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COUPLING OF GRAVITY TO MATTER, SPECTRAL

ACTION AND COSMIC TOPOLOGY

BRANIMIR ĆAĆIĆ, MATILDE MARCOLLI, KEVIN TEH

Abstract. We consider a model of modified gravity based on the spec-
tral action functional, for a cosmic topology given by a spherical space
form, and the associated slow-roll inflation scenario. We consider then
the coupling of gravity to matter determined by an almost commutative
geometry over the spherical space form. We show that this produces a
multiplicative shift of the amplitude of the power spectra for the density
fluctuations and the gravitational waves, by a multiplicative factor equal
to the total number of fermions in the matter sector of the model. We
obtain the result by an explicit nonperturbative computation, based on
the Poisson summation formula and the spectra of twisted Dirac opera-
tors on spherical space forms, as well as by a heat-kernel computation.
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1. Introduction

Models of gravity coupled to matter based on Noncommutative Geometry
are usually obtained (see [2], [6], [9], [10]) by considering an underlying ge-
ometry given by a product X×F of an ordinary 4-dimensional (Riemannian
compact) spacetime manifold and a finite noncommutative space F .

The main purpose of the paper is to show how the slow-roll inflation
potential derived in [20], [21] is affected by the presence of the matter con-
tent and the almost commutative geometry. We first consider the Poisson
summation formula technique and the nonperturbative calculation of the
spectral action and then a heat kernel argument to show that the amplitude
of the slow-roll potential is affected by a multiplicative factor N equal to
the dimension of the representation, that is, to the total number of fermions
in the theory.

1.1. Spectral triples. Noncommutative spaces are described, in this con-
text, as a generalization of Riemannian manifolds, via the formalism of spec-
tral triples introduced in [11]. An ordinary Riemannian spin manifold X is
identified with the spectral triple (C∞(X), L2(X,S), /D), with the algebra
of smooth functions acting as multiplication operators on the Hilbert space
of square integrable spinors and the Riemannian metric reconstructed from
the Dirac operator /D.

More generally, for a noncommutative space, a spectral triple is a similar
set (A,H,D) consisting of a ∗-algebra represented by bounded operators
on a Hilbert space H and a self-adjoint operator D with compact resolvent
acting on H with a dense domain and such that the commutators [D, a]
extend to bounded operators on all of H. A finite noncommutative space is
one for which the algebra A is finite dimensional.

A recent powerful reconstruction theorem ([12], see also [27]) shows that
commutative spectral triples that satisfy certain natural axioms, related to
properties such as orientability and Poincaré duality, are spectral triples of
smooth Riemannian manifolds in the sense mentioned above.

In the models of gravity coupled to matter, the choice of the finite geom-
etry F = (AF ,HF ,DF ) determines the field content of the particle physics
model. As shown in [9], the coordinates on the moduli space of possible
Dirac operators DF on the finite geometry (AF ,HF ) specify the Yukawa
parameters (Dirac and Majorana masses and mixing angles) for the parti-
cles. A classification of the moduli spaces of Dirac operators on the finite
geometries was given in [3].

1.2. The spectral action. One obtains then a theory of (modified) gravity
coupled to matter by taking as an action functional the spectral action on
the noncommutative space X×F , considered as the product of the spectral
triples (C∞(X), L2(X,S), /D) and (AF ,HF ,DF ).

The spectral action functional introduced in [6] is a function of the spec-
trum of the Dirac operator on a spectral triple, given by summing over the
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spectrum with a cutoff function. Namely, the spectral action functional is
defined as Tr(f(D/Λ)), where Λ is an energy scale, D is the Dirac operator
of the spectral triple, and f is a smooth approximation to a cutoff function.
As shown in [6] this action functional has an asymptotic expansion at high
energies Λ of the form

(1.1) Tr(f(D/Λ)) ∼
∑

k∈DimSp

fkΛ
k

∫
−|D|−k + f(0)ζD(0) + o(1),

where the fk are the momenta fk =
∫∞
0 f(v)vk−1dv of the test function f ,

for k a non-negative integer in the dimension spectrum of D (the set of poles
of the zeta functions ζa,D(s) = Tr(a|D|−s)) and the term

∫
−|D|−k given by

the residue at k of the zeta function ζD(s).
These terms in the asymptotic expansion of the spectral action can be

computed explicitly: for a suitable choice of the finite geometry spectral
triple (AF ,HF ,DF ) as in [9], they recover all the bosonic terms in the
Lagrangian of the Standard Model (with additional right handed neutrinos
with Majorana mass terms) and gravitational terms including the Einstein–
Hilbert action, a cosmological term, and conformal gravity terms, see also
Chapter 1 of [13]. For a different choice of the finite geometry, one can
obtain supersymmetric QCD, see [2].

The higher order terms in the spectral action, which appear with coeffi-
cients f−2k = (−1)kk!/(2k)!f (2k)(0) depending on the derivatives of the test
function, and involve higher derivative terms in the fields, were considered
explicitly recently, in work related to renormalization of the spectral action
for gauge theories [31], [32], and also in [7]. In cases where the underly-
ing geometry is very symmetric (space forms) and the Dirac spectrum is
explicitly known, it is also possible to obtain explicit non-perturbative com-
putations of the spectral action, computed directly as Tr(f(D/Λ)), using
Poisson summation formula techniques applied to the Dirac spectrum and
its multiplicities, see [7], [20], [21], [30].

1.3. Almost commutative geometries. It is also natural to consider a
generalization of the product geometry X × F , where this type of almost

commutative geometry is generalized to allow for nontrivial fibrations that
are only locally, but not globally, products. This means considering almost
commutative geometries that are fibrations over an ordinary manifold X,
with fiber a finite noncommutative space F . A first instance where such
topologically non-trivial cases where considered in the context of models of
gravity coupled to matter was the Yang–Mills case considered in [1].

In the setting of [1], instead of a product geometry X × F , one considers
a noncommutative space obtained as an algebra bundle, namely where the
algebra of the full space is isomorphic to sections Γ(X, E) of a locally trivial
∗-algebra bundle whose fibers Ex are isomorphic to a fixed finite dimen-
sional algebra AF . The spectral triple that replaces the product geometry
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is then of the form (C∞(X, E), L2(X, E ⊗ S),DE ), where the Dirac opera-
tor DE = c ◦ (∇E ⊗ 1 + 1 ⊗ ∇S) is defined using the spin connection and
a hermitian connection on the algebra bundle E (with respect to an inner
product obtained using a faithful tracial state τx on Ex. The spectral triple
obtained in this way can be endowed with a compatible grading and real
structure and it is described in [1] in terms of unbounded Kasparov product
of KK-cycles. In the Yang–Mills case, where the finite dimensional algebra
is AF = MN (C), it is then shown in [1] that this type of spectral triples
describes PSU(N)-gauge theory with a nontrivial principal bundle and the
Yang–Mills action functional coupled to gravity is recovered from the as-
ymptotic expansion of the spectral action.

A reconstruction theorem for almost commutative geometries (defined in
this more general topologically nontrivial sense), was recently obtained in
[4], as a consequence of the reconstruction theorem for commutative spectral
triples of [12]. In this more general setting, an abstract class of almost com-
mutative spectral triple (A,H,D) with a commutative base is defined and
proved to be equivalent to the concrete definition, whereH = L2(X,V), with
V a self-adjoint Clifford module bundle, and where the algebra is given by
sections A = C∞(X, E) with E a unital ∗-algebra sub-bundle of End+Cl(X)(V),
and D is a Dirac type operator on V.

1.4. Cosmic topology and inflation. The asymptotic expansion of the
spectral action provides naturally an action functional for (Euclidean) mod-
ified gravity, where in addition to the ordinary Einstein–Hilbert action with
cosmological term one also has a topological term (Euler characteristic) and
conformal gravity terms like the Weyl curvature and a conformal coupling
of the Higgs field to gravity. It also produces the additional bosonic terms:
the action for the Higgs with quartic potential and the Yang–Mills action
for the gauge fields. Thus, it is natural to consider the spectral action as
a candidate action functional for a modified gravity model and study its
consequences for cosmology.

Cosmological implications of the spectral action, based on the asymptotic
expansion, were considered in [17], [19], [22], [23], [24], [25]. For recent
developments in the case of Robertson–Walker metrics see [8].

In [20] and [21] the nonperturbative spectral action was computed explic-
itly for the 3-dimensional spherical space forms and the flat 3-dimensional
Bieberbach manifolds, via the same type of Poisson summation technique
first used in [7] for the sphere case. In these computations one considers the
spectral action as a pure gravity functional (that is, only on the manifold X,
without the finite geometry F ). It is shown that a perturbation D2 + φ2 of
the Dirac operator produces in the nonperturbative spectral action a slow-
roll potential V (φ) for the scalar field φ, which can be used as a model for
cosmic inflation.



COUPLING TO MATTER, SPECTRAL ACTION, COSMIC TOPOLOGY 5

It is shown in [20], [30] and [21] that nonperturbative spectral action for
the spherical space forms S3/Γ is, up to an overall constant factor that de-
pends on the order of the finite group Γ, the same as that of the sphere
S3, hence so is the slow-roll potential. Similarly, the spectral action and
potentials for the flat Bieberbach manifolds are a multiple of those of the
flat torus T 3. In particular, for each such manifold, although the spectra de-
pend explicitly on the different spin structures, the spectral action does not.
These results show that, in a model of gravity based on the spectral action
functional, the amplitudes and slow-roll parameters in the power spectra for
the scalar and tensor fluctuation would depend on the underlying cosmic
topology, hence constraints on these quantities derived from cosmological
data (see [18], [28], [29]) may, in principle, be able to distinguish between
different topologies.

Here we discuss a natural question arising from the results of [20] and
[21], namely how the presence of the finite geometry F may affect the be-
havior of the slow-roll inflation potential. As a setting, we consider here
the case of the spherical space forms S3/Γ as the commutative base of an
almost commutative geometry in the sense of [4], where the Clifford module
bundle V on S3/Γ is a flat bundle corresponding to a finite-dimensional rep-
resentation α : Γ → GLN (C) of the group Γ. As the Dirac operator on the
almost commutative geometry we consider the corresponding twisted Dirac
operator DΓ

α on S3/Γ. From the point of view of the physical model this
means that we only focus on the gravity terms and we do not include the
part of the Dirac operator DF that describes the matter content and which
comes from a finite spectral triple in the fiber direction.

Our main result is that, for any such almost commutative geometry, the
spectral action and the associated slow-roll potential only differ from those of
the sphere S3 by an overall multiplicative amplitude factor equal to N/#Γ.
Thus, the only modification to the amplitude factor in the power spectra is
a correction, which appears uniformly for all topologies, by a multiplicative
factor N depending on the fiber of the almost commutative geometry. In
terms of the physical model, this N represents the number of fermions in the
theory. We first compute the spectral action in its nonperturbative form, as
in [7], [20], [21], [30], using the Poisson summation formula technique and
the explicit form of the Dirac spectra derived in [5]; then we recover the
same result via an argument based on the perturbative form of the spectral
action, and heat kernel methods.

1.5. Basic setup. We recall the basic setting, following the notation of
[5]. Let Γ ⊂ SU(2) be a finite group acting by isometries on S3, identified
with the Lie group SU(2) with the round metric. The spinor bundle on
the spherical form S3/Γ is given by S3 ×σ C

2 → S3/Γ, where σ is the
representation of Γ defined by the standard representation of SU(2) on C

2.
A unitary representation α : Γ → U(N) defines a flat bundle Vα =

S3 ×α C
N endowed with a canonical flat connection. By twisting the Dirac
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operator with the flat bundle, one obtains an operator DΓ
α on the spheri-

cal form S3/Γ acting on the twisted spinors, that is, on the Γ-equivariant
sections C∞(S3,C2 ⊗ C

N )Γ, where Γ acts by isometries on S3 and by
σ ⊗ α on C

2 ⊗ C
N . These are the sections of the twisted spinor bundle

S3 ×σ⊗α (C2 ⊗C
N ) → S3/Γ. Thus, DΓ

α is the restriction of the Dirac oper-
ator D ⊗ idCN to the subspace C∞(S3,C2 ⊗C

N )Γ ⊂ C∞(S3,C2 ⊗ C
N ).

This setup gives rise to an almost commutative geometry in the sense
of [4], where the twisted Dirac operator DΓ

α represents the “pure gravity”
part of the resulting model of gravity coupled to matter, while the fiber
C
N = HF determines the fermion content of the matter part and can be

chosen according to the type of particle physics model one wishes to consider
(Standard Model with right handed neutrinos, supersymmetric QCD, for
example, as in [9], [2], or other possibilities). Since we will only be focusing
on the gravity terms, we do not need to specify in full the data of the almost
commutative geometry, beyond assigning the flat bundle Vα and the twisted
Dirac operator DΓ

α, as the additional data would not enter directly in our
computations.

2. Poisson summation formula

Following the method developed in [7] and [20], [30], we compute the
spectral action of the quotient spaces S3/Γ equipped with the twisted Dirac
operator corresponding to a finite-dimensional representation α of Γ as fol-
lows. We define a finite set of polynomials labeled P+

m , and P−
m which

describe the multiplicities of, respectively, the positive and negative eigen-
values of the twisted Dirac operator, in the sense that P±

m(u)(λ) equals the
multiplicity of the eigenvalue

(2.1) λ = −1/2± (k + 1), k ≥ 1

whenever k ≡ m mod cΓ, where cΓ is the exponent of the group Γ, the least
common multiple of the orders of the elements in Γ.

The main technical result we will prove is the following relation between
these polynomials:

(2.2)

cΓ∑

m=1

P+
m(u) =

cΓ−1∑

m=0

P−
m(u) =

NcΓ
#Γ

(
u2 − 1

4

)
.

Since the polynomial on the right-hand-side is a multiple of the polynomial
for the spectral multiplicities of the Dirac spectrum of the sphere S3 (see [7]),
we will obtain from this the relation between the non-perturbative spectral
action of the twisted Dirac operator DΓ

α on S3/Γ and the spectral action on
the sphere, see Theorem 2.1 below.

Furthermore, we shall show that the polynomials P+
m(u) match up per-

fectly with the polynomials P−
m(u), so that the polynomials P+

m(u) alone
describe the entire spectrum by allowing the parameter k in equation 2.1 to
run through all of Z. Namely, what we need to show is that
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(2.3) P+
m(u) = P−

m′(u),

where for each m, m′ is the unique number between 0 and cΓ − 1 such
that m+m′ + 2 is a multiple of cΓ. To be more precise,

(2.4) m′ =





cΓ − 2−m, if 1 ≤ m ≤ cΓ − 2

cΓ − 1, if m = cΓ − 1

cΓ − 2 if m = cΓ

Define

(2.5) gm(u) = P+
m(u)f(u/Λ).

Now, we apply the Poisson summation formula, to obtain,

Tr(f(D/Λ)) =
∑

m

∑

l∈Z
gm(1/2 + cΓl +m+ 1)

=
N

#Γ

∑

m

ĝm(0) +O(Λ−∞)

=
N

#Γ

(∫

R

u2f(u/Λ)− 1

4

∫

R

f(u/Λ)

)
+O(Λ−∞)

=
N

#Γ

(
Λ3f̂ (2)(0) − 1

4
Λf̂(0)

)
+O(Λ−∞),

and so we have the main result.

Theorem 2.1. Let Γ be a finite subgroup of S3, and let α be a N -dimensional

representation of Γ. Then the spectral action of S3/Γ equipped with the

twisted Dirac operator is

(2.6) Trf(D/Λ) =
N

|Γ|

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞).

Here f̂ (2) denotes the Fourier transform of u2f(u).

Similar computations of the spectral action have also been performed in
[20], [21], and [30]. In the sequel we describe how to obtain equation (2.2),
by explicitly analyzing the cases of the various spherical space forms: lens
spaces, dicyclic group, and binary tetrahedral, octahedral, and icosahedral
groups. In all cases we compute explicitly the polynomials of the spectral
multiplicities and check that (2.2) is satisfied. Our calculations are based
on a result of Cisneros-Molina, [5], on the explicit form of the Dirac spectra
of the twisted Dirac operators DΓ

α, which we recall here below.



8 BRANIMIR ĆAĆIĆ, MATILDE MARCOLLI, KEVIN TEH

2.1. Twisted Dirac spectra of spherical space forms. The spectra of
the twisted Dirac operators on the quotient spaces are derived in [5]. Let us
recall the notation and the main results.

Let Ek denote the k + 1-dimensional irreducible representation of SU(2)
on the space of homogeneous complex polynomials in two variables of degree
k. By the Peter–Weyl theorem, one can decompose C∞(S3,C) = ⊕kEk ⊗
E∗

k as a sum of irreducible representations of SU(2). This gives that, on

C∞(S3,C2 ⊗ C
N ) = ⊕kEk ⊗ E∗

k ⊗ C
2 ⊗ C

N , the Dirac operator D ⊗ idCN

decomposes as ⊕kidEk
⊗Dk ⊗ idCN , with Dk : E∗

k ⊗ C
2 → E∗

k ⊗ C
2. Upon

identifying C∞(S3,C2 ⊗ C
N )Γ = ⊕kEk ⊗ HomΓ(Ek,C

2 ⊗ C
N ), one sees

that, as shown in [5], the multiplicities of the spectrum of the twisted Dirac
operator DΓ

α are given by the dimensions dimCHomΓ(Ek,C
2 ⊗ CN ), which

in turn can be expressed in terms of the pairing of the characters of the
corresponding Γ-representation, that is, as 〈χEk

, χσ⊗α〉Γ. One then obtains
the following:

Theorem 2.2. (Cisneros-Molina, [5]) Let α : Γ → GLN (C) be a represen-

tation of Γ. Then the eigenvalues of the twisted Dirac operator DΓ
α on S3/Γ

are

−1

2
− (k + 1) with multiplicity 〈χEk+1

, χα〉Γ(k + 1), k ≥ 0,

−1

2
+ (k + 1) with multiplicity 〈χEk−1

, χα〉Γ(k + 1), k ≥ 1,

Proposition 2.3. (Cisneros-Molina, [5]) Let k = cΓl+m with 0 ≤ m < cΓ.

(1) If −1 ∈ Γ, then

〈χEk
, χα〉Γ =

{
cΓl
|Γ| (χα(1) + χα(−1)) + 〈χEm , χα〉Γ if k is even
cΓl
|Γ| (χα(1) − χα(−1)) + 〈χEm , χα〉Γ if k is odd

(2) If −1 /∈ Γ, then

〈χEk
, χα〉Γ =

NcΓl

#Γ
+ 〈χEm, χα〉Γ

2.2. Lens spaces, odd order. In this section we consider Γ = Zn, where
n is odd. When n is odd, −1 /∈ Γ, which affects the expression for the
character inner products in Proposition 2.3.

For m ∈ {1, . . . , n}, we introduce the polynomials,

P+
m(u) =

N

n
u2 + (βαm − mN

n
)u+

βαm
2

− mN

2n
− N

4n
,

where

βαm = 〈χEm−1
, χα〉Γ,

and m takes on values in {1, 2, . . . , n}
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Using Theorem 2.2 and Proposition 2.3, it is easy to see that the polyno-
mials P+

m(u) describe the spectrum on the positive side of the real line, in
the sense that P+

m (u)(λ) equals the multiplicity of the eigenvalue

λ = −1/2 + (k + 1), k ≥ 1

whenever k ≡ m mod n.
For the negative eigenvalues, the multiplicities are described by the poly-

nomials

P−
m(u) =

N

n
u2 +

(
2N

n
+
mN

n
− γαm

)
u+

3N

4n
+
mN

2n
− γαm

2
,

m ∈ {0, 1, . . . n − 1}, in the sense that P−
m(u)(λ) equals the multiplicity of

the eigenvalue
λ = −1/2− (k + 1), k ≥ 0

whenever k ≡ m mod n. Here γαm is defined by

γαm = 〈χEm+1
, χα〉Γ.

Let us denote the irreducible representations of Zn by χt, sending the
generator to exp(2πitN ). Here t is a residue class of integers modulo n.

For the sake of computation, we take Zn to be the group generated by

B =

[
e

2πi
n 0

0 e−
2πi
n

]
.

Then in the representation Ek, B acts on the basis polynomials Pj(z1, z2),
j ∈ {0, 1, . . . k} as follows.

B · Pj(z1, z2) = Pj ((z1, z2)B)

= Pj(e
2πi
n z1, e

− 2πi
n z2)

= (e
2πi
n z1)

k−j(e−
2πi
n z2)

j

= e
2πi
n

(k−2j)Pj(z1, z2).

Hence, B is represented by a diagonal matrix with respect to this basis,
and we have

Proposition 2.4. The irreducible characters χEk
of the irreducible repre-

sentations of SU(2) restricted to Zn, n odd, are decomposed into the irre-

ducible characters χ[t] of Zn by the equation

(2.7) χEk
=

j=k∑

j=0

χ[k−2j].

Here, [t] denotes the number from 0 to n− 1 to which t is equivalent mod n.

In the case where −1 /∈ Γ, that is to say, when Γ = Zn where n is odd, by
equating coefficients of the quadratic polynomials P+

m and P−
m′ , the condition

2.3 is replaced by one that may be simply checked.
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Lemma 2.5. Let Γ be any finite subgroup of SU(2) such that −1 /∈ Γ the

condition 2.3 is equivalent to the condition

(2.8) βαm + γαm′ =

{
χα(1), if 1 ≤ m ≤ cΓ − 2

2χα(1), if m = cΓ − 1, cΓ
,

where α is an irreducible representation of Γ. Furthermore this condition

holds in all cases.

Using proposition 2.4, it is a simple combinatorial matter to see that

(2.9)

n∑

m=1

〈χEm−1
, χα〉Γ = N

n+ 1

2
,

for any representation α of Zn

For the argument to go through, one also needs to check the special case

P+
cΓ(1/2) = 0.

By direct evaluation one can check that this indeed holds.
For the negative side, we see that

(2.10)

n∑

m=1

〈χEm+1
, χα〉Γ = N

n+ 3

2
,

for any representation α of Zn, and so

Proposition 2.6. Let Γ be cyclic with #Γ odd, and let α be a N -dimensional

representation of Γ. Then

n∑

m=1

P+
m(u) =

n−1∑

m=0

P−
m(u) = Nu2 − N

4
.

Note that in the statement of theorem 2.2, the first line holds even if
we take k = −1, since the multiplicity for this value evaluates to zero.
Therefore, we automatically have

P−
cΓ−1(−1/2) = 0,

which we still needed to check.

2.3. Lens spaces, even order. When n is even, we have −1 ∈ Zn. When
−1 ∈ Γ, from Theorems 2.2 and 2.3 it follows that the multiplicity of the
eigenvalue

λ = 1/2 + lcΓ +m, l ∈ N

is given by, P+
m , m ∈ {1, 2, . . . , cΓ},
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P+
m(u) =

1

|Γ| (χα(1) + (−1)m+1χα(−1))u2+

(
βαm − 1

#Γ
(m(χα(1) + (−1)m+1χα(−1))

)
u

+
1

2
βαm − 1

4#Γ
(χα(1) + (−1)m+1χα(−1))

− 1

2#Γ
m(χα(1) + (−1)m+1χα(−1))).

The one case that is not clear is λ = 1/2. It is not an eigenvalue of the
twisted Dirac operator. However, it is not clear from Theorems 2.2 and 2.3
that

(2.11) P+
cΓ
(1/2) = 0,

and this needs to hold in order for the argument using the Poisson sum-
mation formula to go through. Evaluating equation (2.11), we see that one
needs to check that

(2.12) 〈χEcΓ−1
, χα〉 =

cΓ
#Γ

(χα(1) + (−1)cΓ+1χα(−1)),

and indeed it holds for each subgroup Γ and irreducible representation α.

Proposition 2.7. For any subgroup Γ ⊂ S3 of even order, the sum of the

polynomials P+
m is

cΓ∑

m=1

P+
m(u) =

cΓ
#Γ

χα(1)u
2

+

(
−c

2
Γχα(1)

2#Γ
− cΓ(χα(1) − χα(−1))

2#Γ
+

cΓ∑

m=1

βαm

)
u

− cΓχα(1)

2#Γ
− c2Γχα(1)

4#Γ
+

cΓ
4#Γ

χα(−1) +
1

2

cΓ∑

m=1

βαm

Since the coefficients of the polynomial are additive with respect to direct
sum, it suffices to consider only irreducible representations.

In the case of lens spaces, cΓ = #Γ, and χt(−1) = (−1)t. As a matter of
counting, one can see that

Proposition 2.8.

cΓ∑

m=1

βtm =

{
n+2
2 if t is even
n
2 if t is odd
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Putting this all into the expression of proposition 2.7, we have, for an
N -dimensional representation, α,

(2.13)

cΓ∑

m=1

P+
m(u) = N

(
u2 − 1

4

)
.

The negative eigenvalues are described by the polynomials

P−
m(u) =

1

#Γ
(χα(1) + (−1)m+1χα(−1))u2+

(
2 +m

#Γ
(χα(1) + (−1)m+1χα(−1)) − γαm

)
u

3 + 2m

4|Γ| (χα(1) + (−1)m+1χα(−1))− 1

2
γαm,

m ∈ {0, 1, . . . cΓ − 1}. And so, we have the following proposition.

Proposition 2.9. For any subgroup Γ ⊂ S3 of even order, the sum of the

polynomials P−
m is

cΓ∑

m=1

P−
m(u) =

cΓ
#Γ

χα(1)u
2+

(
χα(1)c

2
Γ

2#Γ
+

3χα(1)cΓ
2#Γ

+
χα(−1)cΓ

2#Γ
−

cΓ−1∑

m=0

γαm

)
u+

χα(1)cΓ
2#Γ

+
χα(1)c

2
Γ

4#Γ
+
χα(−1)cΓ

4#Γ
− 1

2

cΓ−1∑

m=0

γαm.

By counting, one can see that

(2.14)

cΓ−1∑

m=0

γtm =

{
n+4
2 if t is even

n+2
2 if t is odd

To complete the computation of the spectral action one still needs to
verify the condition (2.3). We have the following lemma, which is obtained
by equating the coefficients of P+

m and P−
m′ , and it covers the cases of the

binary tetrahedral, octahedral and icosahedral groups as well.

Lemma 2.10. Let Γ be any finite subgroup of SU(2) such that −1 ∈ Γ the

condition (2.3) is equivalent to the condition

(2.15) βαm+γαm′ =





χα(1)(χα(1) + (−1)m+1χα(−1)), if 1 ≤ m ≤ cΓ − 2

2χα(1)(χα(1) + χα(−1)), if m = cΓ − 1

2χα(1)(χα(1) − χα(−1)), if m = cΓ

,

where α is an irreducible representation of Γ. Furthermore this condition

holds in all cases.
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2.4. Dicyclic group. The character table for the dicyclic group of order
4r is, for r odd,

Class 1+ 1− 2l r0 r1
ψt 2 2(−1)t ζ lt2r + ζ−lt

2r 0 0
χ1 1 1 1 1 1

χ2 1 −1 (−1)l i −i
χ3 1 1 1 −1 −1

χ4 1 −1 (−1)l −i i,

and for r even,

Class 1+ 1− 2l r0 r1
ψt 2 2(−1)t ζ lt2r + ζ−lt

2r 0 0
χ1 1 1 1 1 1

χ2 1 −1 (−1)l i −i
χ3 1 1 1 −1 −1

χ4 1 −1 (−1)l −i i

Here ζ2r = e
πi
r , 1 ≤ t ≤ r−1, 1 ≤ l ≤ r−1. The notation for the different

conjugacy classes can be understood as follows. The number indicates the
order of the conjugacy class. A sign in the subscript indicates the sign of
the traces of the elements in the conjugacy class as elements of SU(2).

For the dicyclic group of order 4r, the exponent of the group is

cΓ =

{
2r if r is even
4r if r is odd

One can decompose the characters χEk
into the irreducible characters by

inspection, and with some counting obtain the following propositions.

Proposition 2.11. Let Γ be the dicyclic group of order 4r, where r is even.

cΓ∑

m=1

βαm =





r
2 χα ∈ {χ1, χ2, χ3, χ4}
r χα = ψt, t is even

r + 1 χα = ψt, t is odd

cΓ−1∑

m=0

γαm =





r
2 + 1 χα ∈ {χ1, χ2, χ3, χ4}
r + 2 χα = ψt, t is even

r + 1 χα = ψt, t is odd

Proposition 2.12. Let Γ be the dicyclic group of order 4r, where r is odd.

cΓ∑

m=1

βαm =





2r χα ∈ {χ1, χ3}
2r + 1 χα ∈ {χ2, χ4}
4r χα = ψt, t is even

4r + 2 χα = ψt, t is odd

cΓ−1∑

m=0

γαm =





2r + 2 χα ∈ {χ1, χ3}
2r + 1 χα ∈ {χ2, χ4}
4r + 4 χα = ψt, t is even

4r + 2 χα = ψt, t is odd
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2.5. Binary tetrahedral group. The binary tetrahedral group has order
24 and exponent 12. The character table of the binary tetrahedral group is

Class 1+ 1− 4a+ 4b+ 4a− 4b− 6
Order 1 2 6 6 3 3 4
χ1 1 1 1 1 1 1 1
χ2 1 1 ω2 ω ω ω2 1
χ3 1 1 ω ω2 ω2 ω 1
χ4 2 −2 1 1 −1 −1 0
χ5 2 −2 ω2 ω −ω −ω2 0
χ6 2 −2 ω ω2 −ω2 −ω 0
χ7 3 3 0 0 0 0 −1

Here, ω = e
2πi
3 .

For the remaining three groups, we can use matrix algebra to decompose
the characters χEk

.
Let χj, xj, j = 1, 2 . . . , d denote the irreducible characters, and represen-

tatives of the conjugacy classes of the group Γ. Then since every character
decomposes uniquely into the irreducible ones, we have a unique expression
for χEk

as the linear combination

χEk
=

d∑

j=0

ckjχj.

If we let b = (bj) j = 1, . . . , d be the column with bj = χEk
(xj), and let

A = (aij) be the d×d matrix where aij = χj(xi) and let c = (ckj ) j = 1, . . . d
be another column. Then we have

b = Ac,

A is necessarily invertible by the uniqueness of the coefficient column c, and
so c is given by

c = A−1b.

By this method, we obtain the following proposition.

Proposition 2.13. Let Γ be the binary tetrahedral group.

cΓ∑

m=1

βαm =





3, χα ∈ {χ1, χ2, χ3}
7, χα ∈ {χ4, χ5, χ6}
9, χα = χ7

cΓ−1∑

m=0

γαm =





4, χα ∈ {χ1, χ2, χ3}
7, χα ∈ {χ4, χ5, χ6}
12, χα = χ7
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2.6. Binary octahedral group. The binary octahedral group has order
48 and exponent 24. The character table of the binary octahedral group is

Class 1+ 1− 6+ 60 6− 8+ 8− 12
Order 1 2 8 4 8 6 3 4
χ1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 −1 1 1 −1
χ3 2 2 0 2 0 −1 −1 0

χ4 2 −2
√
2 0 −

√
2 1 −1 0

χ5 2 −2 −
√
2 0

√
2 1 −1 0

χ6 3 3 −1 −1 −1 0 0 1
χ7 3 3 1 −1 1 0 0 −1
χ8 4 −4 0 0 0 −1 1 0

Proposition 2.14. Let Γ be the binary octahedral group.

cΓ∑

m=1

βαm =





6, χα ∈ {χ1, χ2}
12, χα = χ3

13, χα =∈ {χ4, χ5}
18, χα ∈ {χ6, χ7}
26, χα = χ8

cΓ−1∑

m=0

γαm =





7, χα ∈ {χ1, χ2}
14, χα = χ3

13, χα =∈ {χ4, χ5}
21, χα ∈ {χ6, χ7}
26, χα = χ8

2.7. Binary icosahedral group. The binary icosahedral group has order
120 and exponent 60. The character table of the binary icosahedral group
is

Class 1+ 1− 30 20+ 20− 12a+ 12b+ 12a− 12b−
Order 1 2 4 6 3 10 5 5 10
χ1 1 1 1 1 1 1 1 1 1
χ2 2 −2 0 1 −1 µ ν −µ −ν
χ3 2 −2 0 1 −1 −ν −µ ν µ
χ4 3 3 −1 0 0 −ν µ −ν µ
χ5 3 3 −1 0 0 µ −ν µ −ν
χ6 4 4 0 1 1 −1 −1 −1 −1
χ7 4 −4 0 −1 1 1 −1 −1 1
χ8 5 5 1 −1 −1 0 0 0 0
χ9 6 −6 0 0 0 −1 1 1 −1

Here, µ =
√
5+1
2 , and ν =

√
5−1
2 .
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Proposition 2.15. Let Γ be the binary icosahedral group.

cΓ∑

m=1

βαm =





15, χα = χ1

31, χα ∈ {χ2, χ3}
45, χα ∈ {χ4, χ5}
60, χα = χ6

62, χα = χ7

75, χα = χ8

93, χα = χ9

cΓ−1∑

m=0

γαm =





16, χα = χ1

31, χα ∈ {χ2, χ3}
48, χα ∈ {χ4, χ5}
64, χα = χ6

62, χα = χ7

80, χα = χ8

93, χα = χ9

2.8. Sums of polynomials. If we input the results of propositions 2.8,
2.11, 2.12, 2.13, 2.14, 2.15 into propositions 2.7, 2.9 and also recalling propo-
sition 2.6 we obtain the following.

Proposition 2.16. Let Γ be any finite subgroup of SU(2) and let α be an

N -dimensional representation of Γ. Then the sums of the polynomials P+
m

and P−
m are given by

cΓ∑

m=1

P+
m(u) =

cΓ−1∑

m=0

P−
m(u) =

NcΓ
#Γ

(
u2 − 1

4

)

3. A heat-kernel argument

It may at first seem surprising that, in the above calculation, using the
Poisson summation formula and the explicit Dirac spectra, although the
spectra themselves depend in a subtle way upon the representation theoretic
data of the unitary representation α : Γ → U(N), through the pairing of
the characters of representations, the resulting spectral action only depends
upon the dimension N of the representation, the order of Γ, and the spectral
action on S3.

This phenomenon is parallel to the similar observation in the Poisson
formula computation of the spectral action for the spherical space forms and
the flat Bieberbach manifolds in the untwisted case [20], [21], [30], where
one finds that, although the Dirac spectra are different for different spin
structures, the resulting spectral action depends only on the order #Γ of
the finite group and the spectral action on S3 or T 3.

In this section, we give a justification for this phenomenon based on a
heat-kernel computation that recovers the result of Theorem 2.1 and justifies
the presence of the factor N/#Γ.
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3.1. Generalities. We begin with some background on the spectral action
for almost-commutative spectral triples. In what follows, let L denote the
Laplace transform, and let S(0,∞) = {φ ∈ S(R) | φ(x) = 0, x ≤ 0}.

The following result establishes the basic properties of the spectral action
for almost-commutative spectral triples:

Theorem 3.1 ([26, Theorem 1]). Let V be a self-adjoint Clifford module

bundle on a compact oriented Riemannian manifold M , and let D be a

symmetric Dirac-type operator on V. Let f ∈ C∞(R) be of the form f(x) =
L[φ](x2) for φ ∈ S(0,∞). Finally, let Λ > 0. Then f(D/Λ) is trace-class

with asymptotic expansion

(3.1) Tr (f(D/Λ)) ∼
∞∑

k=−dimM

Λ−kφk

∫

M
ak+dimM (x,D2)dVol(x),

as Λ → +∞, where an(x,D
2) is the n-th Seeley-DeWitt coefficient of the

generalised Laplacian D2, and the constants φn are given by

φn =

∫ ∞

0
φ(s)sn/2ds.

In particular, since an(·,D2) = 0 for n odd [15, Lemma 1.7.4], one has
that the asymptotic form of Tr (f(D/Λ)), as Λ → +∞, is given by
{∑∞

n=0 Λ
2(m−n)φ2(m−n)

∫
M a2n(x,D

2)dVol(x) if dimM = 2m,∑∞
n=0 Λ

2(m−n)+1φ2(m−n)+1

∫
M a2n(x,D

2)dVol(x) if dimM = 2m+ 1.

Note also that for n > 0,

φ−n =

∫ ∞

0
φ(s)s−n/2ds =

1

Γ(n/2)

∫ ∞

0
f(u)un−1du.

The following result guarantees that the φk can be chosen at will:

Proposition 3.2. For any (an) ∈ C
Z there exists some φ ∈ S(0,∞) such

that

an =

∫ ∞

0
sn/2φ(s)ds, for all n ∈ Z.

In fact, this turns out to be a simple consequence of the following re-
sult by Durán and Estrada, solving the strong moment problem for smooth
functions of rapid decay:

Theorem 3.3 (Durán–Estrada [14]). For any (an) ∈ C
Z there exists some

φ ∈ S(0,∞) such that

an =

∫ ∞

0
snφ(s)ds, for all n ∈ Z.

Proof of Proposition 3.2. By Theorem 3.3, let ψ ∈ S(0,∞) be such that

an = 2

∫ ∞

0
sn+1ψ(s)ds, for all n ∈ Z.
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Then for φ(s) = ψ(
√
s) ∈ S(0,∞),

∫ ∞

0
sn/2φ(s)ds = 2

∫ ∞

0
tn+1ψ(t)dt = an, for all n ∈ Z,

as required. �

We have already seen that the spectral action Tr (f(D/Λ)) converges and
admits an asymptotic expansion, which is derived from the heat kernel trace
asymptotics of D2. However, the exact spectral action itself can be rewritten
in terms of the heat kernel trace of D2, a result we shall use repeatedly in
the sequel:

Corollary 3.4. Under the hypotheses of Theorem 3.1, one has that

(3.2) Tr (f(D/Λ)) =

∫ ∞

0

[∫

M
Tr
(
K(s/Λ2, x, x)

)
dVol(x)

]
φ(s)ds,

where K(t, x, y) is the heat kernel of D2.

Proof. Let µk denote the k-th eigenvalue of D2 in increasing order, counted
with multiplicity. Then, since f(D/Λ) = L[φ](D2/Λ2) is trace-class,

Tr (f(D/Λ)) = Tr
(
L[φ](D2/Λ2)

)

=
∞∑

k=1

L[φ](µ2k/Λ2)

=
∞∑

k=1

∫ ∞

0
e−sµ2

k
/Λ2

φ(s)ds

=

∫ ∞

0

[ ∞∑

k=1

e−sµ2
k
/Λ2

]
φ(s)ds

=

∫ ∞

0
Tr
(
e−sD2/Λ2

)
φ(s)ds

=

∫ ∞

0

[∫

M
Tr
(
K(s/Λ2, x, x)

)
dVol(x)

]
φ(s)ds,

as was claimed. �

3.2. Non-perturbative results. We now give a non-perturbative heat-
kernel-theoretic analysis of the phenomenon mentioned above.

Let M̃ → M be a finite normal Riemannian covering with M̃ and M
compact, connected and oriented, and let Γ be the deck group of the cov-

ering. Let Ṽ → M̃ be a Γ-equivariant self-adjoint Clifford module bun-

dle, and let D̃ be a Γ-equivariant symmetric Dirac-type operator on Ṽ.
We can therefore form the quotient self-adjoint Clifford module bundle

V := Ṽ/Γ → M = M̃/Γ, with D̃ descending to a symmetric Dirac-type

operator D on V; under the identification L2(M,V) ∼= L2(M̃ , Ṽ)Γ, we can
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identify D with the restriction of D̃ to C∞(M̃ , Ṽ)Γ, where the unitary action

U : Γ → U(L2(M̃ , Ṽ)) is given by U(γ)ξ(x̃) := ξ(x̃γ−1)γ.
Our first goal is to prove the following result, relating the spectral action

of D to the spectral action of D̃ in the high energy limit:

Theorem 3.5. Let f ∈ C∞(R) be of the form f(x) = L[φ](x2) for φ ∈
S(0,∞). Then for Λ > 0,

Tr (f(D/Λ)) =
1

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ → +∞.

Remark 3.6. Theorem 3.5 continues to hold even when inner fluctuations

of the metric are introduced, since for A ∈ C∞(M,End(V)) symmetric,

D +A on V lifts to D̃ + Ã on Ṽ, where Ã is the lift of A to Ṽ.
To prove this result, we will need a couple of lemmas. First, we have the

following well-known general fact:

Lemma 3.7. Let G be a finite group acting unitarily on a Hilbert space

H, and let A be a G-equivariant self-adjoint trace-class operator on H. Let

HG denote the subspace of H consisting of G-invariant vectors. Then the

restriction A | HG of A to HG is also trace-class, and

Tr
(
A | HG

)
=

1

#G

∑

g∈G
Tr (gA) .

Proof. This immediately follows from the observation that 1
#G

∑
g∈G g is the

orthogonal projection onto HG. �

Now, we can compute the heat kernel trace of D using the heat kernel for

D̃:

Lemma 3.8. For t > 0,
(3.3)

Tr
(
e−tD2

)
=

1

#Γ
Tr
(
e−tD̃2

)

+
1

#Γ

∑

γ∈Γ\{e}

∫

M̃
Tr
(
ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, x̃)

)
dVol(x̃),

where K̃(t, x̃, ỹ) denotes the heat kernel of D̃, and ρ denotes the right action

of Γ on the total space Ṽ.
Proof. Let γ ∈ Γ. Then for any ξ ∈ C∞(M̃, Ṽ),
(
U(γ)e−tD̃2

)
ξ(x̃) = U(γ)

(∫

M̃
K̃(t, x̃, ỹ)ξ(ỹ)dVol(ỹ)

)

= ρ(γ)(x̃γ−1)

(∫

M̃
(x̃γ−1)K̃(t, x̃γ−1, ỹ)ξ(ỹ)dVol(ỹ)

)

=

∫

M̃
ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, ỹ)ξ(ỹ)dVol(ỹ)
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so that the operator U(γ)e−tD̃2

has the integral kernel

(t, x̃, ỹ) 7→ ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, ỹ).

Since L2(M,V) ∼= L2(M̃ , Ṽ)Γ, we can therefore apply Lemma 3.7 to obtain
the desired result. �

Finally, we can proceed with our proof:

Proof of Theorem 3.5. By Corollary 3.4 and Lemma 3.8, it suffices to show
that for γ ∈ G \ {e},

∫ ∞

0

[∫

M̃
Tr
(
ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, x̃)

)
dVol(x̃)

]
φ(s)ds = O(Λ−∞),

as Λ → ∞.
Now, since M̃ is compact and since the finite group Γ acts freely and

properly,

inf
(x̃,γ)∈M̃×Γ

d(x̃γ−1, x̃) = min
(x̃,γ)∈M̃×Γ

d(x̃γ−1, x̃) > 0.

Hence, by [16, Proposition 3.24], there exist constants C > 0, c > 0 such
that

sup
x̃∈M̃

‖K̃(t, x̃γ−1, x̃)‖2 ≤ Ce−c/t, t > 0,

for ‖ · ‖2 the fibre-wise Hilbert-Schmidt norm, implying, in turn, that for
every n ∈ N there exists a constant Cn > 0 such that

sup
x̃∈M̃

‖K̃(t, x̃γ−1, x̃)‖2 ≤ Cnt
n, t > 0.

Hence, for each n ∈ N,
∣∣∣∣
∫ ∞

0

[∫

M̃
Tr
(
ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, x̃)

)
dVol(x̃)

]
φ(s)ds

∣∣∣∣

≤
∫ ∞

0
Vol(M)

(
sup
x̃∈M̃

‖ρ(γ)(x̃)‖2
)(

sup
x̃∈M̃

‖K̃(t, x̃γ−1, x̃)‖2
)
|φ(s)|ds

≤ Vol(M) ·
(
sup
x̃∈M̃

‖ρ(γ)(x̃)‖2
)

· Cn

∫ ∞

0
(s/Λ2)n|φ(s)|ds

=

(
Vol(M) ·

(
sup
x̃∈M̃

‖ρ(γ)(x̃)‖2
)

· Cn ·
∫ ∞

0
sn|φ(s)|ds

)
Λ−2n,

yielding the desired result. �

Now, let α : Γ → GLN (C) be a representation of Γ; by endowing C
N

with a Γ-equivariant inner product, we take α : Γ → U(N). Since M̃ →M
is a principal Γ-bundle, we form the associated Hermitian vector bundle

F := M̃ ×α C
N → M ; since Γ is finite, we endow F with the trivial flat

connection d. We can therefore form the self-adjoint Clifford module bundle
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V ⊗F →M , which admits the symmetric Dirac-type operator Dα obtained
from D by twisting by d, that is,

Dα = D ⊗ 1 + c(1⊗ d),

where c denotes the Clifford action on V ⊗ F .
We now obtain the following generalisation of Theorem 3.1, which explains

the factor of N/#Γ appearing in Theorem 2.1 above:

Theorem 3.9. Let f ∈ C∞(R) be of the form f(x) = L[φ](x2) for φ ∈
S(0,∞). Then for Λ > 0,

Tr (f(Dα/Λ)) =
N

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ → +∞.

Remark 3.10. This result is again compatible with inner fluctuations of the

metric, insofar as if A ∈ C∞(M,End(V)) is symmetric, then Dα+A⊗1 on

V ⊗F is induced from D̃+ Ã on Ṽ, where Ã is A viewed as a Γ-equivariant

element of C∞(M̃,End(Ṽ)).

Proof of Theorem 3.9. On the one hand, consider the trivial bundle F̃ :=

M̃×C
N over M̃ , together with the trivial flat connection d. Then for the ac-

tion (x̃, v)γ := (x̃γ, α(γ−1)v), F̃ is a Γ-equivariant Hermitian vector bundle,

and d is a Γ-equivariant Hermitian connection on F̃ . Then, by taking the

tensor product of Γ-actions, we can endow Ṽ ⊗ F̃ with the structure of a Γ-
equivariant self-adjoint Clifford module bundle, admitting the Γ-equivariant

symmetric Dirac-type operator D̃α = D̃⊗ 1 + c(1⊗ d). As a vector bundle,

however, we may simply identify Ṽ ⊗ F̃ with F̃⊕N , in which case we may

identify D̃α with D̃ ⊗ 1N .
On the other hand, by construction, the bundle F defined above is the

quotient of F̃ by the action of Γ. Hence, under the action of Γ, the quotient

of Ṽ ⊗ F̃ is the the self-adjoint Clifford module bundle V ⊗ F , with D̃α

descending to the operator D ⊗ 1 + c(1⊗ d) = Dα.
Finally, by Theorem 3.5 and our observations above,

Tr (f(Dα/Λ)) =
1

#Γ
Tr
(
f(D̃α/Λ)

)
+O(Λ−∞)

=
1

#Γ
Tr
(
f(D̃/Λ)⊗ 1N

)
+O(Λ−∞)

=
N

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ → +∞,

as was claimed. �

One can apply these results to give a quick second proof of Theorem 2.1.
Let Γ ⊂ SU(2) be a finite group acting by isometries on S3, identified
with SU(2) endowed with the round metric, and let α : Γ → U(N) be
a representation. Since S3 is parallelizable and Γ acts by isometries, the



22 BRANIMIR ĆAĆIĆ, MATILDE MARCOLLI, KEVIN TEH

spinor bundle C
2 → SS3 → S3 and the Dirac operator /DS3 are trivially Γ-

equivariant. Then, by construction, the Dirac-type operator DΓ
α on SS3⊗Vα

is precisely the induced operator Dα corresponding to D̃ = /DS3 , so that by
Theorem 3.9,

Tr (f(Dα/Λ)) =
N

#Γ
Tr (f( /DS3/Λ)) +O(Λ−∞), as Λ → +∞.

However, by [7, §2.2], one has that

Tr (f( /DS3/Λ)) = Λ3f̂ (2)(0) − 1

4
Λf̂(0) +O(Λ−∞),

where f̂ (2) denotes the Fourier transform of u2f(u). Hence,

Tr (f(Dα/Λ)) =
N

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞),

as required.

3.3. Perturbative results. Let us now turn to the perturbative picture.
In light of Theorem 3.1, it suffices to compare the Seeley-DeWitt coefficients

of D̃2 with those of D2 and D2
α.

Proposition 3.11. Let D̃ and D be as above. Let π : M̃ → M denote the

quotient map. Then for all n ∈ N,

an(π(x̃),D
2) = an(x̃, D̃

2), x̃ ∈ M̃,

and hence ∫

M
an(x,D

2)dVol(x) =
1

#Γ

∫

M̃
an(x̃, D̃

2)dVol(x̃).

Proof. By [15, Lemma 4.8.1], there exist a unique connection ∇ and en-
domorphism E on V such that D2 = ∇∗∇ − E, and similarly a unique

connection ∇̃ and endomorphism Ẽ on Ṽ such that D̃2 = ∇̃∗∇̃. Since D̃2 is

the lift of D2 to Ṽ, it follows by uniqueness that ∇̃ and Ẽ are the lifts of ∇
and E, respectively, to Ṽ as well.

Now, since the finite group Γ acts freely and properly on M̃ , let {(Uα,Ψα)}
be an atlas for M̃ such that for each α, π | Uα : Uα → π(Uα) is an isometry.
Hence, the local data defining an(·,D2) on Uα lifts to the local data defining

an(·, D̃2) on π−1(Uα), so that an(·, D̃2) is indeed the lift to M̃ of an(·,D2),
as required. �

Proposition 3.12. Let D̃ and Dα be as above. Then for all n ∈ N,

an(π(x̃),D
2
α) = Nan(x̃, D̃

2), x̃ ∈ M̃,

and hence ∫

M
an(x,D

2
α)dVol(x) =

N

#Γ

∫

M
an(x̃, D̃

2)dVol(x̃).
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Proof. On the one hand, by [15, Lemma 1.7.5], an(·, D̃2⊗1N ) = Nan(·, D̃2),

for D̃2 ⊗ 1N on Ṽ⊕N . On the other hand, D̃2 ⊗ 1N is the lift to Ṽ⊕N of D2
α

on V ⊗ F , so that by Proposition 3.11, an(·, D̃2 ⊗ 1N ) is the lift to M̃ of

an(·,D2
α). Hence, Nan(·, D̃2) is the lift to M̃ of an(·,D2

α), as required. �

Let us now apply these results to the Dirac operator /DS3 on the round
3-sphere S3, together with a finite subgroup Γ of SU(2) acting freely and
properly on S3 ∼= SU(2), and a representation α : Γ → U(N). Since /D2

S3 =

(∇S)∗∇S + 3
2 by the Lichnerowicz formula, it follows from [15, Theorem

4.8.16] that

∫

S3

a0(x, /D
2
S3)dVol(x) =

∫

S3

(4π)−3/2Tr(id)dVol(x) =

√
π

2
,

∫

S3

a2(x, /D
2
S3)dVol(x) =

∫

S3

(4π)−3/2Tr

(
6

6
id− 3

2
id

)
dVol(x) = −

√
π

4
.

Since the operator DΓ
α is precisely Dα as induced by D̃ = /DS3 , it therefore

follows by Proposition 3.12 that

∫

S3/Γ
a0(y, (D

Γ
α)

2)dVol(y) =
N

#Γ

∫

S3

a0(x, /D
2
S3)dVol(x) =

N
√
π

(#Γ)2
,

∫

S3/Γ
a2(y, (D

Γ
α)

2)dVol(y) =
N

#Γ

∫

S3

a2(x, /D
2
S3)dVol(x) = − N

√
π

(#Γ)4
.

Finally, one has that

φ−3 =
2

Γ(3/2)

∫ ∞

0
f(u)u2du =

2√
π

∫ ∞

−∞
f(u)u2du =

2√
π
f̂ (2)(0),

φ−1 =
2

Γ(1/2)

∫ ∞

0
f(u)du =

1√
π

∫ ∞

−∞
f(u)du =

1√
π
f̂(0),

where f̂ (2) is the Fourier transform of f(u)u2. Hence,

Tr (f( /DS3/Λ)) ∼ Λ3φ−3

∫

S3

a0(x, /D
2
S3)dVol(x)

+ Λφ−1

∫

S3

a2(x, /D
2
S3)dVol(x) +O(Λ−1)

= Λ3f̂ (2)(0)− 1

4
Λf̂(0) +O(Λ−1),



24 BRANIMIR ĆAĆIĆ, MATILDE MARCOLLI, KEVIN TEH

and

Tr
(
f(DΓ

α)
)
∼ Λ3φ−3

∫

S3/Γ
a0(y, (D

Γ
α)

2)dVol(y)

+ Λφ−1

∫

S3/Γ
a2(y, (D

Γ
α)

2)dVol(y) +O(Λ−1)

=
N

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−1),

which is indeed consistent with Theorem 2.1.

4. The inflation potential and the power spectra

It was shown in [20], [21] that for a 3-manifold Y that is a spherical space
form S3/Γ or a flat Biebarbach manifold (a quotient of the flat torus T 3

by a finite group action), the non-perturbative spectral action determines a
slow-roll potential for a scalar field φ by setting

Tr(h((D2
Y ×S1 + φ2)/Λ2))− Tr(h(D2

Y ×S1/Λ
2)) = VY (φ),

up to terms of order O(Λ−∞), where, in the spherical space form case the
potential is of the form

VY (φ) = πΛ4βa3VY (
φ2

Λ2
) +

π

2
Λ2βaWY (

φ2

Λ2
),

where h the test function for the computation of the spectral action on the
4-manifold Y ×S1, a > 0 is the radius of the sphere and β > 0 is the size of
the circle compactification S1. The functions VY and WY are of the form

(4.1) VY (x) = λY VS3(x) and WY (x) = λY WS3(x),

where, for Y = S3/Γ, the factor λY = (#Γ)−1, and

(4.2) VS3(x) =

∫ ∞

0
u (h(u+ x)− h(u)) du and WS3(x) =

∫ x

0
h(u) du.

Thus, the potential satisfies

(4.3) VY (φ) = λY VS3(φ) =
VS3(φ)

#Γ
.

The slow-roll potential VY (φ) can be used as a model for cosmological in-
flation. As such, it determines the behavior of the power spectra Ps,Y (k) and
Pt,Y (k) for the density fluctuations and the gravitational waves, respectively
given in the form

(4.4) Ps(k) ∼
1

M6
P l

V 3

(V ′)2
and Pt(k) ∼

V

M4
P l

,
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with MP l the Planck mass, see [28] and [21] for more details. Including
second order terms, these can be written also as power laws as in [28],

(4.5)

Ps(k) ∼ Ps(k0)

(
k

k0

)1−ns+
αs
2

log(k/k0)

Pt(k) ∼ Pt(k0)

(
k

k0

)nt+
αt
2

log(k/k0)

,

where the exponents also depend on the slow roll potentials through certain
slow-roll parameters. Since, as already observed in [20], [21], the slow-roll
parameters are not sensitive to an overall multiplicative scaling factor in the
potential, we focus here only on the amplitude only, which, as shown in [21],
correspondingly changes by a multiplicative factor. Namely, in the case of
a spherical space form with the spectral action computed for the untwisted
Dirac operator, one has

(4.6)

Ps,Y (k) ∼ λY Ps(k0)

(
k

k0

)1−n
s,S3+

α
s,S3

2
log(k/k0)

Pt,Y (k) ∼ λY Pt(k0)

(
k

k0

)n
t,S3+

α
t,S3

2
log(k/k0)

,

where, as above, λY = 1/#Γ.
The amplitude and the exponents of the power law are parameters subject

to constraints coming from cosmological observational data, as discussed in
[18], [28], [29], so that, in principle, such data may be able to constrain the
possible cosmic topologies in a model of gravity based on the spectral action.
To this purpose, it is important to understand how much the amplitude and
the slow-roll parameter are determined by the model. A discussion of the
role of the parameters Λ, a, and β is included in [21], while here we focus
on how the coupling of gravity to matter affects these parameters.

By directly comparing the argument given in [20] proving (4.6) with the
result of Theorem 2.1 above, we see that, in our case, we obtain then the
following version of (4.6), modified by an overall multiplicative factor N ,
the total number of fermions in the model of gravity coupled to matter.

Proposition 4.1. For a spherical space form Y = S3/Γ, consider the slow-

roll potential VY,α(φ) determined by the nonperturbative spectral action

Tr(h((D2
α,Y ×S1 + φ2)/Λ2))− Tr(h(D2

α,Y ×S1/Λ
2)) = VY,α(φ),

where Dα,Y×S1 is the Dirac operator induces on the product geometry Y ×S1

by the twisted Dirac operator DΓ
α on Y . Then the associated power spectra

as in (4.4), (4.5) satisfy (4.6), with λY = N/#Γ.

4.1. Inflation potential in the heat kernel approach. Let us now con-
sider inflation potentials on space-times of the form M × S1

β for M com-
pact oriented Riemannian and odd-dimensional, arising from general almost-
commutative triples over M .
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LetD is a symmetric Dirac-type operator on a self-adjoint Clifford module
bundle V →M , withM compact oriented Riemannian and odd-dimensional,
and let /Dβ be the Dirac operator with simple spectrum 1

β (Z + 1
2) on the

trivial spinor bundle C → SS1
β
→ S1

β. We may immediately generalise the

construction of [7, §2.3] to obtain an odd symmetric Dirac-type operator

DM×S1
β
on the self-adjoint Clifford module bundle

(
V ⊠ SS1

β

)⊕2
→M ×S1

β.

Hence, we may define an inflation potential VM : C∞
(
M × S1

β

)
→ R by

VM (φ) := Tr
(
h((D2

M×S1
β

+ φ2)/Λ2)
)
− Tr

(
h(D2

M×S1
β

/Λ2)
)
,

where h = L[ψ] for ψ ∈ S(0,∞); note that D2
M×S1

β

+ φ2 has heat trace

Tr


e

−t

(
D2

M×S1
β

+φ2

)
 = 2Tr

(
e−t /D2

β

)
Tr
(
e−tD2

)
e−φ2t

for φ locally constant.

Let Γ → M̃ → M , Ṽ → M̃ , V → M , D̃, D, α, F → M and Dα be

defined as in Subsection 3.2, with M and M̃ odd-dimensional, generalising
the discussion above of Γ → S3 → Y . We may then form odd Dirac-type

operators D̃M̃×S1
β
, DM×S1

β
, and Dα,M×S1

β
from D̃, D and Dα, respectively,

as above. On the other hand, if one trivially extends the action of Γ on

M̃ to M̃ × S1
β and the action onṼ → M̃ to

(
V ⊠ SS1

β

)⊕2
→ M × S1

β, then

D
M̃×S1

β

becomes a Γ-equivariant Dirac-type operator on
(
V ⊠ SS1

β

)⊕2
, and

the constructions of Subsection 3.2 applied to the Γ-equivariant Dirac-type
operator D

M̃×S1
β

reproduce precisely the Dirac-type operators DM×S1
β
, and

Dα,M×S1
β
.

Now, let V
M̃
, VM , and VM,α denote the inflation potentials corresponding

to D̃, D, and Dα, respectively, which we all view as nonlinear functionals

on C∞(M̃ × S1
β,R)

Γ ∼= C∞(M × S1
β,R). Then, since we also have that

D2
M̃×S1

β

+ φ2 is the lift of D2
M×S1

β

+ φ2 and

(
D2

M̃×S1
β

+ φ2
)
⊗ 1N is the lift

of D2
M×S1

β
,α
+ φ2, Theorems 3.5 and 3.5, mutatis mutandis, therefore imply

that

(4.7) VM (φ) =
1

#Γ
V
M̃
(φ) +O(Λ−∞), as Λ → +∞,

and

(4.8) VM,α(φ) =
N

#Γ
V
M̃
(φ) +O(Λ−∞), as Λ → +∞,
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thereby explaining the factor λY in Equations 4.3 and 4.5 and Proposi-
tion 4.1.
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