is equivalent
to

<7r¢|¢1 @ ® wn> = <w|7rw1 @ ® ¢n> = —<¢|¢1 @ ® wn>7

and so ) = —1p. More generally, if 7 is the composition of m transpositions, 7 = (j1k1) - - (Jmkm),
then we must have 7y = (—1)™4. Any permutation 7 € S, can be decomposed into a product of
transpositions and the corresponding number (—1)™, the signature of =, is denoted by sign(w) (one can
show that sign(7) = (—1)* where ¢ is the number of pairs (j, k) € {1,...n} such that j < k and
m(7) > m(k)). We conclude that the wave function v of a system of n identical fermions must satisfy

m = sign(m)y,
for all m € S,,. More explicitly, for 7 € S,, the wave function 1 satisfies
V(Tr(1)s -+ s Tr(ny) = sign(m)(z1, ..., ). (6.2)

Functions satisfying (6.2) are called completely antisymmetric. The set of all completely antisymmetric
functions on Q" is a subspace of £2(Q™) which we denote by ¢2 (Q").

Exercise 6.1.

1. Show that the orthogonal projection P_ on ¢ (Q") is given by
1 .
P = o ZS: sign(m)m.
TESH

Hint: use the morphism property of the signature, sign(m o 7') = sign(n)sign(n’), to show that
mP_ = sign(m)P-.

2. Define the wedge product of 91, ..., 1, € K by
PrA Ay =VRIP 1 ® -+ @ ¢y,

and show that

(Y1 Ae- Apldr A=+ A dn) = det[(il))]1<ij<n- (6.3)

Hint: use Leibnitz formula

det A = Z Sign(ﬂ-)Alﬂ'(l) co Anﬂ'(n)a
TES,

for the determinant of the n x n matrix A = [A;].

3. Denote by K" the linear span of the set {11 A -+ A, |¥1,...,%, € K}. Suppose thatn < d =
|Q| = dim K and let {¢1, ..., P4} be an orthonormal basis of K. Prove that

{dju ANy, 1< g1 < -+ < jn < d},

is an orthonormal basis of " and deduce that

dim K™ = <dim ]C> .

n

In particular, the vector space K" 4™ X is one dimensional. For n > dim K the vector spaces K\" are
trivial, that is, consist only of the zero vector.
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According to our identification of X®" with ¢2(Q"), the subspaces ¢_(Q") and K" coincide (they
are both the range of the projection P_). We denote by

I, (K)=K"",

the Hilbert space of a system of n fermions with the single particle Hilbert space K. By definition, I'o(K) =
C is the vacuum sector.
For A € Ok andn > 1, letI',,(A) and dI',, (A) be the elements of Or (k) defined by

Cr(A) (b1 A Aibp) = Ay A== N Ay,

For n = 0, we define I'y(A) to be the identity map on I'g(K) and set dT'g(A) = 0. One easily checks the
relations

T, (A%) = Th(A), T (A*) = dT, (A),
Fn(AB) = Fn(A)Fn(B)a dry, (A + /\B) =dl, (A) +Adl, (B)7 6.4
aTu(4) = TP D(e) = 9T (),

t=0

for A, B € Ok and X\ € C. The Fermionic Fock space over K is defined by

dim K

(k) = @D ra(k),
n=0

i.e., as the set of vectors ¥ = (1)g, 91, ...) with ¢, € T',(K) and the inner product

dim K

(U|®) = > (Wuldn).

n=0

Clearly,

dim IC dim I dim K ‘
dimT(K) = > dimT,(K) = ) ( N ):lem’?
n=0 n=0

A normalized vector U = (19,1, ...) € I'(K) is interpreted as a state of a gas of identical fermions with
one particle Hilbert space K in the following way. Setting p, = [|%n||% ¢n = ¥n/|¥n|| and @™ =
(0,...,¢n,...,0) one can write ¥ as

dim K
U= Z \/pn(I)(n)v
n=0
a coherent superposition of:

e astate (O with no particle. Up to a phase factor, () is the so called vacuum vector

Q= (1,0,...,0),

e astate d(1) with 1 particle in the state ¢; € K;
e astate ®(2) with 2 particles in the state ¢ € I'y(K), etc.

Since the vectors ®(™) are mutually orthogonal, p,, is the probability for n particles to be present in the
system. Pauli’s principle forbid more than dim KC particles. With a slight abuse of notation, we shall
identify the n-particle wave function ¢ € I',,(K) with the vector ® = (0, ..., ¢,...,0) € I'(K).
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For A € O one defines I'(A) and dI'(A) in Op k) by

dim K dim IC

= P ), )= @ dra(4)
n=0 n=0

Relations (6.4) yield

[(A*) = T(A)*, dT(A*) = dI'(A)*,
I'(AB) = T(A)[(B), dT(A + AB) = dI'(A) + \TI'(B), (6.5)
d
dl'(A) = —TI'(e* , [(e?) = eI,
(4) & (e) . (e”)

Note that T'(A) is invertible iff A is invertible and in this case I'(A)~! = I'(A~!). Moreover, one easily
checks that
[(A)dT(B)T(A™Y) =dl(ABA™Y). (6.6)

In particular, one has
A Ar(B)e M) = T(e*)dI(B)I (e~ ™) = dT'(e"* Be™"4).
which, upon differentiation at t = 0, yields
[dT'(A),dl'(B)] = dI'([4, B]). 6.7)

The reader familiar with Lie groups will recognize A — T'(A) as a representation of the linear group
GL(K) in I'(K) and B — dI'(B) as the induced representation of its Lie algebra Oj.

Example 6.1 N = dI'(1) is called the number operator. Since

N|Fn(IC) =nlr, k),
N is the observable describing the number of particles in the system.

We finish this section with a result which will be important in Section 6.3.
Lemma 6.1 Forany A € Ox, one has
tr(T'(A)) = det(1 + A).

Proof. We first prove the result for self-adjoint A. Let {11, ...,%4} be an eigenbasis of A such that
ij = )\j’(/Jj. Since

d
det(1 + A) :H L+ = > JIM™

JcA{1,...,d} keJ

SOOND VD | EED DD DR VRS

n=0 jc{1,...,d} keJ n=0 1<j1<---<jn<d
|J|=n
and Aj, <o A, = (05, A Ay [Tn(A)wy, A+ At;,), it follows from Part 3 of Exercise 6.1 that
> N N =t o) (Ta(A)).
1<ji<<jn<d
Hence,

det(1 + A) Z trp, ( A)) =tr(I'(A)),
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holds for self-adjoint A. If A is not self-adjoint, we set

A+ A* A— A
= +A .

AR 2 2i

Clearly, A(\) is self-adjoint for A € R and so det(1 + A(X\)) = tr(I'(A(A))). Since both sides of this
identity are analytic functions of A (in fact, polynomials), the identity extends to the value A = i for which

AG) = A. O

6.2 The canonical anticommutation relations (CAR)
For ¢, 91, ...,¢, € K we set
a* ()2 =1,
a (W) (W1 A Ap) = Ay A Ay,

By linearity, a* (1) extends to an element of Opx) which maps I',,(K) into I';, ;1 (K) and in particular
Taim x(K) to {0}. Since a*(v)) acts on a state ¥ by adding to it a particle in the state ), it is called creation
operator. We note that

¢1 A /\wn = a*(wl)a*(d]n)g

Similarly, one defines an element a (1)) of Op(x) by

a(¥)Q =0,
a(¥)Pr = (YlP1)Q,

a(@) (W A Atpn) =Y (D)) hr A AU A At

j=1

a(y) maps I',,(K) into I',,_1 (K) and in particular I'y(XC) to {0}. Since it acts on a state ¥ by removing
from it a particle in the state 1), it is called annihilation operator. In the sequel, a* (¢) denotes either a*(v))
or a(1)). The basic properties of creation and annihilation operators are summarized in

Proposition 6.2 (1) The map ¢ — a*(v) is linear and the map ¥ — a(v)) is anti-linear.

() a(¥)" = a*(¥).
(3) The Canonical Anticommutation Relations (CAR) hold:

{a(¢),a(9)} = {a”(¥),a™(9)} =0, {a(y),a"(9)} = (¥|H)1,

where { A, B} = AB + BA denotes the anticommutator of A and B.
(4) The family of operators %A = {a® () | € K} is irreducible in O ), that is,

A = {B S OF()C) ‘ [A, B] = 0 for all Ae Ql} = (C]lp(}c)
®) lla* (@)l = lla(@)Il = 4]
(6) Forany A € Ok,
[(A)a™ () = a"(AY)L(A),  T(A")a(AY) =a(y)I(A").

In particular, if U is unitary,
L(U)a™ ()L (U*) = a® (U).
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(7) Forany A € Ok,

[dI'(A),a*(¥)] = a*(Ay),  [dT'(A), a(y)] = —a(A™).
In particular, if A is self-adjoint,

i[dT(A), a ()] = o (1Av)

®) a*(@)a(y) = dT'(|¢) ().
(9) Forany A € Ok and any orthonormal basis {11, ... ,1q} of K one has

d
= > (0| Adr)a” (¥;)a(tr).

7,k=1
Proof. (1) is obvious from the definitions of the creation/annihilation operators.

(2) follows from Laplace formula for developing the determinant of a n x n matrix A along one of its row,
det A =" (=1)" Ay det Agj), (6.8)

where A(;;) denotes the matrix obtained from A be removing its i-th row and j-th column. Indeed, by (6.3)

(LA ANpp_a]a™ (V) 1 A App) = (@" ()L A N pp1|thr A== Aiby)
=(WAGLAANDp_i|V1 A Aby,)
=det A,

where

([b1) (Wlp2) - (Plbn)
(p1]b1) (Prlb2) - (rlthm)

A = . . . .
(Gnaltr) (bnoslbn) - (Gurltn)

Developing the determinant of A along its first row and using the fact that

det Aqjy = (p1 A+ A 1|t A -+ /\}&/\ c ANy,
we obtain

det A = Z DY) (d1 A A foathr A ABGA - Athy).

Hence,
n

@) P A A =Y (=D (@Bl n A AV A A,
j=1
and we conclude that a(¢)* = a* ().

(3) The relation {a*(¢),a*(¢)} = 0 follows from the fact that ) A ¢ A 1)1 - - - A 1), changes sign when
1 and ¢ are exchanged. The relation {a(),a(¢)} = 0 is obtained by conjugating the previous relation.
Finally, adding the two formulas

a*(@)a(@)r A Ay =D (=1 A1 A AV A= At
j=1

a()a* (@)1 A -+ Ahy = (=) B)1 A=+ Aty
+Z J+27/)|1/) ¢/\w1 .../\b&j\/\.../\qu
j=1
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yields the last relation {a*(¢), a(y)} = (¥[¢);) 1.
(4) We first notice that if U € T'(K) is such that a(¢))¥ = 0 for all ¢ € K, then

(hn A+ A1 [B) = (@ (Yn)thno1 A AL |B) = (b1 A Aty |a(on)T) =0,

from which we conclude that ¥ L T, (K) for n > 1. Hence, ¥ € I'(K), i.e., ¥ = Q) for some A € C.
Let B € Op(xy commute with all creation/annihilation operators. It follows that a(¢)) BQ = Ba(1)Q = 0
for all ¢y € K. From the previous remark, we conclude that BQ) = A for some A € C. Then, we can write

B Ao Apn = Ba™ (1) - - a* ()2
= a"(¢1) - a” (Yn) BQ
=Aa" (Y1) @ (Yn) = MNPy A - Ay,
which shows that B|r, () = Alp, (k) and that B = Alp (k).
(5) is obvious if ¢y = 0. The CAR imply

(a*(¥)a(¥))?

a*(Y)({a(y),a" (¥)} — a* (¥)a(y))a(y)
= (Yl¥)a* (¥)a(y) — a* (¥)*a(y)?
= [[¥]*a* (¥)a(¥),

from which we deduce [la*(¥)a(¥)[|* = ||(a*()a(s))*|| = [¢[*la*(¥)a(y)||. If & # 0 then a(s)) # 0
and hence ||a*(1))a(v)|| # 0 so that we can conclude

la(@)II* = lla*(@)]I* = lla* (@)a(@)ll = [[¥]*.
(6) It follows from the definitions that I'(A)a* () = T'(A)yY = Ay = a* (AyY)T'(A)Q and
L(A)a* ()1 Ao Apy = T(A)P APr Ao+ Ay
— AP A Ay A A Aty
= a”(AP)L(A)pr A= Ay
Thus, one has T'(A)a*(¢)) = a*(Ay)T'(A). By conjugation, we also get I'(A*)a(Avy) = a(y)T(A*).

(7) It follows from (6) that
etdF(A)a* (1/}) = a* (etA¢)etdF(A) )

Differentiation at t = 0 yields the first relation in (7). The second is obtained by conjugation.
(8) The CAR imply

[a™(¢)a(v), a” (x)] = a”(d)a(¥)a” (x) — a” (x)a" (¢)a(¥)
= a’(#)a(y)a”(x) + a”(#)a” (x)a(v)
= a*(9){a(¥),a”(x)} = (Y1x)a™(¢)-

On the other hand, (7) implies that [dT'(|¢)(¥|), a*(x)] = (¥|x)a*(¢). Thus, setting B = a*(¢p)a(y)) —
dT'(|¢)(w|) we get [B,a*(x)] = 0 for all x € K. Interchanging ¢ and 1), we obtain in the same way
[B,a(x)]* = —[B*,a*(x)] = 0, and so [B,a(x)] = 0. Hence B € 2’ and (4) implies that B = A1 for
some A € C. Since B = 0 we conclude that B = 0.

(9) Follows from (8) and the representation A = Z?,k:l (| A |;) (. O

Given a Hilbert space K, a representation of the CAR over K on a Hilbert space H is a pair of maps

Y b)), = b(Y),

from K to Oy satisfying Properties (1)—(3) of Proposition (6.2). Such a representation is called irreducible
if it also satisfies Property (4) with Op (k) replaced by Oy,. The particular irreducible representation ¢ —

a* (1) on T'(K) is called the Fock representation. We will construct another important representation of
the CAR in Sections 6.4 and 6.7.2.
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Proposition 6.3 Let K be a finite dimensional Hilbert space and 1) +— b (1) an irreducible representation
of the CAR over KC on H. Then, there exists a unitary operator U : T(KC) — H such that Ua™ ())U* =
b7 (1) for all ) € K. Moreover, U is unique up to a phase factor.

In other words, any two irreducible representations of the CAR over a finite dimensional Hilbert space are
unitarily equivalent. A proof of Proposition 6.3 is sketched in the next exercise.

Exercise 6.2. Let L 5 ¢ — b(y)) € Oy be an irreducible representation of CAR over the d-
dimensional Hilbert space K in the Hilbert space H. Denote by {x1, . .., X4} an orthonormal basis of
IC an set

d
N = Z b*(Xn)b(Xn)'
n=1

1. Show that 0 < N < d1 and Nb(tp) = b(¢))(N — 1) for any ¢ € K.
2. Let ¢ € H be a normalized eigenvector to the smallest eigenvalue of N. Show that b(v)¢ = 0 for
ally € K.
3. Set Hy = C¢ and denote by H,, the linear span of {b* (1) - - - b* (V)& | V1, . . ., ¥ € K}. Show
that H,, L H, forn # m and H,, = {0} forn > d.
Hint: show that N|y;, = nly .
4. Show that
(O (1) - - b" () I0" (401) - - 0™ (4, ) ) = det[(hi|v)5)]1<i i<
and conclude that the map 1 A+ - -Athy, — b* (1) - - - b* (1), ) $ extends to an isometry U : T'(K) — H.
5. Show that Ua™ (¢)U* = b# ().
6. Show that [UU*, b())] = 0 for all ¢ € K and conclude that U is unitary.

One can hardly overestimate the importance of the CAR. Indeed, as we shall see, they characterize
completely the algebra of observables of a Fermi gas with a given finite-dimensional one-particle Hilbert
space KC.

Proposition 6.4 A representation 1) +— b¥ (1) of the CAR over the finite dimensional Hilbert space K in
H is irreducible iff the smallest *-subalgebra of Oy, containing the set B = {b" () |1 € K} is Oy.

Note that the smallest *-subalgebra of Oy containing 8 must contain all polynomials in the operators
b (1)), i.e., all linear combinations of monomials of the form b¥ (31 ) - - - b7 (1. ). But the set of all these
polynomials is obviously a x-algebra. Hence, a representation 1 ~ b¥ (1) is irreducible iff any operator
on 7 can be written as a polynomial in the operators b*. We can draw important conclusions from this
fact:

1. Since the Fock representation ¢ +— a* (1)) is irreducible, any operator on the Fock space I'(K) is a
polynomial in the creation/annihilation operators a.

2. Any representation of the CAR over K on a Hilbert space H extends to a representation of the
x-algebra Op k) on H, i.e., to a x-morphism 7 : Opx) — Oy.

3. If the representation is irreducible, this morphism is an isomorphism.

To prove Proposition 6.4, we shall need the following result, von Neumann’s bicommutant theorem. A
subset A C O is called self-adjoint if A € 2 implies A* € 2 and unital if 1 € 2.

Theorem 6.5 Let K be a finite dimensional Hilbert space and 24 a unital self-adjoint subset of O. Then
its bicommutant A" is the smallest x-subalgebra of Ox containing 2.
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Proof. Denote by A the smallest x-subalgebra of Oy containing £, i.e., the set of polynomials in elements
of 2(. One clearly has A’ = 2" and hence A” = 2”. Thus, it suffices to show that A = A" (a x-algebra
satisfying this condition is a von Neumann algebra, and we are about to show that any finite dimensional
unital x-algebra is a von Neumann algebra).

Since any element of A commutes with all elements of A’ one obviously have A C .A"”. We must prove
the reverse inclusion. Let {11, ..., 1, } be a basis of K, {e1,...,e,} abasis of C" and set

U=> ;@ e H=KC"

Jj=1

To any A € O we associate the linear operator A = A ® 1 € Oy. It follows that A = {A| A € A} isa
«-subalgebra of Oy and AV = {A\I/ |A € .A} a subspace of 7. Denote by P the orthogonal projection

of 7 onto this subspace. We claim that P € A’. Indeed, for any A € A and ® € 7, one has AP® € AV,
and hence R R
AP® = PAPO®.

We deduce that AP = PAP for all A IS le\ and since .Z is self-adjoint, one also has
PA = (A*P)* = (PA*P)* = PAP = AP,

Since A is unital, so is .Z It follows that ¥ € ,Z\I/ and hence P¥ = U. Recall that X € Oy is described
by an X n matrix [X ;] of elements of Oy (see Section 2.3) via the formula

n

X(@@er) =Y (X)) @e;.

j=1

Consequently, one has A’ = {X = [X k) | X, € A’} Let B € A”. By the previous formula, Be A,
and so B commutes with P. We conclude that

BU = BPVU = PBV ¢ AU,
and so there exists A € A such that BU = AU, je.,
By = Ay,
forj =1,...,n. Weconclude that B = A € A. O

Proof of Proposition 6.4. Note that {b* (1)), b(z))} = |[1/||?1, so that any *-subalgebra of O containing
B = {b*(y) |y € K},

also contains the unital self-adjoint subset B =B U {1}. It follows that the smallest x-subalgebra of
O3, containing B coincide with the smallest *-subalgebra of O3 containing B. Moreover, one clearly
has 8’ = B’ and hence B” = 9B”. By the von Neumann bicommutant theorem, B” is the smallest
*-subalgebra of O3 containing 8. Now the representation ¢ — b¥ (1)) is irreducible iff B’ = C1, i.e., iff
B = Oy. O

Exercise 6.3. Let /C; and /C5 be two finite dimensional Hilbert spaces. Show that there exists a
unitary map U : T'(K; @ K2) — T'(K1) ® T'(K2) such that UQ = 2 ® Q and

Ua( @ U = a() © 1 + ™ ® a(¢).
Hint: try to apply Proposition 6.3.

Remark. Apart from a few important exceptions, the material of this and the previous section extends with
minor changes to the case where /C is an infinite dimensional Hilbert space. For example:
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1. The definition of the Fock space I'(K) has to be complemented with the obvious topological condi-
tion that ¥ = (o, ¢1,...) € D(K) iff |T]|2 = 32, oy 1¥n]|? < 0.

2. The definition of I';,(A) carries over to bounded operators A on K and ||T',(4)|| < ||A||™. Thus,
['(A) = @,>00(A) is well defined if:

e [[A] <1, and then [|[T'(A)| = sup,,>¢ [[Tn(A)|| = 1. In particular, if U is unitary, so is T'(U).

o A has finite rank m so that I',,(A) = 0 for n > m and then ||[I'(A)|| = sup,>¢ [|[Tn(4)] <
max(1, ||A]|™). In fact, using the polar decomposition A = U|A| together with Lemma 6.1,
one sees that T'(A) is trace class with ||T'(A)||; = trT'(JA]) = det(1 + |A]). By a simple
approximation argument, one can then show that I'( A) is well defined and trace class provided
A is trace class, and Lemma 6.1 carries over.

3. If A generates a strongly continuous contraction semi-group e*“ on /C, then dI"(A) is defined as the
generator of the strongly continuous contraction semi-group I'(e?4) on T'(K). In particular, if A is
self-adjoint, so is dI'(A). However, some care is required since dI"(A) is unbounded unless A = 0.
If A is bounded, the dense subspace I'gy, (K) = Uy >0(Pr<n 'k (K)) of I'(K) is a core of dI'(A) and
on this subspace, dT"(A) acts as in the finite dimensional case.

4. The definition of the creation/annihilation operators carries over without change. Parts (1)—(5) of
Proposition 6.2 hold with the same proofs while Parts (6)—(8) are easily adapted. Part (9) still holds
if A is trace class and it follows that ||dT'(A)|| < ||A]|1-

5. The unitary equivalence described in Exercise 6.3 still holds for infinite dimensional Ky and Ky
(prove it!).

Proposition 6.3 does not hold for infinite dimensional /C. In fact, there are many unitarily inequivalent
irreducible representations of the CAR over K. Also Proposition 6.4 and Theorem 6.5 do not hold for
infinite dimensional /C. In the latter, one has to replace “smallest *-subalgebra of O by “smallest weakly
closed *-subalgebra of Ok (see, e.g., Theorem 2.4.11 in [ ]). Proposition 6.4 has to be modified
accordingly: The representation v +— b# (1) in H is irreducible iff any bounded operator on H is a weak
limit of a net of polynomials in the elements of B.

6.3 Quasi-free states of the CAR algebra

We now turn to states of a free Fermi gas. Let T' € Ok be a non-zero operator satisfying 0 < 7" < 1. In
our context, we shall refer to 1" as density operator or just density. To such T' we associate density matrix

on I'(K) by
1 T

fo-u(r(i27))

As usual, we denote by the same letter the corresponding state on Op(xy. wr is called quasi-free state
associated to the density 7. Its properties are summarized in

where

Proposition 6.6 (1) If ¢1,...,0n, U1, ..., Uy € K, then
WT(a*((bn) o a*(¢1)a(¢1) T a(wm)) = Onm det[<wz|T¢j>]

In particular, wr(a*($)a(v)) = (Y|TP).
(2) log Zr = —logdet(1 — T) = —tr(log(1 — T)).
(3) wr(T(A)) =det(1+T(A—1)).
4) wr(dT'(A4)) = tr(TA).
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(3) S(wr) = —tr(TlogT + (1 —T)log(l — T)).
(6) wp, K wp, iff KerTy C KerTy, and then

S(wry |wr,) = tr (T1(log(T2) —1og(T1)) + (1 — T1)(log(1 — T3) — log(1 — T1))) -

Proof. (1) Weset Q =T(1 —T)~1, A =a*(¢,) - -a*(¢1)a(t1) - - - a(tb,, ) and note that

so that

By Proposition 6.2 (6), we have
eitNa*(qu)efitN _ a*(eitqﬁ ) _ elta*(¢]) eitNa(d)k) efitN _ a(eitd)k) _ e*ita(wk),

from which we deduce that eV A e~V = ¢it("=™) A and hence that wr(A) = 0 if n # m. We shall
handle the case n = m by induction on n. For n = 1, one has

= Z (@ (QO)T(Q)a(¥))
= Z7 '1((Q)a(¥)a* (Q¢))
= Z7 '2(D(Q)({a(¥), a* (Q9)} — a*(Qd)a(¥)))
(¥1Qd) — wr(a*(Qe)a(v))
from which we deduce that wz(a*((1 + Q)¢)a(¥))) = (|Q¢). Since (1 + Q) = (1 — T)~L, we finally
get

wr(a*(9)a(¥)) = (¥[Q(L —T)¢) = (Y|T¢).

Assuming now that the result holds for n — 1, we write

wr(a*(¢n) - -a*(p1)a(¥r) - a(n))
= Zp ' tr(T(Q)a™ (¢n) - - a*(¢1)a(ehr) - - a(thn))
—ZTltr<a*<Q¢nrQ> “(Pn1) - a*(Br)a(ir) - a(ihn))
= wr(a*(¢n-1) -+ a*(d1)a(¥n) - althn)a” (Qn)).

Making repeated use of the CAR,

a(hj)a™(Qdn) = (Vj|Qdn) — a™(Qdn)alh;),  a(¢;)a™(Qdn) = —a*(Qén)a”(¢5),

we move the last factor a*(Q¢,,) back to its original position to get
wr(a*(¢n) -+ a™(d1)a(r) -~ a(ihn)) = —wr(a™(Qdn) - - - a*(d1)a(y1) - - - a(yn))
+ Z D" (;1Qén)wr(a” (dn1) ---a* ($1)a(er) -~ @ty -~ a(thn))-

By the same argument as in the n = 1 case, we deduce

wr(a *(¢n)" a*(¢r)a(yr) - a(yn))
Z 1" (5| Thn)wr(a*($n-1) - a*(d1)a(y) - aty) -+~ a(yn)),

and the induction step is achieved by Laplace formula (6.8).
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(2) and (3) are immediate consequences of Lemma 6.1, (4) follows from (1) and Proposition 6.2 (9).
(5) We again set Q@ = T'(1 — T')~! and notice that

logI'(Q) = dI'(log Q),
so that, by (4),
S(wr) = —wr (log (27'T(Q))) = —wr(dl(log Q) — log Zr) = log Zr — tr (T'log Q) .
Using (2), we conclude that
S(wr) = —tr(log(1 —T)) — tr(T(log(T) — log(1 — 1)),

from which the desired formula immediately follows.

(6) We set Q; = T;(1 — T;)~! and notice that Ker Q; = Ker T}. It easily follows from Ker T} C Ker 15
that KerI'(Q)1) C KerI'(Q)2) and hence wp, < wr,. The remaining statement is proved in a similar way
as (5). O

Let h = h* € Oy be the one-particle Hamiltonian — the total energy observable of a single fermion.
The Hamiltonian of the free Fermi gas is
H =dr'(h).

Indeed, if {41, ..., %4} denotes an eigenbasis of h such that hy); = €;1);, then the state

U= a®(iy) - a" (¥5,)9,

describes n fermions with energies €, ..., ;, , and one has

HY = dT,(h)j, A= Ay, = (Z sjz.> v,
=1

The thermal equilibrium state at inverse temperature 5 € R and chemical potential ;1 € R is described by
the Gibbs grand canonical ensemble
e~ B(H—pN)
Bt = tr(e—PH=1N)Y

Since
e BH=—uN) _ (—=dl'(B(h—pl)) _ I‘(e—ﬁ(h—uﬂ))’

solving the equation
T

~B(h—p1) _ 1
¢ -7
for T we see that the density operator of a free Fermi gas in thermal equilibrium at inverse temperature /3
and chemical potential p is given by
Tppu = (14 P00,

T}, is commonly called the Fermi-Dirac distribution. Following the notation introduced in Section 2.9,
one has

E = pg . (H) = tr(hTp,,),
0= pl37lt(N) = tr(TB,u),
(6.9)
P(B, 1) = log tr(e™#H=#N)) — tr (log(1 + ¢4 )

S(B, 1) = S(ps,u) = B(E — po) + P(B, ).
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Exercise 6.4. The purpose of this exercise is to provide a complete discussion of the thermodynamic
limit of a 1D free Fermi gas starting from the description of a finite Fermi gas. The target system
is the ideal Fermi gas with one particle Hamiltonian 4 = k?/2 on the one-particle Hilbert space
K = L?(R,dk/27) in the thermal equilibrium state at inverse temperature (3 and chemical potential
L.

To describe the finite approximation, consider the operator

1
(hi)(@) = —5 3" (@),
on L?([-L/2,L/2],dz) with periodic boundary conditions ¢ (x + L) = 1 (z). hy is self-adjoint
with a purely discrete spectrum consisting of simple eigenvalues (k) = k2/2 with eigenfunctions
Yr(z) = L™Y2%e%® k€ Qr = {27j/L|j € Z}. The Fourier transform

. L/2 .
k) = (pxl) = \% / R

provides a unitary map from the position representation L?([—L/2, L/2]) to the “momentum" rep-
resentation ¢2(Q) such that m(k) = &(k)i(k). In what follows, we work in the momentum
representation and set Kz, = ¢2(Qp) and (hp)(k) = e(k)(k). Let & > 0 be an energy cut-
off, set Qp ¢ = {k € Qp |e(k) < £} and consider the free Fermi gas with single particle Hilbert
space K1 ¢ = ¢*(Qp.¢), and one-particle Hamiltonian (hr, ¢v)(k) = e(k)¢ (k). Let EL ¢, oL,
Pr, £(8, 1) be defined by (6.9).

1. Prove that

lim lim
L—soo E—oo L

Ere [  ek)  dk
= T+ ePE®=m 2

I lim 2&€ 1 dk
1m 1m = _
L—sooE—oo L oo 1+ eBe(k)—p) 27’

o Pre(Bu) [ ~(e(k)-y) I
A g ) s

— 00

2. A wave function ¢ € Ky, ¢ can be isometrically extended to an element of XC by setting

$(k) = VL Z V() X(e—r/L,e+n/L[(K),

£€Qr e

where x; denotes the indicator function of the interval /. Thus, we can identify Ky, ¢ with a finite
dimensional subspace of the Hilbert space K. Denote by 1; ¢ the orthogonal projection on this
subspace. Then I'(17, ¢) is an orthogonal projection in I'(XC) whose range can be identified with
I'(KL.g). Show that we can identify the equilibrium density matrix

[(eAlhr.e—p1))
PRl = (T (e—Phr.e—nD)))’

of the finite Fermi gas on I'(KCy, ¢) with the density matrix

. T Pl=mly; o)
PRaLE = D (e=Ph—1D 1, ¢))

on I'(C) in the sense that

tr (pasea () - a (Wn)a(ém) - -a(@1)) = tr (Farea’ () - a* (@n)a(@n) - a(@1))
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forall ¢1,...,¢%n, é1,...,0m € K g.
3. Show that, in I'(KC), the limit
~ ~ lim 3
PB,u,L 513010 PBw,L,E»

exists in the trace norm and that pg ,, 1, is a density matrix that can be identified with

[(e=Alhe—pl)y
P8 L = —B(hp—p1)))’
tr(I(e=Alhe—r1)))

on I'(KC). Show that

S — limﬁg%L = 0,
L—oo

i.e., the equilibrium density matrix disappears in the thermodynamic limit L — oo.

4. Show that,
D= U ]CL,Sv

L>0,>0

is a dense subspace of X and that for ¢, ¥ € D one has

/ > _pk)gk) dk

o1+ eBe(k)—p) % = <¢|T¢>,

lim lim tr(pg, . r.ea™(P)a(y)) =

L—o0 E—o0

where T = (1 + ef(h—1)—1,

5. Since we have identified K1, ¢ with a subspace of K, we can also identify the *-algebra O, . with
a subalgebra of the x-algebra Oy of all bounded linear operators on A. This identification is isometric

and
Ooo - U OICL,ga

L>0,€>0

is the *-algebra of all polynomials in the creation/annihilation operators a* (1), 1» € D. Show that
the limit

pp.u(A) = lim lim tr(ppL.e4),

o L—oo E—o0

exists forall A € O.
Hint: show that

lim lim tr(pg,u,r.ea" (1) - a* (¥n)a(dm) -~ a(¢1)) = On,m det[(d;|Tx)],

L—oo E—o0

forall ¢, ..., Un, d1,...,¢m € D.

6. Denote by O¢! the norm closure of O, in Ox (O is the C*-algebra generated by O..). Show
that for any A € O¢ and any sequence A,, € O, which converges to A the limit

pp.u(A) = nh_{réo pB.u(An),

exists and is independent of the approximating sequence A,,. The C*-algebra OC! is the algebra of
observables of the infinitely extended ideal Fermi gas and pg ,, is its thermal equilibrium state.

6.4 The Araki-Wyss representation

Araki and Wyss [ ] have discovered a specific cyclic representation of Or (k) associated to the quasi-
free state wp which is of considerable conceptual and computational importance. Although any two cyclic
representations of Or ) associated to the state wr are unitarily equivalent, the specific structure inherent
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to the Araki-Wyss (AW) representation has played a central role in many developments in non-equilibrium
quantum statistical mechanics over the last decade.

For the purpose of this section we may assume that 7' > 0 (otherwise, replace IC with RanT"). Then
the quasi-free state wr on Or (k) is faithful. Set

Haw = T'(K) @ T(K),

Qaw = Q2 ®Q,
baw (@) = a* (1 — 1)) @ 1 + ™ © a(T1/2y),
baw (¥) = a((1 = T)'?¢) @ 1+ ™ @ a"(T24),

where 1) denotes the complex conjugate of ¢ € K = (*(Q). For ¥ € I'(K), ¥ denotes the complex
conjugate of ¥ (defined in the obvious way). If A is a linear operator, we define the linear operator A by

A = A
Proposition 6.7 (1) The maps ¢ — bfw(i/J) define a representation of the CAR over IC on the Hilbert
space Haw.
(2) Let maw be the induced representation of (’)p(;g) on Haw. Qaw is a cyclic vector for this represen-
tation and
wr(A) = (Qaw|maw (4)Qaw), (6.10)
forall A € Or (k). In other words, Taw is a cyclic representation of Or ) associated to the faithful
state wr.

Proof. The verification of (1) is simple and we leave it as an exercise for the reader. To check that Q) zw
is cyclic, we shall show by induction on n 4+ m that each subspace D,, ,,, = I',,(K) @ T,,,(K) belongs to

Taw (Orxc))Qaw. For n +m = 1, we deduce from Ran (1 — T')'/2 = RanT /> = K that
D1 = {baw (¥)Qaw | ¢ € K}, Do,1 = {baw (¥)Qaw | ¢ € K}.
Assuming D,, ., C WAw(OF(;C))QAW for n +m < k, we observe that ¥ € D,, 1 ,,, can be written as
U=a"((1-T)"%) 1,
for some ¢ € K and ® € D,, ,,,. Equivalently, we can write

¥ = b (1~ 7)) - @

where &' = (—1)Y ® a(TV/2¢)® € Dy, 1,—1. It follows that ¥ € Taw (Or(ic))Qaw. A similar argument
shows that Dy, 11 C maw (Orx))Qaw. Hence, the induction property is verified for n +m < &k + 1.
Finally, (6.10) follows from an elementary calculation based on Equ. (6.3). U

The triple (Haw, Taw, Qaw) is called the Araki-Wyss representation of the CAR over K associated
to the quasi-free state wp. Since wy is faithful, it follows from Part (2) of Proposition 6.7 and Part 4 of
Exercise 2.15 that this representation is unitarily equivalent to the standard representation and hence carries
the entire modular structure. The modular structure in the Araki-Wyss representation takes the following
form.

Proposition 6.8 (1) The modular conjugation is given by
J(U1 @ W) = uly @ uly,

where u = e ™N(N-1)/2,
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(2) The modular operator of wr is
A, =T(") ® F(e_E),

where kr = log(T(1 — T)~1). In particular

log Ay, =dl(kr) ® 1 — 1 @ dI(kr).

(3) If wry, is the quasi-free state of density T > 0, then its relative Hamiltonian w.r.t. wr is

l =logdet (1 —T1)(1 —T)~ ") +dT'(kr, — kr),

wr, |wr

and its relative modular operator is determined by

log Ale lwr = log AwT + TAw (éle ‘wT).

(4) Suppose that the self-adjoint operator h commutes with T. Then the quasi-free state wr is invariant
under the dynamics 1t generated by H = dI'(h). Moreover, the operator

K=dI'(h)® 1 —1®dl'(h),
is the standard Liouvillean of this dynamics.

Remark. Since the x-subalgebra Oxw = ﬂAw(O[‘()C)) is the set of polynomials in the bﬁw, the dual

x-subalgebra Oy = JOawJ is the set of polynomials in the b;fw =J bfWJ . By Propositions 2.23 and
2.24, one has

Oaw V OfAW = O'HAW'

Proof. We set A = T'(e*7) ® I'(e *7) and s = ™. Since J is clearly an anti-unitary involution and
A > 0, we deduce from the observation following Equ. (2.34) that in order to prove (1) and (2) it suffices
to show that JA'/2AQ zw = A*Qaw for any monomial A = bfw(z/}n) e bﬁw(@bl). We shall do that by
induction on the degree n.

We first compute

Vaw (¥) = Jbaw (V) = a*(TY?¢)s @ s + 1 @ sa((1 — T)1/2y),
iw () = Jhiw () J = sa(TY?)) @ s + 1@ a*((1 — T)Y/2¢)s,

and check that [0y (1), bffw (@)] = [Paw (¥), bﬁw((b)} = 0 for all ¢b,¢ € K. We thus conclude that
b () € O Next, we observe that

AVPbaw () AT = baw (e F7/2p), AV by () AT = by (M%),
For n = 1, the claim follows from the fact that

TAY2b v () Qaw = JAY 2baw (V) A2 T Qv
= Vyw (e F7/2) Qawy
= a* (e FTTV2) @ 10w
= bZW(w)QAW-
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To deal with the induction step, let A be a monomial of degree less than n in the bﬁw and assume that
JAY2AQpw = A*Qaw for all such monomials. Then, we can write

JAYV2E () AQaw = (JAY20% 0 () ATY2 1) JAY2 AQaw
= (Jb% (eTFT/20) T) A* Qaw
= b (7R ) A" Qpny
= A*(,fw(eikTﬂw)QAw
= A TAY 2 (0) A2 T Qaw
= A JAY2T () Qaw
= A"by (1) Qaw,

which shows that the induction property holds for all monomials of degree less than n + 1.

(3) The first claim is an immediate consequence of the definition (2.36) of the relative Hamiltonian. Since,
by Part (4) of Exercise 2.15, the Araki-Wyss representation is unitarily equivalent to the standard repre-
sentation on Hp, the second claim follows from Property (3) of the relative Hamiltonian given on page
64.

(4) The fact that wy is invariant under the dynamics 7¢ is evident. Recall from Exercise 2.16 that the

standard Liouvillean is the unique self-adjoint operator K on H aw (the Hilbert space carrying the standard
representation) such that the unitary group e'*” implements the dynamics and preserves the natural cone.
These two conditions can be formulated as

eithAw(’(/J)e_itK = bAw(eith’l/)), JK + KJ= 07

and are easily verified by K =dI'(h) ® 1 — 1 @ dT'(h). O

Remark. The Araki-Wyss representation of the CAR over K immediately extends to infinite dimensional
K and the proof of Proposition 6.7 carries over without modification. The same is true for Proposition 6.8
provided one assumes, in Part (3), that log(77) — log(T) and log(1 — T3 ) — log(1 — T') are both trace class.

6.5 Spin-Fermion model

The Spin-Fermion (SF) model describes a two level atom (or a spin 1/2), denoted S, interacting with n > 2
independent free Fermi gas reservoirs R ;. The Hilbert space of S is Hs = C? and its Hamiltonian is the

third Pauli matrix
_ o 3_ |10
Hg =0 = |: 0 —1 :| .
Its initial state is ws = 1/2. The reservoir R; is described by the single particle Hilbert space K; = ¢2(Q)
and single particle Hamiltonian h;. The Hamiltonian and the number operator of R; are denoted by

H; = dI'(h;) and N;. The creation/annihilation operators on the Fock space I'(K;) are denoted by a}%.
We assume that R ; is in the state

e Bi(Hj—p; Nj)

Whiomi = tr(e=Bi(Hij—niN;))’

that is, that R ; is in thermal equilibrium at inverse temperature 5; and chemical potential /1;. The complete
reservoir system R = >, R; is described by the Hilbert space

Hr = QT(K)).
=1
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its Hamiltonian is
n
Hr =) Hj,
=1

and its initial state is
L o~ S 8= Ny).

WR = ®F_Wa; u; = Ee_
where Z = tr(e™ 25 #1(Hi=1iN3)) The Hilbert space of the joint system S + R is
H=Hs®HR,
its initial state is w = ws ® wgr, and in the absence of interaction its Hamiltonian is
Hy = Hs + Hg.
The interaction of S with R ; is described by
Vi=o e P

where o(1) is the first Pauli matrix and P; is a self-adjoint polynomial in the field operators

%(aj () + a3 (1)) € Orc)-

For example P; = ¢;(;) or P; = ip;(¢;)p;(¢;) with ¢»; L ¢;. The complete interaction is V' =
Z?=1 V; and the full (interacting) Hamiltonian of the SF model is

oY) =

Hy = Hy+ MV,

where A € R is a coupling constant.

Exercise 6.5. Check that the SF model is an example of open quantum system as defined in Section
4.1. Warning: gauge invariance is broken in the SF model.

Exercise 6.6.

1. Denote by {ey, eo} the standard basis of Hs = C2. Show that the triple (Hs @ H.s, s, {2s), where
7s(A) = A® 1 and

1
Ns=—(e1®e; +e3Rer),
S \/5(1 1 2 2)

is a GNS representation of Oy, associated to ps. Since ps is faithful, this representation carries the
modular structure of Os. Show that the modular conjugation and the modular operator are given by
Js:f®gr—g® fand A,y = 1.

Note that this part of the exercise is the simplest non-trivial example of Exercise 2.15 (5).

2. Let (Haw j, Taw,j, Qaw ;) be the Araki-Wyss representation of the j-th reservoir associated to
the quasi-free state wg, ;.. Show that mgp = Ts @ TAw, 1 @ - - @ Taw,,, is the standard representation
of Oy, on the Hilbert space

Her = (Hs @ Hs) @ Haw 1 @ - - - HAw

with the cyclic vector
Qsr = Qs @ Daw,1 @ - - @ aw 5.
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3. Consider the SF model with interaction P; = ¢;(1;). Show that in the above standard representa-
tion the operator L 1, defined by (4.10), takes the form

Li=Hs®1lys —1ys ®Hs) @ Lppy, ® - @ Ly (6.11)

1
o

) (L @ Ugy) @ Lgpe, ® -+ @ (AT(y) @ 1 = 1@ AT (7)) ® -+ ® Ly

j=1
n 1 .
+ )‘Z(U(l) ® ]le) ® ]l’HAW,l Q- ® E (bAW,J(’(/}j) + bAW,j(wj)) Q- ® ]l’HAW,n
j=1
M 1
- )‘Z(]]-Hs ® 0(1)) ® ]]-HAW,l Q- ® E ( :AW,](w;r) + ::W,J(w;)) - ® ]]-HAW,na
j=1

where o = (0,4, ') and

i = e=Ail1/2-1hs =i (112Dl

Starting with the seminal papers of Davies [ ], Lebowitz-Spohn [ ] and Davies-Spohn [DS], the
SF model (together with the closely related Spin-Boson model) became a paradigm in mathematically
rigorous studies of non-equilibrium quantum statistical mechanics. Despite the number of new results
obtained in the last decade many basic questions about this model are still open.

The study of the SF model requires sophisticated analytical tools and for reasons of space we shall not
make a detailed exposition of specific results in these lecture notes. Instead, we will restrict ourselves to a
brief description on the main new conceptual ideas that made the proofs of these results possible. We refer
the reader to the original articles for more details.

The key new idea, which goes back to Jaksi¢-Pillet [JP3], is to use modular theory and quantum transfer
operators to study large time limits. As we have repeatedly emphasized, before taking the limit ¢ — oo
one must take reservoirs to their thermodynamic limit. The advantage of the modular structure is that it
remains intact in the thermodynamic limit. In other words, the basic objects and relations of the theory
remain valid for infinitely extended systems.

In the thermodynamic limit the Hilbert spaces K'; become infinite dimensional. Under very general
conditions the operator Lé converges to a limiting operator. In the example of Exercise 6.6, this limit has

exactly the same form (6.11) on the limiting Hilbert space Hsr which carries representations ¢ — bf& (W)
of the CAR over the infinite dimensional ;. Moreover, the limiting moment generating function for the
full counting statistics (4.6) is related to this operator as in (4.9). Under suitable technical assumptions on
the 1);’s one then can prove a large deviation principle for full counting statistics by a careful study of the
spectral resonances of L 1. It is precisely this last step that is technically most demanding and requires a
number of additional ass‘lllmptions. The existing proofs are based on perturbation arguments that require
small X and, for technical reasons, vanishing chemical potentials y;. We remark that the proofs follow line
by line the spectral scheme outlined in Section 5.5 and we refer the interested reader to [ ] for details
and additional information.

For a = (0,1/2,1/2), the operators L. is the standard Liouvillean K. The spectral analysis of
this operator is a key ingredient in the proof of return to equilibrium when all reservoirs are at the same
temperature. For related results, see [IP1, , DJ, ]. More generally, the spectrum of K provides
information about the normal invariant states of the system, i.e., the density matrices on the space Hsr
which correspond to steady states. In particular, if K has no point spectrum then the system has no normal
invariant state and hence its steady states have to be singular w.r.t. the reference state p (see, e.g., [ ,

] for details).

In the case o = (0,0,0), the operator L1 reduces to the L°°-Liouvillean (or C-Liouvillean) L.,

introduced in [JP3]. In this work the relaxationto a non-equilibrium steady state was proven by using the
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identity
wi(A) = (QspleFmsp(A)Qsr),

and by a careful study of resonances and resonance eigenfunctions of the operator L. This approach was
adapted to the Spin-Boson model in [ ].

For a different approach to the large deviation principle for the spin-fermion and the spin-boson model
we refer the reader to [DR].

6.6 Electronic black box model
6.6.1 Model

Let S be a finite set and hs a one-particle Hamiltonian on K5 = ¢2(S). We think of S as a “black box”
representing some electronic device (e.g., a quantum dot). To feed this device, we connect it to several, say
n, reservoirs R, ..., R,. For simplicity, each reservoir R ; is a finite lead described, in the tight binding
approximation, by a box A = [0, M] in Z (see Figure 6.1). The one-particle Hilbert space of a finite lead is
K; = ¢£*(A) and its one-particle Hamiltonian is h; = f%A A, where A, denotes the discrete Laplacian on
A with Dirichlet boundary conditions (see Section 1.1). The Electronic Black Box (EBB) model is a free
Fermi gas with single particle Hilbert space

K=Ksa (8]-,K;).

In the following, we identify Ks and K; with the corresponding subspaces of K and we denote by 1s
and 1; the orthogonal projections of K on these subspaces. In the absence of coupling between S and the
reservoirs, the Hamiltonian of the EBB model is

HO = dF(hO)v
where
ho = hs & (B7_1h;) .
The reference state of the system, denoted wy, is the quasi-free state associated to the density
To =Ts ® (&), Ty)
where T's > 0 is a density operator on s which commutes with hs and

T, =(1+ ePilhi=ni1))=1

is the Fermi-Dirac density describing the thermal equilibrium of the j-th reservoir at inverse temperature
B; and chemical potential y;.
The coupling of the black box S to the j-th reservoir is described as follows. Let x; € Ks be a unit

vector and let 5(()j ) € K; be the Dirac delta function at site 0 € A, both identified with elements of K. Set
v; = |x;j) (5(()] )\ + |5(()] )> (x;|. The single particle Hamiltonian of the coupled EBB model is

hy :h0+>\Zvj,

Jj=1

where A\ € R is a coupling constant. Denoting by a* the creation/annihilation operators on I'(K) and using
Part (8) of Proposition 6.2 we see that the full Hamiltonian of the coupled EBB model is

H), = dr(h)\) = Hy + /\Z |:a*(Xj)a(5(()j)) + a*(é((Jj))a(Xj)} )
j=1

and that the induced dynamics on the CAR algebra over K is completely determined by

(¥ () = " ra® ()N = o ().
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Assume that the black box S is TRI, i.e., that there exists an anti-unitary involution #s on g such that
Oshs0s = hs and 0sTs0s = Ts. If Osx; = x; for j = 1,...,n, then one easily shows that the EBB
model is TRI, with the time reversal

0 =T(0), 9:9569(@?:19j),

where 60; denotes the complex conjugation on K; = ¢2(A).

Ro
- 0—0—0—0-—0-0—0-—0-—0
2 /o

GEEEE - ] +
<V D

R3

Figure 6.1: The EBB model with three leads.

6.6.2 Fluxes

The energy operator of the j-th reservoir is H; = dI'(h;). Applying Equ. (4.2), using Relation (6.7) and
Part (8) of Proposition 6.2, we see that the energy flux observables are given by

®; = —i[Hx, H;] = —dT(i[ha, h;]) = AdT(i[h;, v;]) 6.12)
= 1A (a*(hﬁ(()j))a(xg‘) - a*(Xj)a(hjééj))) :

The charge operator of S is Ns = dI'(1s) and N; = dI'(1,) is the charge operator of R;. Note that the
total charge N = Ng + > j=1 Nj = dI'(1) commutes with H The charge flux observables are

i = =ilHy, Nj] = =dL({lha, 15]) = A1, v5) (6.13)
= ix (a*(6§)als) = a* ()al6) )

It follows from Part (6) of Proposition 6.2 and Part (1) of Proposition 6.6 that the heat and charge fluxes at
time ¢ are

wo(T1(®;)) = 2\ Im (e 168 | Tpe™™ x ),
wo(r (7)) = 2ATm (7557 o™ ;).

6.6.3 Entropy production

One easily concludes from Part (1) of proposition 6.6 that w; = wy o T4 is the quasi-free state with density
T, = e thaTyelth> | We set

ko = log (To(1 — Tp) ") =log (Ts(Ls — Ts) ') & (&7 [-Bj(h; — pi1;)]),

so that . ‘
kt = log (Tt(]]- — Tt)_l) = e_lth)‘koelthk.

Proposition 6.8 allows us to write the relative Hamiltonian of w; w.r.t. wg as

Curiwo = AT (ky — ko).
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It follows that the entropy production observable is

d : S
7= gilern| = d0(Hlha ko) = il Qs] - Z:j = 135); (6.14)

where Qs = dI'(log(Ts(1s — Tss)™!)) (compare this expression with Equ. (4.1)). The entropy balance
equation thus reads

S(wilwo) = wo(1x(Qs) — Qs) +Z/5’g/ ws(®; — p1;J;) ds. (6.15)

6.6.4 Entropic pressure functionals
Not surprisingly, these functionals can be expressed in terms of one-particle quantities. For p € [1, oo[ one
has, by Lemma 6.1,

p/2
ept(a) = logtr {( (1=a)/p , 2a/p (1 (,)/p> }

= logtr |:Zl r ((ek‘o(la)/pethOL/pek;O(la)/p)?/z)]

To

= —log Z7, + log det (]1 + (eko(1_“)/pekt20‘/pek°“‘a)/”)p/2>

det (]]_ =+ (eko(lfa)/pekﬂa/pekrg(lfa)/p)p/Q)
= log

det (1 + eko) (6.16)

After some elementary algebra, one gets
p/2
ep (@) = logdet {]l + Ty <ek° (ekﬂ(1*0‘)/Pekt2a/peko(1*04)/10) _ 1)} .
In particular, for p = 2,

es,1(a) = log det (]l + To(e_o‘k“eo‘k‘ — ]l)) ,

and for p = oo we obtain

eco,t() = lim e, (o) = logdet (IL + Ty (e kol —ekotak: _ ]l)) .

pP—r 00

Exercise 6.7. The multi-parameter formalism of Section 3.7 is easily adapted to the EBB model.
Indeed, one has

logwo = (Qs —log Zn,) — Y B Hj + Y _ Biju N,
j=1 j=1

and the n + 1 terms in this sum form a commuting family (the scalar term — log Z7 plays no role in
the following, we can pack it with the ()s term which will turn out to become irrelevant in the large
time limit). Following Exercise 3.10, define

wg‘ _ eas(Qs—log Zrg) =225 o B H 4320 ant B N; , wzx _ e_itH*wg‘eitH* :

fora = (as,a1,...,a,) € R2TL
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1. Show that the generating functional for multi-parameter full counting statistics is given by
eat(a) = logtr (wy~*w) = logdet (]l + To(e F(@ghel) _ ]1))

where . .
k(o) = aslog(Ts(1 = Ts)™") = Y a;Bih; + > anyiBinil;,
= =i
and ki () = e M k(a)elth,

2. Show that the “naive” generating function (5.13) is given by

enaive,t(a) = log det (]1 + To(ek—t(a)_k(a) _ ]1)) )

Exercise 6.8. Following Section 4.3, introduce the control parameters X; = B.q — 3; and
Xn+j = Beqlteq — Bjltj, where Beoq and ey are some equilibrium values of the inverse tempera-
ture and chemical potential. Denote by wx the quasi-free state on the CAR algebra over C with
density

Ty = (1 +eﬁcqw—ueqﬂ)fz;;l<thj+Xn+j1j>>‘17

and set kx = log (Tx (1 — Tx)™") = —Beq(hr — peql) + > i1 (Kb + Xt 515).
1. Show that .
ox = dl(=ihy, kx]) = Y X;®; + Xni; T,
j=1
where the individual fluxes are given by (6.12) and (6.13).

2. Show that the generalized entropic pressure is given by
e:(X,Y) = logdet (]1 + Tx (e_kX ehx—v+hvii—ko _ ]1)) ,

where ky ; = ety eltha

3. Develop the finite time linear response theory of the EBB model.

6.6.5 Thermodynamic limit

The thermodynamic limit of the EBB model is achieved by letting M — oo, keeping the system S un-
touched. We shall not enter into a detailed description of this step which is completely analogous to the
thermodynamic limit of the classical harmonic chain discussed in Section 1.8 (see Exercise 6.9 below).
The one particle Hilbert space of the reservoir R; becomes K; = ¢(N) and its one particle Hamiltonian

h; = —%A, where A is the discrete Laplacian on N with Dirichlet boundary condition. Using the discrete
Fourier transform
~ 2 )
V(&) =1/ = Y v()sin(g(x + 1)),
reN

we can identify K; with L2([0, 7], d¢) and h; becomes the operator of multiplication by €(§) = 1 — cos&.
In particular, the spectrum of h; is purely absolutely continuous and fills the interval [0, 2] with constant
multiplicity one. Thus, the spectrum of the decoupled Hamiltonian h consists of an absolutely continuous
part filling the same interval with constant multiplicity n and of a discrete part given by the eigenvalues of
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hs. Wedenote by 1g =1 — 15 = Z;;l 1; the projection on the absolutely continuous part of hg. In
the momentum representation one has Kr = Ran 1z = L?([0,7]) ® C". Denoting by 1, = |e;)(e;| the
orthogonal projection of C™ onto the subspace generated by the j-th vector of its standard basis, we have
]]-j = ]]. [ 1j and hj = 6(5) X 1j-

Exercise 6.9. Denote by the subscript (-) ;, the dependence on the parameter M of the various objects
associated to the EBB model, e.g., was o is the reference state with density Ths o = T's ® (@?leM, j),
etc.

1. Show that

lim Tapo(e kot — 1) = Ty(e~hoek — 1),
M—o0

holds in trace norm, where Ty = s — im Ths 0, ko = log(To(1 — Tp)), kr = e "2 kpel™ and
M — 00
h,\ =S — lil’nhM,)\.
M —o00
Hint: write e~ “F.0e@kar — 7 ag the integral of its derivative w.r.t. ¢ and observe that [z x, kaz,0] is
a finite rank operator that does not depend on M.

2. Show that, for any «, t € R,

lim epr24() = logdet (1 + Ty(e e —1)).

M — o0

Hint: recall that det(1 + Ty o(e~@FmoedFae — 1)) = wM,O(F(efakM‘o/ZGQkM’tefakM‘o/Z)) > 0.
Remark. The implications of this exercise are described in Proposition 5.1.

Exercise 6.10. Let P/ denote the spectral measure of log(A,,,, ,jwy, o) and &u,, .. Through the
following steps, show that the spectral measure P; of log(A,|w,) and &, is the weak limit of the
sequence {Pas,}. (Up to a rescaling, P, is the full counting statistics of the finite EBB model.)

1. Show that, for all o € R, the characteristic function of P/,

XM,t(a) = /eiadeMﬁ(x) = (é-WM,O|A(ijt]u,t‘wM10§wM,O)
= tr (w}/zgf‘ w}\‘/’[’t>
= det (]1 + TM7o(eiO‘kM’te_io‘ka° — ]1)) ,
converges, as M — oo, towards

Xt(a) = det (]1 + To(eiakte—iako _ ]l)) = wo (F(eiakte—iako)) -

2. In the Araki-Wyss representation associated to the state wg, show that

(Ewo |Aii|w0§wo) = (gwo |Ft(a)§wo)’

where the cocycle I'y (o) = Al Azl satisfies the Cauchy problem

wi|wo
d . i —ia
—Ty(a) =iT(@) (AL maw (lu, jwo ) D) r:(0) =1.

da =

3. Show that I'; () = maw (7:(«)) where

d

@’Yt(a) _ i%(a) (eiadl“(ko)gwﬁ‘woe—iadr‘(ko)> , %(0) = 1.
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Conclude that (o AlS |, €wo) = wo(e(e)).
4. Show that _ . _ _
'Yt(a) _ [Dwt o Dwo]‘”‘ _ euxdl“(kt)efladf‘(ko) _ I\(elakteflako)’

and conclude that

xt(a) = /ei”dPt(x).

5. Invoke the Lévy-Cramér continuity theorem (Theorem 7.6 in [Bi1]) to conclude that P 5, ; converges
weakly towards P;.

6.6.6 Large time limit

Let us briefly discuss the limit ¢ — oco. For simplicity, we shall assume that the one particle Hamiltonian
hy has purely absolutely continuous spectrum. This is the generic situation for small coupling A in the

fully resonant case where sp(hs) CJ0,2[. Since hy —hg = v = Z?Zl v; is finite rank, the wave operators

wy =s — limeltMe~ithoy
t—+oo

exist and are complete, wrwi = 1, wiwy = L. The scattering matrix s = w’} w_ is unitary on K. It
acts as the operator of multiplication by a unitary n x n matrix s(§) = [s;x(£)]. Since [ho, Tp] = 0, one
has

: o 1: ithy ithx
Jim (¢|Ty) = lim (™2 [Tpe™ ¢)
_ thm <e—ithoeithA,¢|Toe—ith0eith>\ ¢>
— 00
= (wZPp|Tow™ ¢) = (Y[T+¢),

whith 7'y = w_Tow™* . It follows that for any polynomial A in the creation/annihilation operators on I'(K),
one has
tlim wo o TL(A) = wi (A),
—00

where w is the quasi-free state with density 77.. We conclude that the NESS w_ of the EBB model is the
quasi-free state with density
T, =w_Tyw?. (6.17)

The large time asymptotics of the entropic pressure functionals can be obtained along the same line as
in Section 1.11. We shall only consider the case p = 2 and leave the general case as an exercise.
Starting with (6.16) and using the result of Exercise 1.8, we can write

d

d — (o7
o ez,1(a) = — trlog (]1 + ellm®kog k*)

da
_ tr( (1 1 ell-a koeakt) 1 (ka)kg(kt B ko)eakt)

tr( (1 4 e~ (m@kog=ake)y=1(f, _ k‘o))

/ tI‘ ]]_+e (1—a)ko fockt) 1 71tuh,\ [h k] 1tuh,\) du
0
1 .
— t/ tI" 1tuhA ]1+ —(1—a)ko —ozk,) 1e_ltuh>‘i[h)\,]€0]) du
0
- e

tr Il—i—e_(l Wk—tugmaki—w )1 [h,\,ko]) du.
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The final relation

d

1
I ez (a) = —t/ tr ((]l + e~ (m@k-tug=akia—w)~1j[p, ko]) du
0

remains valid after the thermodynamic limit is taken. Since kg is a bounded operator commuting with hy,
one easily shows that

s —limk; = ky = wrkow?
t—+oo ¥ +

which leads to

S — hm(]l + e—(l—a)k_tse—ozkt(l,s))—l — (]1 + e—(l—a)k_e—ak+)—1
t—o0
=(1+ w+e_(1_o‘)k°wiw_e_o‘k°w’i)_1
_ (]]_ + wis*ef(lfa)kosefakowt)fl
= w_ (1 + s*e”(1mkogemako)=1y,*

Since i[hy, ko] is finite rank, it follows that

lim tr (1 e~ (17 k=ree™ ki) iy k)
t—o0

=ty ((]l + s*e*(lf")kose*ak“)*lT) ,
where T = w*i[hy, koJw—. Since ez (0) = 0, we can write

1 o1 *d
m —eg(a) = lim — /0 aeu(’y) d~,

62,4_(0[) - t1l>oo t t—oo t

and the dominated convergence theorem yields

« 1
es,1(a) = _/0 /0 tr ((]1 + s*e_(l—’Y)kose—’yko)—lT) dudy
(6%
= _/ tr ((]1 + s*e_(l—’Y)kose—’yk())—lT) .
0

The trace class operator 7 on x has an integral kernel 7 (£, £’) in the momentum representation. Follow-
ing the argument leading to (1.28), one shows that its diagonal is given by

T(E,€) = S0 (s (©k(©)s(0) ~ hE)), (6.18)

where k(£) is the operator on C" defined by

Thus, one has

trICR ((]]_ + S*ef(lfa)kosefako)flzr>

=- /0 b (14 57 (g MO s(g)eREO) = (k(g) — 5™ (€)k(€)s(6)) ) 5’(6)%
——a [ tren (o1 4 7@k ) £ (6)5F.
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and we conclude that

[T det (1 4 eI~k 5(£)e ) s*(£)) | de(€)
ez, + () —/0 IOgl det (]l+ek(£)) om

After a simple algebraic manipulation, this can be rewritten as

es4(a) = /O " Jog det (11 FT(E) (e M) 5(€)e k(O 5*(¢) — 1)) d%gf), (6.19)

where T'(¢) = (1 + e *)~1. In the following exercise, this calculation is extended to various other
entropic functionals.

Exercise 6.11.

1. Show that for p € [1, co[ one has

ep,+ () = tlij{.lo 7 ep,t()

_ / " log det {1 +T(E) <e—k<€> (ek@)(1—a>/ps(§)ek<s>2a/ps*(g)e/c@)(l—a)/p)p/ 2_ 1)} de(§)
0

2m
2. Show that
1
eoo (@) = lim — eco(a)
" - _ - de(€)
— k(&) o(1—a)k(§)+as(§)k(£)s(§)" _
/0 log det (]l +T(&)(e e ]l)) 5

3. Compute

enaive7+(a) = lim Eenaivei(a)-
4. Show that the large time asymptotics of the multi-parameter functional of Exercise 6.7 is given by

1
ez.+(e) = lim = e(c)

de ()

o’

[ 1ogdet (1-+ T Os(g)ek9(6) - 1)
0

where

k(a, &) = = B (eje(€) — anjps) 1.
j=1

Note in particular that e 4 () does not depend on the first component s of cv.

5. Show that the large time asymptotics of the generalized functional of Exercise 6.8 is given by

1
er(X,Y) = lim get(X,Y)

t—o0

or

/ " Jog det (1+ T (§) (e Oy @4k O Ok _ 1)) de(€)
0
where kx () is the diagonal n x n matrix with entries —(8eq — X;)e(€) + (Beqlteq + Xn+;) and

Tx(€) = (1 + e *x(©)-1,
6. Develop the linear response theory of the EBB model.
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For ¢ € [0, 7], denote by w the density matrix

' (eF(&))
T e (D(eF©))

on I'(C™). Clearly, we defines a state on I'(C™) which is quasi-free with density T'(§). By Part (3) of
Proposition 6.6, the Rényi relative entropy of the state I'(s(&) )weI'(s(€))* w.r.t. we is given by

S (T(5(6)wT(5(6))" o) = logstr (1o T (s(€))wZT(5(6))" )
= log we (F(e_ak(g)s(g)eo‘k(@s*(5)))
— log det (1 () (e R 5(€)eR (O 5% (€) — ]1)) :

Thus, we can rewrite Formula (6.19) as

e2+(a) = [ Sa(T(s(§))wel(s(€))"|we)

0 21
Using the second identity in (2.19), we deduce

4.
da 2+

—— [ SR ) 5.

Since logwe = dT'(k(¢)) — log det(1 + *(©)

);
S(L(s(8))wel(s(€)) Iwg) tr [[(s(€))wel(5(£))" (logwe — T'(s(€)) log wel'(s(€))")]
r[we(T'(s(€))" log weT'(s(€)) — log we)]
¢ (AL (s™(E)R(E)s(E) — K(£)))
r(T(€)(s™(E)k(§)s(§) — k(£))) -

Hence, it follows from (6.18)and (6.17) that

Relation (6.6) and Part (4) of Proposition 6.6 yield

I
(= E (‘f‘

| SEe@mre©ro S = [ u o)
= —tI‘(ToT)
—tr(Tow™ i[hy, koJw_)
= —tr(T i[hx, kol)

Finally, (6.14) allows us to write
—tr (Ti[hx, ko]) = wy (dU(=i[hx, ko)) = w4 (o).
Thus, we have shown that

C%ez,+() /S €))wel (s ))*|w5)d;§f).

Invoking Part (1) of Proposition 2.17 we observe that if w, (o) = 0 then we must have

S(L(s(8))wel'(s(€))"|we) = 0,

for almost all £ € [0, w] which in turn implies that I'(s(&) )weI'(s(€))* = we, i.e., that [k(§), s(€)] = 0 for
almost all £ € [0, . The last condition can be written as

[(Bx — B5)e(§) — (Brpr — Bipg)] sj1(§) =0,
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for all j,k € {1,...,n}, and we conclude that if there exists j,k € {1,...,n} and a set Q C [0, ]

of positive Lebesgue measure such that j # k, s;5(§) # 0 for £ € Q and (85, ;) # (B, k), then

w4 (o) > 0. In more physical terms, if there is an open scattering channel between two leads R; and Ry,

which are not in mutual thermal equilibrium, then entropy production in the NESS is strictly positive.
Note that since (6.14) implies

wy (o) = - Z Bi (W (®)) — pw+(T5)) 5

the expected currents w (®;), w4 (J;) can not all vanish if entropy production is strictly positive.

Exercise 6.12. Deduce from Relation (6.15) that

1
— lim ES(wt|w0) = wy (o).

t—o0

Thus, if w4 (o) > 0 then the entropy of w; w.r.t. wy diverges as t — oo.

de(§)

or

Exercise 6.13. Derive the Landauer-Biittiker formulas for the expected energy and charge currents
in the steady state w-,

| (e - el
(

Er(6)(e
/0 " 10(6)(05(0) — ax(€)) 28

2m

wi(®;) = Z

k=1

SOEDD

k=1

where 0;(¢) = (1 + eP1((©)=#:))~1 i5 the Fermi-Dirac density of the j-th reservoir and

ti1(€) = |sjk(€) — Gl

Hint: start with wy (®;) = —tr (Ti[hy, h;]) = —tr (T57;) where T; = w*i[hy, hjJw_, and deduce
from (6.18) that the diagonal part of the integral kernel of 7; is given by

T(E.6) = (e (5" @150 - 1)

Proceed in a similar way for the charge currents. (For more information on the Landauer-Biittiker
formalism, see [Da, Im]. More general mathematical derivations can be found in [ , Ne, BS].

Exercise 6.14. Starting with the Landauer-Biittiker formulas develop the linear response theory of
the EBB model.

Exercise 6.15. Consider the full counting statistics of charge transport in the framework of Section

3.8. Let P¢(q), 9 = (q1, - - -, qn), denote the probability for the results, n and n’, of two successive
joint measurements of N = (Ny,..., N,), at time 0 and ¢, to be such that n’ — n = ¢q. Loosely
speaking, P¢(qu, . . ., ¢n) is the probability for the charge (number of fermions) of the reservoir R ; to
increase by tg; (j = 1, ...,n) during the time interval [0, t]. Denote by

() =Y Pi(q)e ™9,
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the Laplace transform of this distribution (that is, the moment generating function of PY).

1. Show that the logarithm of x; (1) is related to the functional es ¢ () of Exercise 6.7 by
log x¢(v) = e2,¢(1 — a),
provided v = (v1,...,1,) is related to a = (s, 1, . . ., a9y, ) according to

aj=as =0, vj=—antjBip, (G=1,...,n).

2. Show that in the thermodynamic limit
xt(v) = det (]l + Tp(ett™ea®) _ ]l)) ,

where .
q(v) = vy,
j=1

and ¢;(v) = e~ thrg(v)elthr,
Hint: combine Part 1 with the result of Exercise 6.7.

3. Derive the Levitov-Lesovik formula

de(§)

o’

tim Llog () = / " logdet (1 + T(€)(s* ()" (€) — 1))
0

t—o00

where the matrix s*(§) = [s%,,(§)] is defined by

sk (8) = k(€)™ .

(See [LL], where the Fourier transform of the probability distribution P§ is considered instead of its
Laplace transform. See also [ 1)

Exercise 6.16. Consider EBB model with two reservoirs. Prove that the following statements are
equivalent.

1. ey, + () does not depend on p.
2. 511(€) = s22(€) = 0 for Lebesgue a.e. £ € [0, 7.

3. The fluctuation relation enaive + (@) = €naive,+ (1 — @) holds.

4. enaive,+ (@) = €co,+ ().

Exercise 6.17. Consider the following variant of the EBB model. S is a box A = [—[,{] in Z
and hs = —%A A is the discrete Laplacian on A with Dirichlet boundary condition. The box S is
connected to the left and right lead which, before the thermodynamical limit is taken, are described
by the boxes Ay, =] — M, -l — 1], Ag = [l + 1, M|, where | < M, and after the thermodynamic
limit is taken, by the boxes A, =] — 0o, —l — 1], Ag = [l + 1, 00[. The one particle Hamiltonians
are h;, = —%AAL, hr = —%AAR, where, as usual, Ay, and Ay, are the discrete Laplacians on A,
and A with Dirichlet boundary condition. The corresponding EBB model is a free Fermi gas with
single particle Hilbert space

(ML) ® (A) ® (AR) = 2(AL UA U AR).
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In the absence of coupling its Hamiltonian is Hy = dI'(hg), where hg = hy ® hs ® hgr. The
Hamiltonian of the joint system is H = dI'(h), where h = *%AALUAUAR and Ax,uauay, is the
discrete Laplacian on Az, U A U Ar with Dirichlet boundary condition. The reference state of the
system is a quasi free state with density

To=T,®Ts ® TR,
where T's > 0 is a density operator on £(A) that commutes with hs and
T = (1+ e,@L(hL—ML]l))—l7 Tr=(1+ e:@R(hR_MRl))_l,

are the Fermi-Dirac densities of the left and right reservoir.

1. Discuss in detail the thermodynamic limit M/ — oo and compare the model with the classical
harmonic chain discussed in Section 1.
The remaining parts of this exercise concern the infinitely extended model.

2. Using the discrete Fourier transform

Z2(AL) @€Z(AR) > wL @wR — QZL @ {b\R € LQ([O’WLdf) S3) LQ([O,TF],dg),

pL() = \/Z Y du(@)sin(E(x—1)),  Yr() = \/Z > vr()sin( + 1)),

zEAL T€EAR

identify hy, @ hr with the operator of multiplication by (1 — cos &) @ (1 — cos &) on L%([0, 7], d€) &
L?([0,7],d&). The wave operators

wy =s — limelMe= 015
t—to0

exist and are complete (15 is the orthogonal projection onto ¢?(A 1) @ ¢?(Ag)). The scattering matrix

s = wiw, : KQ(AL) @52(/\}{) — KQ(AL) @KQ(AR%

is a unitary operator commuting with hy, & hg. Following computations in Section 1.9 verify that in
the Fourier representation s acts as the operator of multiplication by the unitary matrix

s© =7 .

3. Show that for p € [1, 0],

1 /2 ( ol Oé(,@R(E*MR);BL(E*ML)) sinh (1*04)(51%(6*#21%)*,51(5*#1‘)
log [ 1—
0

de.

ep,+ () = o

cosh BL(SZ_“L) cosh BR(EQ_“R)

(6.20)
Note that, in accordance with Exercise 6.16, e, 4 («) does not depend on p. The function (6.20) can
be expressed in terms of Euler dilogarithm, see the end of Section 6.7.3.

4. Verify directly that epaive, 1 () = e + ().
5. (Recall Exercise 6.11). Show that

1 2
ex 4+ (o) = —/ log (1 + D(e)) de, (6.21)
2T 0
where
. Br(aie—a —Br(aze—a . B l—as)e—(1—a —Br((l—ar)e—(1—«
o sinh Prlaae SML)2 rlaze—aapr) o Br((l=az)e—( 4)MR)2 L (( De—(1—as3)pr)

cosh BL(EQ_“L) cosh BR(EZ_“R)
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6. Using (6.21) show that the steady state charge and heat fluxes out of the left reservoir are

e 1 /2 1 1 d
Ld+( L) - % @ 1+eﬁL(5*l‘L) - 1+eﬁR(57l»‘4R) &

o)=L [ ! : d
wi(®r) = o o C Tt ePrle—hn) 14 ePate—nm | °©

and that W+(JR) = —(/J+(jL), UJ+(¢R) = —W+<®L).

Exercise 6.18. This exercise is intended for technically advanced reader. Consider an infinitely
extended EBB model with two reservoirs except that now we keep the single particle Hilbert spaces /C;
and Hamiltonians h; general. The coupling is defined in the same way as previously except that now
6(()J ) is just a given vector in /C;. We absorb X in 6((Jj ) and denote by h the single particle Hamiltonian
of the joint system. We shall suppose that the spectral measure v; for h; and (5(()3 ) is purely absolutely
continuous and denote by dv;(¢)/de its Radon-Nikodym derivative w.r.t. the Lebesgue measure. We
also suppose that i has purely absolutely continuous spectrum. Since h preserves the cyclic subspace
spanned by {Ks, 5(()1), 5(()2)} and hy, without loss of generality we may assume that K; = L?(R, dv;)
and that h; is the operator of multiplication by ¢.

1. Show that the scattering matrix is given by

s(e) = 1+2ir (xal(h — & +10)"1x1) 248 (al(h = +10)71xg)/ 24 L2l
(xal(h — & +10)"1xa)y/ D LE)  (30|(h — ¢ 4 i0)~Lyp) L2

2. Compute e, 4 () for p € [1, 00].

3. Verify that Exercise 6.16 applies to this more general model. Classify the examples for which
ep,+ () does not depend on p.

4. Compute epaive, + ().
5. Compute ez 4 (o) and derive the formulas for the steady state charge and heat fluxes.

6. Verify the results by comparing them with Exercise 6.17.

Remark. For more information about the Exercises 6.16, 6.17, and 6.18 we refer the reader to [ ].

6.6.7 Local interactions

One can easily modify the EBB model to allow for interactions between fermions in the device S. For
example, let ¢ be a pair interaction on S, i.e., a self-adjoint operator on I'y (K) acting like

q(z1, )Y (21, 22) ifx1,20 €S,
(qw(fﬂl,@) =

o

otherwise.

Then the operator
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is self-adjoint on I'(KC) and leaves all the I';, (k) invariant. It vanishes on I'g(K) and I'; (K) and acts like

@) o= |5 X aw) |V,

zye{z1,....zx NS
T#yY

on 'y (K) for k > 2. For k € R, the Hamiltonian
H)\,n = H/\ + '%Qa

is self-adjoint on I'(K) and defines a dynamics Tf\,m on the CAR algebra over K. It is easy to perform the
thermodynamic limit of this locally interacting EBB model, the interaction term () being confined to the
finite sample S. The large time limit is a more delicate problem. Hilbert space scattering techniques are
no more adapted to this problem and one has to deal with the much harder C*-scattering theory, e.g., the
existence of the limit

1 (A) = lim 7,0 A (A).

t—+oo

Such problems first appeared in the works of Hepp [He] and Robinson [Ro]. In the specific context of
non-equilibrium statistical mechanics, the scattering approach was advocated by Ruelle [Rul] (see also
[Ru2, 1). A systematic approach to the scattering problem for local perturbations of free Fermi gases
has been developed by Botvich and Malyshev [BM], Aizenstadt and Malyshev [ ] and Malyshev [Ma].
It relies on the well known Cook argument and a uniform (in ¢) control of the Dyson expansion

L o(A) = 7(A)
+ 3 ) / 73 (Q), [ 15 (@), L (A)] - Jidsy - dsy.

k>1 0<sp<---<s1<t

Optimal bounds for the uniform convergence of such expansions have been obtained by Maassen and
Botvich [MB]. The interested reader should consult [ , s | and references therein.

6.7 The XY-spin chain

In this section, we describe a simple example of extended quantum spin system on a 1D-lattice. We shall
follow closely the approach of Chapter 1, starting from the standard quantum mechanical description of a
finite sub-lattice.

6.7.1 Finite spin systems

Let A be a finite set. A spin % system on A is a finite quantum system obtained by attaching to each site
x € A aspin % Thus, the Hilbert space of such a spin system is given by

HA = ®H$7

zeEA

where each H,, is a copy of C2. The corresponding *-algebra is

OA = ®Ow7

zeEA

where O, = M3(C) is the algebra of 2 x 2 complex matrices. Together with the identity 1, € O,, the

Pauli matrices
wm_]01 2_|0 i @_|1 0
"m{1 0}’ ”z[i o] % T |lo -1
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form a basis of O, satisfying the well known relations
agj)ag(tk) =dkl; + isjklag(gl).

For D C Aweset 1p = ®,epl,. We shall identify T, € O, with the element T, @ 15\ {5} of O,. With
this convention, one has the relations

cDoF) = 5,15 + i’ oD, [0\, Uz(f)] = 210, oD, (6.22)

Moreover, any element of O, can be written as a finite sum

> 117,

a x€EA

with nga) € {1a, Jg(cl), Jg), 0;3)}. Since 1, = O’;E;j)2, it follows that the smallest *-subalgebra of Oy
containing the set &, = {O';(Dj ) |z € A,j = 1,2,3} is Op. By von Neumann’s bicommutant theorem
(Theorem 6.5), we conclude that &y = O, and hence &/, = Cl,.

The dynamics of a spin chain is completely determined by its Hamiltonian H,, a self-adjoint element
of 0. The equilibrium state of the system at inverse temperature (3 is given by the density matrix

efﬁHA
U T (e P

The particular example we shall consider in the remaining part of this section is the XY-chain on the
finite 1D-lattice A = [A, B] C Z. It is defined by the XY-Hamiltonian

2
z€[A,B[ 2€[A,B]

1 1
Hy=—-7 > J (agwagﬁl + of)aﬁl) — - Ac®), (6.23)
[
where J € R is the nearest-neighbor coupling constant and A € R is the strength of an external magnetic
field in direction (3)'. The case J > 0 corresponds to a ferromagnetic coupling while J < 0 describes an
anti-ferromagnetic system.

6.7.2 The Jordan-Wigner representation

The natural “spin” interpretation of the x-algebra O, described in the previous section is not very conve-
nient for computational purposes. In this section, following Jordan and Wigner [J W], we shall see that O
also carries an irreducible representation of a CAR algebra. Moreover, it turns out that the XY Hamiltonian
(6.23) takes a particularly simple form in this representation. In fact, we shall see that the XY-spin chain
can be mapped to a free Fermi gas.

Let a;i) = (a;(cl) + iaf)) /2 denote the spin raising/lowering operators at z € A. Note that 0;(;) and

ag(;r) S satisfy the anti-commutation relations

{ol9.0} = (o) 0} =0 {olD 0l = L.

Thus, if A reduces to the singleton {x}, then the maps o — aog(ﬁ) and o — @ob ) define a represen-
tation of the CAR over the Hilbert space C = ¢?({x}) (and one easily checks that this representation is
irreducible). This does not directly generalize to larger A. Indeed, if A contains two distinct sites = # y
one has

4,0 = (0,051 =0 [0, 04) =0,

i.e., operators at distinct sites commute whereas they should anti-commute to define a representation of the
CAR over /2(A).

I'The name XY comes from the coupling between components (1) = (X) and (2) = (Y") of the spins.
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To transform commutation at distinct sites into anti-commutation, we make the following observation:
for T, € Oy and S, € O, one has
{oz DT, }%Jrl : f_)lsy forx <y,
(oo 10 0lV8} = 4 {10, 50) forz = y,
{0(3) S }0(3) . ~0Sﬂle for x > y.

Since {0;3), Ox )} = 0, it follows that the Jordan-Wigner operators

by =0 0P 6, =06 6D, (6.24)

satisfy

{bmby} = {vabZ} =0, {ba, y} *59691/\
Hence, the maps (2(A) 2 o — b* (o) = > b and (2(A) 3 o = b(a) = Y @, b, define a represen-
tation of the CAR over £?(A) on the Hilbert space H . We shall call it the Jordan-Wigner representation.

One easily inverts Relations (6.24) to express the spin operators in terms of the Jordan-Wigner opera-
tors:

oD =V, (bp + %), 0P =iVi(by — 1), o =20%b, — 14, (6.25)
where
]lA ifx = A,
Ve = .
[1,e4,.(205b, —1)  otherwise.
If follows in particular that B, = {b7 |z € A} satisfies B/, = &/, = C1,. Hence, the Jordan-Wigner

representation is irreducible. By Proposition 6.3, there exists a unitary operator U : I'(¢2(A)) — H, such
that b% (o) = Ua™ (a)U*, where the a* are the usual creation/annihilation operators on the fermionic
Fock space I'(£2(A)).

A simple calculation shows that

(1) (1) + 0-(2) ;2_‘21 _ (b*+1b + b b.L-‘,—l)
so that we can rewrite the X'Y-Hamiltonian as
‘] * /\ *
Hy =3 > (Bhyabe + Uibey1) — o) > (2b3b. - 1).
z€[A,B[ z€[A,B|

By Part (8) of Proposition 6.2 we thus have Hy = UdI'(ha)U*, up to an irrelevant additive constant,
where the one-particle Hamiltonian h is the self-adjoint operator on £2(A) given by

J J
ha =5 30 (Ba) Gl + 15 Gasah) = A D0 18006 = AN+ (= M1,
2€[A,B] z€[A,B]

A, being the discrete Laplacian on A with Dirichlet boundary conditions (1.1). Thus, the unitary map U
provides an equivalence between the XY-chain on A and the free Fermi gas with one particle Hamiltonian
h. In particular, it maps the equilibrium state wg, to the quasi-free state on the CAR algebra over £2(A)
with density

Toa = (1 +)7!

Exercise 6.19.
1. Use the Jordan-Wigner representation of the XY-chain to show that, for all z € A,

1 sin?(&(x — A+ 1))
UJBA( (1)) = wﬁA(o'wQ)) = 0, §WBA(]1A + U |A| Z 1 + eB(JCOSf )\) 9
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where A* = {nm/(|A|+1)|n=1,...,|A|}, |[A| =B — A+1.

2. Show that the mean magnetization per spin is given by

ma (B, J, \) =1 ZwﬂA (3)) |A| Z tanh(B(\ — J cos €)/2).

TEA EeA~

3. Show that, in the thermodynamic limit,

2sinh(BA/2) /” d¢
T o cosh(BA/2) + cosh(B(J cos€& — \/2))

AgnzmA(ﬂa Ja >‘) =

Hint: use the discrete Fourier transform to diagonalize the Laplacian Ay .

6.7.3 The open XY-chain

To construct a model of open XY-chain we shall consider the same geometry as in the classical harmonic
chain of Chapter 1: a finite system C, consisting of the XY-chain on A = [— N, N], is coupled at its left and
right ends to two reservoirs Ry, and R which are themselves XY-chains on A, = [-M,—N — 1] and
ARr =[N + 1, M] (see Figure 6.2). The size N will be kept fixed and we shall discuss the thermodynamic
limit M — oo.

Figure 6.2: The XY-chain C coupled at its left and right ends to the reservoirs R, and R g.

The Hamiltonian of the decoupled joint system R, + C + Ry is given by
Ho=Hp, + Hy + Hpy,.

The coupled Hamiltonian is
H = Hp uaong = Ho+ Vi + Vg,
with the coupling terms
J(a 1 2 2 J [ a 2) (2
Vim T (Bo o hioh), Vim T (el +oo,).

We consider the family of initial states

e—,@H-i-XLHAL +XrHap
tr(e*ﬁH+XLHAL +XrHap ) ’

wy = (6.26)

with control parameter X = (X, Xr) € R2. The entropy production observable is

ox = X1 ®r + XrPr,
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where the heat fluxes from Ry, /i to C are easily computed using the commutation relations (6.22),
. J? 2 1 1 2 3 AJ 1 2 2 1
01 = i, ) = 2 (o a0~ B a0 B ) s+ 2 (o i),

: T ) @ @0 \.® Mo @ @ @
Op = —i[H,Hpp] = Y (UN ONG2 —ON 0N+2) Ony1 T e <0N+10N “ON11ON ) :

In the Jordan-Wigner representation, the decoupled system is a free Fermi gas with one particle Hilbert
space (2(A, UAUAR) = (?(Ar) ® £?(A) @ £2(AR) and one particle Hamiltonian

ho =ha, ®ha © hay.
The one particle Hamiltonian of the coupled system is
h = h/ALUAUAR = hO + vrL + VR,

where the coupling terms

([0N)(On+1] + [0n4+1)(dn])

N

o= 5 (6x- )G n]+ 0w nal), o=
are finite rank operators. The initial state wx is quasi-free with density
Tx = (L+e k)",
where
kx = —ph+ Xpha, + Xrha, = —B(ha +vr +vg) — (B — Xp)ha, — (8 — XRg)hay.

It is now apparent that the results of Section 6.6 apply to the open XY-chain. By Part (2) of Exercise
6.8, the generalized entropic pressure is given by

er(X,Y) =logdet (L + Tx (e "xefx-ythveho 7)),

where kx ; = e ith [ eith The same formula holds in the thermodynamic limit, provided kx is replaced
by its strong limit. The large time limit follows from Part (5) of Exercise 6.11,

1
€+(X,Y) = fli>n’olo E et(X7Y)

_ /” log det (1 + T (§) (¢ Oekx-r (O +(©Obr (O ©-ho©) _ 1)) de(€)
27
0

where €(§) = 1 — cos&, kx (&) is the diagonal 2 x 2 matrix with entries (8 — X;)(A — J cos(£)) and
Tx (&) = (1 4+ e Fx(©)~1 Using the explicit form

; 0 1
_ E2iNE
of the scattering matrix (see Section 1.9, the sign =+ is opposite to the sign of the coupling constant .J), we

obtain
1 ) __sinh(uAY) sinh(u(AX — AY)) u
er(X,Y) = Jmr /u_ fog (1 cosh(u(f — X)) cosh(u(8 — XR))) e

where we have set AX = Xp — X, AY = Ygr — Yy and ux = (A £ J)/2. The steady heat current
through the chain is given by

1

Ut
(Pr)4 = tlggo wx, (Pr) = =0y e (X,Y)|y_o = ﬁ/ u (tanh(Bru) — tanh(Bru)) du,
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where 81,/r = 8 — X /r. It follows that the entropy production
1 [
(o)+ = 5- | (Bru— Bru) (tanh(fru) — tanh(fru)) du,

is strictly positive iff 5, # Sr and J # 0.
Exercise 6.20. Develop the linear response theory of the open XY-chain.

Exercise 6.21. Instead of (6.26) consider the reference state

e PrHap —BHA—BrHAp

W= tr(e*ﬂLHAL *EHA*IBRHAR) ’

In this case, up to irrelevant scaling, the Jordan-Wigner transformation maps the XY-chain to the EBB
model considered in Exercise 6.17. Show that for p € [1, o],

‘ B I _ sinh(auAp) sinh((1 — a)ulp)
Enaive,+ (@) = ep 4 () = T /u, log (1 cosh(uBr) cosh(ufn) ) du, (6.27)

where A = Sr — B, (see Figure 6.3). Note that e,, 4 (o) = e (X, aX).

The formula (6.27) can be rewritten in terms of Euler’s dilogarithm

Lig(z) = —/Oz de,

w

an analytic function on the cut plane C \ [1, co[ with a branching point at z = 1 (see [L.c]). More precisely,
one has
ep+(a) =GB+ (a—1/2)A8) + G(B — (a — 1/2)AB) — G(BL) — G(Br),
where 3 = (81, + Br)/2 and
| Lip (—e27u+) — Lip (—e2ou-)

mr(us —u_)

G(x)

It follows that e,, 4 («) is analytic on the strip |Im «| < (SRR
Remark. We were able to compute the TD and large time limits of the entropic functionals of the XY-chain
thanks to its Fermi-gas representation. We note however that the operator

has no limit in the CAR algebra over ¢?(Z) as M — oo, and the Jordan-Wigner transformation (6.25) does
not survive the TD limit. In fact, to recover the full spin algebra in the TD limit, one needs to enlarge the
CAR algebra over ¢?(Z) with an element V' formally equal to
lim (2bi1\4b,]\/j - ]l) ce (2bi1b,1 - ]l)
M —o00

We refer to Araki [A] for a complete exposition of this construction. An alternative resolution of the TD
limit/Jordan-Wigner transformation conflict goes as follows.

We set Ay = [-M, M| C Z. The operator W = 0(_31)\4 e 05\3) € O,,, satisfies W =W* =W~ It
implements the rotation by an angle 7 around the (3)-axis of all the spins of the chain,
—ag(cj) forj=1orj =2,

o)

W)W+ =
for j = 3.
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05 05 0 15

—1

Figure 6.3: The entropic functional e,, 4 («) of the open XY-chain.

Thus, (A) = WAW™ defines an involutive *-automorphism of Oy,,. In the fermionic picture, 6 is
completely characterized by 0(b,) = —b,..
Since 6 is a linear involution on the vector space Oy, , it follows that Op,, = Op,,4+ ® Op,,—, where

OAM:I: = {A € OAI\/I ‘Q(A) = :tA}a

are vector subspaces. Note that Oy, + is a *-subalgebra of Op,,. Since Hy € Oj,, 4+, the dynamics
Tk (A) = eltHr Ao~ iHA gatisfies 7§ 0 § = 6 o 7} and, in particular, it preserves both subspaces Oy, +.
Moreover, our initial state satisfies wx 06 = wx which implies that wx | Ap— = 0. Thus, observables with
non-trivial expectation belong to the subalgebra O, ,,+ and we may restrict ourselves to such observables.
In the fermionic picture, Oy, is the *-algebra of all polynomials in the b# which contain only
monomials of even degree. In the spin picture, it is generated by the operators 03(03) and Ug(gs)ag(j ) with
s,8 € {—,+} and z < 2’, which have a Jordan-Wigner representation surviving the TD limit, e.g.,
o) = by (267 1 bosr — 1)+ (26]_yby—1 — 1)
Thus, at the price of restricting the dynamical system to the even subalgebra Oy ,,+, the XY-chain remains
equivalent to a free Fermi gas in the TD limit. This fact is a starting point in the construction of the NESS
of the X'Y-chain. We refer the reader to [AH, AP] for the details of this construction and to [ , ] for
additional information about the NESS of the XY-chain.
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Appendix A: Large deviations

In this first appendix, we formulate some well known large deviation results that were used in these lecture
notes. We provide a proof in the simplest case of scalar random variables.

A.1 Fenchel-Legendre transform

In this section, we shall use freely some well known properties of convex real functions of a real variable,
see, e.g., [RV].

Let I = [a,b] C R be a closed finite interval, denote by int(I) =|a, b| its interior, and let e : I — R be
a continuous convex function. Then e admits finite left and right derivatives

i . e(sEh)—e(s)
et =gy O

at every s € int(I). DVe(a) and D~e(b) exist, although they may be respectively —oo and +occ. By
convention, we set D~ e(a) = —oo and D*e(b) = 4o00. The functions D¥e(s) are increasing on I and
satisfy D~e(s) < D% e(s). Moreover, D™e(s) = DTe(s) = €'(s) outside a countable set in int(7). If
e'(s) exists for all s € int([), then it is continuous on int(/) and
liin ¢'(s) = D" e(a), lig)l ¢ (s) = D7 e(b).

The subdifferential of e at sg € I, denoted Oe(sg), is the set of # € R such that the affine function
e(s) = e(so) + 0(s — so) satisfies e(s) > e(s) forall s € I, i.e., the graph of e is tangent to the graph of e
at the point (sg, e(sg)). For any sg € I, one has de(sg) = [D~e(sg), DTe(sg)] NR.

It is convenient to extend the function e to R by setting e(s) = +oo for s & I. Then the function e(s)
is convex and lower semi-continuous on R, i.e.,

e(sg) = 11(@11_1}13101fe(s),

holds for all so € R. The subdifferential of e is naturally extended by setting de(s) = ) for s & 1.

The function

©(0) = sup(fs — e(s)) = sup (0s — e(s)) (A.D
sel seR

is called the Fenchel-Legendre transform of e(s). ¢(0) is finite and convex (hence continuous) on R.
Obviously, if @ > 0 then () is increasing and if b < 0 then () is decreasing. The subdifferential of ¢
atf € Ris dp(0) = [D~¢(0), DT p(0)]. The basic properties of the pair (e, ) are summarized in:

Theorem A.1 (1) 0s < e(s) + () forall 5,0 € R.
(2) s =e(s) + ¢(0) & 0 € de(s).
(3) e(s) = supger(0s — ©(9)).
4) 0 € de(s) & s € p(0).

(5) If 0 €]a, b, then p(0) is decreasing on | — oo, D~ e(0)], increasing on [DTe(0), 0o[, ¢(0) = —e(0)
for 6 € 9e(0), and p(0) > —e(0) for 6 & de(0).
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Proof. (1) Follows directly from the definition of .

(2) Combining the inequality (1) with the equality 8s¢ = e(sq) + ©(#) we obtain that e(s) > e(sg) +60(s —
sp) for all s € R which implies 8 € Je(sp). Reciprocally, if 6 € de(sg) then e(s) > e(sg) + 6(s — so)
holds for all s € R and hence 6sg > e(sg) + sup,(fs — e(s)) = e(so) + ¢(6). Combined with inequality
(1), this yields 0sg = e(sg) + ¢(6).

(3) It follows from Exercise 2.11 that the function &(s) = supger(fs — ¢(¢)) is lower semi-continuous
on R. (1) implies that é(s) < e(s) for any s € R. de(s) # 0 for s €]a,b| we conclude from (2) that
é(s) = e(s).

Note that —e(s) < —minyer(—e(u)) = ¢(0). Thus, for § > 0, we have ¢(0) = sup,cpq,p(0s —
e(s)) < b+ ¢(0) and hence s — p(0) > 6(s — b) — ©(0). It follows that &(s) = +o0o = e(s) for s > b.
A similar argument applies to the case s < a.

Consider now the case s = a. From our previous conclusions, we can write &(a) = liminfs_,, é(s) =
limg |, é(s) = limg 4 e(s) = e(a). A similar argument applies to s = b.

(4)By (2), 6 € O¢e(s) is equivalent to the equality sfy = e(s)+p(y) which, combined with the inequality
(1) yields p(0) > ¢(6y) + s(0 — 6p) forall € R and hence s € Jp(fy). Reciprocally, if s € Op(6y) then
©(0) > (0p)+s(0—b)) forall @ € R and we conclude from (3) that e(s) < supy(8s—p(0y)—s(0—6p)) =
—¢(6p) + sby. Using (1) and (2), we conclude that 6y € de(s).

(5) It follows from (4) that if 8y € de(0) = [D~e(0), DTe(0)] then 0 € dp(0y), i.e., p(0) > p(by) for
all @ € R. Thus, ¢(fy) = ming ¢(#) = —e(0) and since D () are increasing, ¢ is decreasing for
6 < D~e(0) and increasing for 6 > D% e(0). O

A.2 Gartner-Ellis theorem in dimension d = 1

LetZ C R, be an unbounded index set, (M;, F;, P;), t € Z, a family of measure spaces, and X; : M; — R
a family of measurable functions. We assume that the measures P; are finite for all ¢. For s € R let

ei(s) = log/ esXedp,.
M

et(s) is a convex function taking values in | — 0o, 0o]. We make the following assumption:
(LD) For s € I = [a, ] the limit

1
el(s) = Jim seu(s),

exists and is finite. Moreover, the function e(s) is continuous on I.

Until the end of this section we shall assume that (LD) holds and set e(s) = oo for s ¢ I. The function
() is defined by (A.1).

Proposition A.2 (1) Suppose that 0 € [a, b[. Then

w(f) if6 > Dte(0)

hms“p log Pi({x € My | Xi(x) > 16}) < {e(o) it9 < D*e(0).

t—o0

(2) Suppose that O €]a,bl. Then

©(0) if6 < De(0)

lin sup — L 1og Pi{e € M| Xy(z) <10}) < {6(0) if @ > D~e(0).

t—o0
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Proof. We shall prove (1), the proof of (2) follows from (1) applied to —X; and —0. For s €]0, b],

P({x € My | Xy(z) > t0}) = P,({x € M;|e* Xt > e5191) < e*sw/ X dp;,
M

and so

1
limsup — log P;({x € M| Xi(x) > t0}) < — sup (0s —e(s)).
t—oo t 0<s<b

For § < D*e(0) and s > 0, one has e(s) > e(0) + sD1e(0) > e(0) + s, so that

—e(0) < sup (0s —e(s)) < sup (0s —e(0) — 0s) = —e(0),
0<s<b 0<s<b

and hence supy< ;< (0s — e(s)) = —e(0). One shows in a similar way that sup, (s —e(s)) = —¢(0)
for > D% e(0). It follows that

»(0) = sup (0s — e(s)) = max <—6(0), sup (s — e(s))) = sup (0s —e(s)).

a<s<b 0<s<b 0<s<b

The statement follows. O

Proposition A.3 Suppose that 0 €]a,b|, e(0) < 0, and that e(s) is differentiable at s = 0. Then for any
0 > 0 there is v > 0 such that for t large enough,

Pi({z € My ||t X, (z) — €(0)] > 6}) <e .

Proof. Part (2) of Theorem A.1 implies that ¢(e’(0)) = —e(0). By Part (5) of the same theorem, one has
w(8) > p(e'(0)) > 0 for 6 # €'(0). Since

P({z € My | [t7' Xe(2) — €'(0)] = 0}) <Pi({w € My || Xe(w) < t(e'(0) —

Proposition A.2 implies

limsup + log Py({z € My [[17' Xi(x) — €/(0)] = 6}) < —min{ip(¢/(0) + 8), 2(/(0) — )},

t—o0 t

and the statement follows. O

Proposition A.4 Suppose that 0 €]a, b| and e(s) is differentiable on |a, b[. Then
1
liminf - log P;({x € M; | X¢(z) > t0)} > —p(0),
t—oo T

forany 6 €|D%e(a), D~e(b)].
Proof. Let § €] D% e(a), D~ e(b)] be given and let o and € be such that
f<a—e<a<a+e<Delb).
Let s, €]a, b] be such that ¢’ (s4) = « (s0 p(a) = asy — €(sq)). Let
AP, = e~et(se)etaXeqp,.
Then P, is a probability measure on (M, F;) and
Pi({z € My | Xi(z) > t0}) > Pi({w € My |t 7' Xy (x) € [ — e, a + €]})

= e?t(se) / e X1 P, (A2)
{t=1 X €la—e€,a+te€l}

> eet(sa)=sata=lsalle p (fy e M, 171X, € [ — €, + €]}).
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Now, if &,(s) = log [, eXtdP,, then é,(s) = e(s + $4) — €¢(54) and so

.
tlgglo %et(s) =e(s+ 3q) — e(Sa),

for s € [a — $a,b — 84]. Since é(0) = 0 and &'(0) = €'(s,) = «, it follows from Proposition A.3 that
Jim % log By({x € My [t7'X,(z) € [a — e,a+€]}) = 0,
and (A.2) yields
litrgiorgf % log Py({x € My | X¢(x) > t0}) > —saa+ e(sq) — [Sale = —p(a) — |sqle.
The statement follows by taking first € | 0 and then « | 6. (]
The following local version of the Gértner-Ellis theorem is a consequence of Propositions A.2 and A.4.
Theorem A.5 If e(s) is differentiable on ]a, b[ and 0 €]a, b then, for any open set J C]|D%Ve(a), D™ e(b)],

.1 —1 .
tlgrolo 7 log PL({z € My |t X¢(z) € J}) = —érég]go(ﬂ).

Proof. Lower bound. For any § € J and 6 > 0 such that |6 — 6,6 + §[C J one has
Pi({z € My |t ' X (2) € J}) > Po({x € My |t X (z) €0 — 6,0 + 0[}),

and it follows from Proposition A.4 that
1
lim inf 7 log Pi({x € M;|[t7' Xi(2) € J}) > —p(6 — 0).
—00
Letting | 0 and optimizing over 6 € J, we obtain

ool ] 1 .
htrggolf n log P,({z € My |t~ X¢(z) €J}) > — élég] ©(0). (A.3)

Upper bound. Note that e(0) = 0 €]a, b[. By Part (5) of Proposition A.1, we have ¢(6) = 0 for § = ¢’(0)
and ¢(6) > 0 otherwise. Hence, if ¢/(0) € cl(J), then

tisup 5 log Po({w € M, |17 X,(2) € I}) < 0 = —juf o(6).
In the case ¢’(0) & cl(J), there exist av, S € cl(J) such that ¢’(0) €], S[C R\ cl(J). It follows that
Pi({x € M|t  X;(x) € I})
< P({z e M|t Xy(2) < a}) + P({x € My |t Xy (x) > BY})
< 2max (P({z € M, |[t7' X (2) < a}), P,({z € M, |t7' Xy (2) > BY})) ,
and Proposition A.2 yields

lim sup % log Py({z € M |t ' X;(z) € I}) < —min(p(a), (B)).

t—o0

Finally, by Part (5) of Proposition A.1, one has
inf o(0) = min(p(e), 9(8)),

0el
and therefore
limsup ~ log Py({z € M, |t~ X, (x) € I}) < inf (6), (A4)
t—oo U o€l
holds for any J C]D%e(a), D™ e(b)[. The result follows from the bounds (A.3) and (A.4). O
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A.3 Gartner-Ellis theorem in dimension d > 1

Let X; : M; — R? be a family of measurable functions w.r.t. the probability spaces (M;, F;, P;). If
G C R%is a Borel set, we denote by int(G) its interior, by cl(G) its closure, and by G its boundary. The
following result is a multi-dimensional version of the Girtner-Ellis theorem.

Theorem A.6 Assume that the limit

— 00

h(Y) = Jim tlog /M eY X dp,, (A.5)

exists in [—00, +oc] for all Y € RY, that the function h(Y) is lower semi-continuous on RY, differentiable
on the interior of the set D = {Y € R?||h(Y)| < oo} and satisfies

lim IVA(Y)| =
int(D)3Y—=Yo

for all Yo € OD. Suppose also that 0 is an interior point of D. Then, for all Borel sets G C R% we have

_ zgiigtf(G)I( ) < hmlnf logPt ({a: € M|t~ Xy (z) € G})

< hmsup log P, ({z € M|t 'Xy(z) € G}) < — inf I(Z),
t—o00 Zecl(G)

where

(Z) = 52£d(Y -Z — h(Y)).

‘We now describe a local version of Girtner-Ellis theorem in d > 1. Set

t—o0

h(Y) = limsup — . log /M eYXedp,

1(Z) = stelﬂgd(Y -Z—h(Y)).

LetD = {Y € R?| h(Y) < oo} and let D be the set of all Y € R? for which the limit (A.5) exists and is
finite. Let S C D be the set of points at which h(Y) is differentiable and let 7 = {Vh(Y)|Y € S}.

Theorem A.7 Suppose that 0 € int(D). Then
(1) For any Borel set G C ]Rd,

i 1 P eMth GG < — f I(Z
msup ;log 2, ({o € M1~ Xy(a) € G}) <~ inf T(Z).

(2) For any Borel set G C F,

hmmf logPt ({zeM|t7'Xy(z) € G}) > —Zeiigtf(G)T(Z).

We refer to [DZ] for proofs and various extensions of these fundamental results.

A.4 Central limit theorem

Bryc [Br] has observed that under a a suitable analyticity assumption the central limit theorem follows
from the large deviation principle. In this appendix we state and prove Bryc’s result. The setup is the same
as in Appendix A.3. Let

1
ht(Y) = ; log /M eY-Xt df’t7
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and let D, be the open polydisk of C? of radius € centered at 0, i.e.,

D.={z=(z1,...,24) € C?| max|z;| < ¢}.
J

The analyticity assumption is:

(A) For some € > 0 and all ¢ € 7 the function Y +— h;(Y) has an analytic continuation to the polydisc D,
such that

sup |he(2)| < oo.
zeD,
teT
Moreover, for Y € D, real, the limit
h(Y) = lim h(Y)

t—o0

exists.

This assumption and Vitali’s convergence theorem (see Appendix B below) imply that A(Y') has an-
alytic extension to D, and that all derivatives of h;(z) converge to corresponding derivatives of h(z) as
t — oo uniformly on compact subsets of D.. We denote

m; = Vi (Y)|v=o, m = VA(Y)|y=o.

Clearly, Clearly, my is the expectation of X; w.r.t. P, and

lim -m; = m.
t—oo t

Similarly, if D, = [Djy,] is the covariance of X, then

1
lim ~D, =D,

t—o0
where D = [Dj;] is given by
Dji = 8%y, h(Y)|y=0-

Theorem A.8 Assumption (A) implies the central limit theorem: for any Borel set G C R,

Jim P, ({m e M| W € G}) = un(G),

where up is centered Gaussian with variance D.

Remark 1. In general, the large deviation principle does not imply the central limit theorem. In fact,
assumption (A) cannot be significantly relaxed, see [Br] for a discussion.
Remark 2. Assumption (A) is typically difficult to check in practice. We emphasize, however, that a

verification of assumptions of this type has played the central role in the works [ , , ].
Remark 3. The proof below should be compared with Section 1.12.
Proof. By absorbing m; into X; we may assume that m; = 0. Letk = (ky,--- , kq), ki > 0, be a

multi-index and

gkt tka Y-X;
t)y=————1o / e vt dP, ,
Xk (t) oy oy g L tly—o

the k-th cummulant of ¢~ 1/2X,.
Set
T, ={z=(21,...,24) € C?||z| = r forall j}.
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The Cauchy integral formula for polydisc yields

kit tka Lok
]y = o s,
e 2

Dzt ... 9z (2ri)d Fitl ., ghatl
ke Ry he(z
- tl—lglo (27Ti)d ‘%F; zfl"rl ( l§d+1 dzi - -dzp.
Note that
j{ hi(z) dz :][ h(z) dz
T Ziﬁ-i-l .. Z§d+1 Frfﬁ Z{fl-‘rl .. ZSdJrl
_ tk1+é"kd 7{ ht(t_l/Qz) s
re zle e zsﬁl ’
and so
Mh(z)‘ — lim Mt%% ht—(’z)dz codz
D2kt 9k =0 tooo (2mi)d re Zth. L ket ! "

The Cauchy formula implies

t)=1 z,
Xk(t) (2mi)d ki+1 st-s-l

k1!~-~kd!]{ he(t=1/22)
F% Zl

and we see that

ok1t-tka kit

g g M) o = Jim £ ),
Hence, if k1 + - - - + kg > 3, then
tlim Xk(t) = 0.

and if ki + - - - + kg = 2 with the pair k;, k; strictly positive, then

. &
100 = 5 G Mo

Since the expectation of X, is zero, we see that the cumulants of 12X, converge to the cumulants of the

centered Gaussian on R? with covariance D. This implies that the moments of ¢~'/2X, converge to the
moments of the centered Gaussian with covariance D, and theorem follows (see Section 30 in [Bi2]). O
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Appendix B: Vitali convergence
theorem

For € > 0 let D, be the open polydisk of C™ of radius e centered at 0, i.e.,

D.={z=(21,...,2n) €C"| mjax|zj| < €}.

Theorem B.1 Let T C Ry be an unbounded set and let F; : D, — C, t € Z, be analytic functions such
that

sup |Fi(z)] < 0.
z€D,
>0

Suppose that the limit
lim Fi(z) = F(z2), (B.1)

t—o0

exists for all z € D, N R™. Then the limit (B.1) exists for all z € D, and is an analytic function on
D.. Moreover, as t — oo, all derivatives of F; converge uniformly on compact subsets of D, to the
corresponding derivatives of F.

Proof. Set
I, ={z=(z1,...,2,) € C"||z;| =rforall j}.

For any 0 < r < ¢, the Cauchy integral formula for polydisks yields

Fatothn Kyl k! F
4 : L ?{ (w) dw; ---dw,,  (B2)
T

(()"Zfl . azﬁ" (Z) = (271‘1)” X (wl _ zl)kl—i-l .. (wn _ Zn)k”+1

forall z € D,.. It follows that the family of functions { F} } <7 is equicontinuous on D, forany 0 < ' < r.
By the Arzela-Ascoli theorem, the set { F} } is precompact in the Banach space C'(cl(D,)) of all bounded
continuous functions on cl(D,-) equipped with the sup norm. The Cauchy integral formula (B.2), where
now z € D,  and the integral is over I',, yields that any limit point of the net {F;}:cz (as t — 00)
in C(cl(D,+)) is an analytic function on D,. By the assumption, any two limit functions coincide for z
real, and hence they are identical. This yields the first part of the theorem. The convergence of the partial
derivatives of F}(z) is an immediate consequence of the Cauchy integral formula. O
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Notations

(-|-): inner product on K, 31
(+]+): inner product on He, 59
(¢|: Dirac bra, 31

|¥)): Di

|-)

|‘ )

): Dirac ket, 31
|

|.

(-|-)p: Kubo-Mari inner product, 58

(-|-)p: standard correlation w.r.t. p, 63

|Al: operator absolute value, 33

1: operator unit, 31

A’: commutant, 59

Aut(O): group of x-automorphisms of O, 32
A discrete Dirichlet Laplacian, 8

A,,: modular operator of w, 63

A olvt relative modular operator, 64

D, (p,v): minimal error probability, 50

D, (p, v, P): error probability of the test P, 50
E;;: basis of O, 31

® y: flux relation, 85

T'(A): second quantization of A, 118

I'(K): fermionic Fock space, 117

‘H,: GNS space, 61

He: standard representation space, 59

H¢: natural cone, 61

J: modular conjugation, 61

K standard Liouvillean, 62

K1 ® Ka: tensor product, 32

K®™: n-fold tensor product, 115

K™ antisymmetric n-fold tensor product, 116
L(-): (Left) standard representation, 59

L,: LP-Liouvillean, 77

LP(O): O equiped with the p-norm || - ||,,, 65
LP(O,w): Araki-Masuda LP-space, 66

L¥ (O, w): Araki-Masuda positive cone, 66
M., enveloping von Neumann algebra of w, 98
N': number operator, 118

N.,: set of w-normal states, 98

O, positive part of O, 32

Q: Fock vacuum vector, 117

Ogels: self-adjoint part of O, 32

Py (+): spectral projection, 32

Pyt optimal test (Neyman-Pearson), 50
R(-): (Right) standard representation, 59
S(p): von Neumann entropy, 43

S(p|v): relative entropy, 47

Sa(p|v): Rényi entropy, 44
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G: set of states on O, 42

[Dw; : Dw]®: multi-parameter Connes cocycle,
82

[Dp : Dv)t: Connes cocycle, 63

a*: fermionic creation/annihilation operators, 119

dT'(A): differential second quantization of A, 118

d(+): generator of a dynamics, 52

ep,+(): entropic pressure functional, 74

€naive,¢(Q¢): naive cumulant generating function,

113

ep,¢(a): multi-parameter entropic pressure func-
tional, 81

et(X,Y): generalized entropic pressure functional,
86

f(A): functional calculus, 32

id: identity map on O, 32

Aj(-): eigenvalues in decreasing order, 32
v < w: Ranv C Ranw, 43

log( - ): natural logarithm, 33

/ o[- relative Hamiltonian, 64

(- ): singular values, 33

I - ||: operator norm, 31

|| - ||p: p-normon O, 34

I - |lw,p: Araki-Masuda p-norm, 65

v 1L w: Ranv 1 Ranw, 43

m,: GNS representation, 61

pa: e?/tr(e?), 43

s(p): Ran p, support of a state, 43

sign( - ): signature of a permutation, 116
<;|V: relative modular group, 64

5 multi-parameter modular group, 82
¢! modular group of w, 63

sp( - ): spectrum, 31

tric( - ): partial trace, 40

7t: dynamics, 52

7i,: perturbed dynamics, 55

&, vector representative of the state v, 61
Cocn(p,v): Chernoff distance, 51
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algebra
C*-, 33,96, 128
*-, 33
commutative or abelian, 33
complex, 33
enveloping von Neumann, 98, 105
unital, 33
von Neumann, 65, 69, 123
Araki-Masuda LP-space, 66, 76, 83

Bogoliubov inner product, see Kubo Mari inner
product

canonical anticommutation relations, 119
canonical correlation, see Kubo Mari inner prod-
uct
CAR, see canonical anticommutation relations
charge, 54, 89, 135
chemical potential, 55, 89
Chernoff
distance, 51
exponents, 104
CLT, see theorem, central limit
cocycle, 71, 110, 138
Connes, 63, 76, 82
commutant, 59
complex conjugation, 59
complex deformation, 103
cone, 59
dual, 66
natural, 61, 98
self-dual, 59
C* property, 31

density, 124
density matrix, 42
distribution
Fermi-Dirac, 126
Duhamel two point function, see Kubo Mari in-
ner product
dynamical system, 52, 71
dynamics, 52, 61
perturbed, 55, 64, 90

EBB, see model, electronic black box
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entropic pressure, 74, 81, 97, 136, 139
generalized, 86, 92, 97, 151
entropy, 126
balance, 11, 72, 90
joint concavity, 46, 49
production, 11, 19, 72, 80, 81, 90, 92, 96,
101, 111, 136, 143, 150, 152
Rényi, 11, 44, 48, 64, 98, 142
relative, 10, 47, 64, 73, 98
von Neumann, 43
error probability, S0
ES-symmetry, see symmetry, Evans-Searles
expansion
Duhamel, 34, 44
Dyson, 56, 147

FCS, see full counting statistics
Fenchel-Legendre transform, 155
flux, 11, 85,90, 92, 110, 135
Fock space, 117
formula
Duhamel, 33, 57, 87
Green-Kubo, 27, 88, 92, 100, 109, 112
Kosaki, 45, 66, 70
Landauer-Biittiker, 26, 143
Laplace, 120, 125
Leibnitz, 116
Levitov-Lesovik, 144
Lie product, 33, 57
free energy, 53
full counting statistics, 78, 84, 91, 97, 101, 110,
137, 143

gauge group, 55, 89

Gibbs
canonical ensemble, 53
grand canonical ensemble, 126
variational principle, 54

Hamiltonian, 52, 62, 134

-XY, 148

one-particle, 126

relative, 64, 71, 81, 82, 86, 130, 135
Heisenberg picture, 52
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Hoefding exponents, 107
hypothesis testing, 50, 69, 104

inequality
Araki-Lieb-Thirring, 37
Fannes, 44
Golden-Thompson, 38, 39, 57, 73, 80
Holder, 35, 38, 45, 57, 65
Klein, 35, 43, 48, 49
Lowner-Heinz, 33, 51
Minkowski, 35
Peierls-Bogoliubov, 35
Schwarz, 41
Uhlmann, 46, 49, 68

KMS
condition, 53
state, 54
Kubo-Mari inner product, 58, 63, 100

Laplacian

discrete Dirichlet (Ay), 8, 134, 144
large deviation principle, 28, 111
LDP, see large deviation principle
Legendre transform, 155
linear response, 25, 87, 92, 100, 141, 143
Liouvillean

LP, 77,91

standard, 62, 63-65, 72,77, 91, 99, 130

local observables, 96

map
completely positive, 40
positive, 40
Schwarz, 41, 46, 48
trace preserving, 40
unital, 40
McLennan-Zubarev ensemble, 16, 90
min-max principle, 34
model
electronic black box, 134
spin-fermion, 131
modular
conjugation, 61, 63, 98, 129
dynamics, 63
relative, 64
group, 63, 72, 82, 89, 98, 110
operator, 63, 82, 98, 130
relative, 64, 65-67, 98, 130
state, 98
structure, 58

NESS, see state, non-equilibrium steady
Neyman-Pearson, 51, 106
number operator, 118
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Onsager matrix, 26, 87, 109
open system, 90, 111

partial trace, 40

Pauli principle, 115
polar decomposition, 33
pressure, 53, 126

principle of regular entropic fluctuations, 6, 30

Radon-Nikodym derivative, 10, 64, 146
relation

Einstein, 27, 113

Evans-Searles, 13, 73

flux, 85

Onsager reciprocity, 26, 87,92, 101, 112

representation
Araki-Wyss, 129, 132
cyclic, 61
equivalent, 59
faithful, 59, 96
Fock, 121
GNS, 61, 98, 105, 132
Jordan-Wigner, 148
Kraus, 40
of a x-algebra, 59
of CAR, 121, 149
standard, 61, 64
resonances, 103

scattering matrix, 17, 139, 145
Schrodinger picture, 52
spin system, 147
standard correlation, 63
x-automorphism, 32
group, 52
generator, 52
state, 42
chaotic, 43
equivalent, 43
faithful, 43, 61
KMS, 53, 54, 62
modular, 98
non-equilibrium steady, 19, 109, 139
normal, 98
perturbed KMS, 56
pure, 43
quasi-free, 124
Stein exponent, 108
support, 43
symmetry

Evans-Searles, 13, 22, 28, 73, 74, 78, 82,

84,98, 101, 112
generalized, 14, 86, 100

TD limit, see thermodynamic limit
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test, 50
theorem
central limit, 24, 25, 104, 111, 112, 159
Evans-Searles fluctuation, 13, 29, 101
Girtner-Ellis, 28, 29, 101, 105, 112, 158
Gallavotti-Cohen fluctuation, 6, 30, 109
Lieb concavity, 46
transient fluctuation, 29
Uhlmann monotonicity, 46, 50, 68
von Neumann bicommutant, 122
thermodynamic limit, 14, 96, 127, 137
time reversal invariance, 12, 71, 85, 135
transfer operator, 77
transport coefficients, 87, 109
TRI, see time reversal invariance

uncertainty principle, 42

variational principle, 43, 46, 47, 54

vector
cyclic, 59, 61, 67, 98, 129, 132
representative of a state, 61, 62, 67, 98
separating, 59, 61, 98
vacuum, 117

wave operator, 17, 139, 145
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