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SHARP ASYMPTOTICS FOR TOEPLITZ DETERMINANTS,

FLUCTUATIONS AND THE GAUSSIAN FREE FIELD ON A

RIEMANN SURFACE

ROBERT J. BERMAN

Abstract. We consider canonical determinantal point processes with N par-
ticles on a compact Riemann surface X defined with respect to the constant
curvature metric and show that in the large N−limit these processes satisfy
strong exponential concentration of measure type properties involving Dirich-
let norms. In the higher genus (hyperbolic) cases the point processes may be
defined in terms of modular forms equipped with the Petersson norm. As a
consequence we obtain a sharp optimal Central Limit Theorem (CLT), saying
that the fluctuations of the corresponding empirical measures converge in disti-
bution towards the Laplacian of the Gaussian free field on X in the strongest
possible sense. The CLT is shown to be equivalent to a new sharp Szegö type
limit theorem for Toeplitz determinants in this context.

1. Introduction

This paper is one a series which deal with N−particle determinantal point pro-
cesses on a polarized compact complex manifold X, i.e. associated to high powers
of an ample line bundle L → X. A general Large Deviation Principle (LDP) was
established in the large N−limit in [4], showing that the empirical measure conver-
genes exponentially towards the deterministic pluripotential equilibrium measure.
Moreover, in the paper [2] a Central Limit Theorem (CLT) was obtained, showing
that the fluctuations in the “bulk” may be desribed by a Gaussian free field in the
case of smooth test functions (linear statistics). In the present paper we specialize
to the lowest dimensinal case when X is a Riemann surface and the corresponding
N−particle point processes are the “canonical” ones, i.e. the they are induced by
the Kähler-Einstein metric on X. In this setting we obtain sharp versions of the
upper large deviation bound and show that the convergence towards the Gaussian
free field holds in the strongest possible sense, i.e. for linear statistics with minimal
regularity assumptions (finite Dirichlet norm). The CLT is also shown to be equiv-
alent to a new sharp Szegö type limit theorem for Toeplitz determinants in this
context. The results are obtained from new “determinantal” Moser-Trudinger type
inequalities, which imply strong concentration of measures properties. The proof of
these latter inequalities is based on a convexity argument in the space of all Kähler
metrics, combined with Bergman kernel asymptotics and potential theory.

1.1. The general setup. Let L → X be an ample holomorphic line bundle over
a compact complex manifold X of dimension n. We will denote by H0(X,L) the
N−dimensional vector space of all global holomorphic sections of L. Given the
geometric data (ν, ‖·‖) consisting of a probability measure ν on X and a continuous

Hermitian metric ‖·‖ on L one obtains an associated probability measure µ(N) on
the N−fold product XN defined as

(1.1) µ(N) :=
1

ZN
‖detΨ‖2 (x1, ...xN )ν(x1)⊗ · · · ⊗ ν(xN )
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where detΨ is a holomorphic section of the pulled-back line bundle L⊠N over XN

representing the Nth (i.e. maximal) exterior power of H0(X,L) and ZN is the
normalizing constant. Concretely, fixing a base (Ψi)

N
i=1 in H0(X,L) we can take

(1.2) (detΨ)(x1, ..., xNk
) = det(Ψi(xj))

We will denote i
2π times the curvature two-form of the metric on L by ω (compared

with mathematical physics notation ω = i
2πFA where A is the Chern connection

induced by the metric on L). It will be convenient to take the pair (ω, ν), which will
refer to as a weighted measure, as the given geometric data. The empirical measure
of the ensemble above is the following random measure:

(1.3) (x1, ..., xN ) 7→ δN :=

N
∑

i=1

δxi

which associates to any N−particle configuration (x1, ..., xN ) the sum of the delta
measures on the corresponding points in X. In probabilistic terms this setting hence
defines a determinantal random point process on X with N particles [19, 24].

If the correponding L2−norm on H0(X,L)

‖Ψ‖2X = 〈Ψ,Ψ〉X :=

ˆ

X
‖Ψ(x)‖2 dν(x)

is non-degenerate (which will always be the case in this paper) then the probability

measure µ(N) on XN may be expressed as a determinant of the Bergman kernel
of the Hilbert space (H0(X,L), ‖·‖X), i.e. the integral kernel of the corresponding
orthogonal projection. A central role in this paper will be played by the logarithmic
generating function (or free enegy)

logE(e−(
∑N

i=1(φ(xi))

of the linear statistic

(1.4)
N
∑

i=1

φ(xi),

where E denotes the expectation wrt the ensemble (XN , µ(N)), i.e. E(·) =
´

XN (·)µ
(N).

By a well-known formula going back to the work of Heine in the theory of orthogo-
nal polynomials the expectation above can also be writen as a Toeplitz determinant
with symbol e−φ :

(1.5) E(e−(
∑N

i=1(φ(xi))) = det(
〈

e−φΨi,Ψj

〉

X
)

where (Ψi)
N
i=1 is an orthonormal base in the Hilbert space (H0(X,L), ‖·‖X). Re-

placing L with its k th tensor power, which we will write in additive notation as kL,
yields,a sequence of point processes on X of an increasing number Nk of particles.
We will be concerned with the asymptotic situation when k → ∞. This corresponds
to a large N−limit of many particles, since

Nk := dimH0(X, kL) = V kn + o(kn)

where the constant V is, by definition, the volume of L.
As shown in [4] the normalized empirical measure δN/Nk converges towards a

pluripotential equlibrium measure µeq, exponentially in probability. In particular,
letting

(1.6) ǫNk,λ(φ) := Prob

{∣

∣

∣

∣

1

Nk
(φ(x1) + ....+ φ(xNk

))−

ˆ

X
µeqφ

∣

∣

∣

∣

> λ

}
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denote the tail of the linear statistic determined by φ, at level k, it was shown that

ǫNk,λ(φ) → 0 as k → ∞ for any λ > 0 at a rate of the order e−k
n+1/C . In the

case when X is a Riemann surface the curvature current ω of the metric on L is
semi-positive (so that µeq = ω) the following more precise estimate was obtained:

(1.7) ǫNk,λ(φ) ≤ 2 exp(−N2
k

(

2V λ2

‖dφ‖2X
(1 + o(1))

)

)

where the error term o(1) denotes a sequence tending to zero as k → ∞ (but
depending on φ).

1.2. Statement of the main results. Let now L → X be a line bundle of pos-
itive degree V over a Riemann surface X of genus g. It determines a particular
sequence of determinantal point process that we will refer to as the canonical de-
teterminantal point process on X associated to kL. These processes are obtained
by letting (ν, ω) = (ω/V, ω) for ω the the unique volume form on X of volume V
such that Riemannian metric determined by ω has constant scalar curvature. By
the Riemann-Roch theorem we have (for k sufficently large)

Nk = kV − (g − 1)

giving a simple relation between the level k and the corresponding number of par-
ticles Nk. Accordingly, we it will be convenient to talk about the canonical deter-
minantal random point process on X with N particles and use N as the asymptotic
parameter. Strictly speaking N(= Nk) only determines L up to twisting by a flat
line bundle, but the results will be independant of the flat line bundle. Physically,
the canonical processes associated to kL represents the groundstate of a gas of
free ferrmions in the “uniform” magnetic field kFA where ω = i

2πFA (see [4] and
references therein) and A is a unitary connection on L.

The simplest case of this setting occurs when g = 0, i.e. X is the Riemann sphere
and thenH0(X, kL) may be identified with the space of all polynomials on the affine
piece C of degree at most k = N − 1 equipped with the usual SU(2)−invariant
Hermitian product. Alternatively, embedding X as the unit-sphere in Euclidian R

3

the N−point correlation function of the process, i.e. the density of the probability
measure, may be explicitely expanded as

ρ(N)(x1, ..., xN ) := Π1≤i<j≤N ‖xi − xj‖
2 /ZN

where 1/ZN = NN
(

N−1
0

)

...
(

N−1
N−1

)

/N !. In the physics litterature this ensemble also

appears as a Coulomb gas of N unit-charge particles (i.e a one component plasma)
confined to the sphere in a neutralizing uniform background ω (see for example
[7]). An interesting random matrix model for this process was recently given in
[25]. In the higher genus case the role of polynomials are played by, theta functions
and modular (automorphic) forms on the universal covers C and H of X (when
g = 1 and g > 1 respectively) equipped with their standard Hermitian products.
See for example [14] for the case g = 1 in connection to fermions and bosonization.
When g > 1 the Riemann surface X may be represented as the quotient Γ/H
of the upper half-plane with a suitable discrete subgroup Γ of SL(2,R). Taking
L := 1

2KX , where KX denotes the canonical line bundle KX = T ∗X (using the

induced spin structure to take the square root) realizes H0(X, kL) as the Hilbert
space of all modular forms of weight k, i.e. all holomorphic funtions on H satisfying
f((az + b)/(cz + d)) = (cz + d)kf(z) equipped with the Petterson norm

‖f‖2X :=

ˆ

Γ/H
|f |2yk

dx ∧ dy

y2
,

3



integrating over a fundamental domain for Γ. In special arithmetic situation the
base (Ψi) in 1.2 may be represented by Hecke eigenfunctions (but note that we
have assumed that X is smooth and compact, so that there are no cusps)[26].

It will be convenient to use the following conformally invariant notation for the
normalized Dirichlet norm of a function φ on X, i.e. the L2−norm of its gradient
times 1/4π :

‖dφ‖2X :=

ˆ

X
dφ ∧ dcφ :

(

=
i

2π

ˆ

X
∂φ ∧ ∂̄φ

)

We will obtain a very useful Moser-Trudinger type inequality for the canonical de-
terminantal point processes, which generalizes Onofri’s sharp version of the Moser-
Trudinger inequality [28] (obtained when X is the two-sphere and N = 1).

Theorem 1.1. Let X be a genus g Riemann surface and consider the canonical
determinantal point process on X with N particles. It satisfies the following Moser-
Trudinger type inequality:

(1.8) logE(e−(
∑N

i=1(φ(xi)−
´

X φ ω
V
))) ≤

(

1

1 + (1− g)/N
+ ǫN )

)

1

2
‖dφ‖2X + ǫN

where the error term ǫN stand for a rapidly decreasing sequence of numbers, i.e.
ǫN ≤ Cj/N

j for any j > 0 (where Cj > 0 depends on ω, but not on φ). Similarly,
(1.9)

logE(e−(
∑N

i=1(φ(xi)−E(φ(xi))) ≤

(

1

1 + (1− g)/N
+ ǫN

)

1

2
‖dφ‖2X+ǫN ‖φ‖L1(X)/R+ǫN

Moreover, when X is the Riemann sphere (i.e .g = 0) all the error terms above
vanish identically.

An important ingredient in the previous proof is a convexity result of Berndtsson
[8] which in this particular case amounts to the positivity of a certain determinant
line bundle over the space of all Kähler metrics in the first Chern class of L.

As a simple consequence of the previous theorem we then obtain a sharp version
of the tail estimate 1.7 for such canonical processes. The main point is that it
shows that the error term o(1) appearing in the estimate 1.7 can be taken to be
independent of the function φ. As a consequence the estimate holds with minimal
regularity assumptions on φ :

Corollary 1.2. Let X be a genus g Riemann surface and consider the canonical
determinantal point process on X with N particles. Let φ be a function on X such
that its differential dφ is in L2(X). Then the linear statistic defined by φ has an
exponentially decaying tail:

ǫN,λ(φ) ≤ 2 exp(−N2

(

2λ2

‖dφ‖2X (1 + (1−g)
N ) + ǫk)

+ ǫN

)

)

where the error terms ǫN are as in the previous theorem.

We will also show that the Moser-Trudinger inequality in Theorem 1.1 is in fact
an asymptotic equality in the following sense:

Theorem 1.3. (Szegö type strong limit theorem). Let X be a genus g Riemann sur-
face and consider the canonical determinantal point process on X with N particles.
Let φ be a complex valued function on X such that its differential is in L2(X,C),
i.e. φ has finite Dirichlet norm. Then

logE(e−(
∑N

i=1(φ(xi)−
´

X φω))) →
1

2

ˆ

X
dφ ∧ dcφ

as N → ∞ and the same convergence holds when the exponent above is replaced
with the fluctuation of the linear statistic of φ.
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In [2] it was shown that, as long as ω > 0 and φ ∈ C1(X) an analogue of the
convergence above holds in any dimension n if the conformally invariant norm above
is replaced by the Dirichlet norm wrt ω. But it should be emphasized that when
n > 1 the convergence does not hold if one relaxes the smoothness assumption on
φ (see section 2.4 for counter examples).

The previous theorem may be equivalently formulated as the following Central
Limit Theorem (CLT), valid under minimal regularity assumptions:

Corollary 1.4. (CLT) The fluctuations δN − E(δN ) of the empirical measure δN
converge in distribution to the the Laplacian (or rather ddc) of the Gaussian free
field (GFF). In other words, for any φ ∈ L1(X) with dφ ∈ L2(X) the fluctuations

N
∑

i=1

(φ(xi)− E(φ(xi))

of the corresponding linear statistics converge in distribution to a centered normal
random variable with variance ‖dφ‖2X .

The GFF is also called the massless bosonic free field in the physics litterature.
Heuristically, this is a random function wrt the Gaussian measure on the Hilbert
space of all φ (mod R) equipped with the Dirichlet norm ‖dφ‖2X /2. For the precise
definition of the GFF and its Laplacian see [32] (Prop 2.13 and Remark 2.14) and
for a comparison with the physics litterature on Coulomb gases see section 1.3 in
[33].

1.3. Relations to previous results.

Exponential concentration. A determinantal Moser-Trudinger (M-T) inequality on
S2, but with non-optimal constants was first obtained by Fang [12] building on
previous work by Gillet-Soulé concerning the S1−invariant case [15], which in turn
used the classical Moser-Truding (one-particle) inequality. The motivation came
from arithmetic (Arakelov) geometry and spectral geometry. The optimal con-
stants on S2 were obtained by the author in [3] using methods further developed
in the present paper. It would be interesting to know for which other (determi-
nantal) random point processes similar inequalities hold, i.e. upper bounds on the
logarithmic moment generating function of the linear statistic defined by φ(x) in

terms of the Dirichlet norm ‖dφ‖2X . The only previously known case seems to be
the case when the measure measure ν is the invariant measure on S1 (and ω = 0),
corresponding to the standard unitary random matrix ensemble. Then the corre-
sponding inequalities follow from a simple monotonicity argument going back to
the classical work of Szegö (see for example [21] and references therein). Recently,
several works have been concerned with a weaker form of such moment inequali-
ties where the role of the Dirichlet norm is played by the Lipschitz norm. These
inequalities fit into a circle of ideas sourrounding the “concentration of measure
phenomena” in high dimensions. We refer to the survey [18] and the book [27] for
precise references. Formulated in the present settings these latter inequalities hold
for ν = 1Re

−v(x)dx with v(x) strictly convex (satisfying d2v/d2x > C). As explained
in [18], by the Bakry-Emery theorem and Klein’s lemma, the corresponding point
processes satisfy a log Sobolev inequality, which by Herbst’s argument yields the
desired moment inequality.

Szegö type limits and CLT:s. The convergence in Theorem 1.3 (and its Corollary) in
the case when X = S2 was first obtained by Ryder-Virag [30], using combinatorial
(and diagrammatic) arguments to estimate the cumulants (i.e. the coefficients in the
Taylor expansion of the log moment generating function), combined with estimates
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on the 2-point functions. They also obtained analagous results for the homogenous
determinantal point processes on the other two simply connected Riemann surfaces,
i.e on C and H. However, in the latter cases the processes have an infinite number
of particles and are hence different from the sequence of non-homogenous ones
considered in the present paper on a compact Riemann surfaces of genus g > 0.
In the circle case (refered to above) and assuming φ smooth the analogue of the
convergence in Thm 1.3 is the celebrated Szegö strong limit theorem from 1952. In
this case the Dirichlet norm of φ has to be replaced by the Dirichlet norm of the
harmonic extension of φ to the unit-disc. The result of Szegö was motivated by
Onsager’s work on phase transitions for the 2D Ising model. The case of a general
φ was eventually shown by Ibragimov [20]. A new proof was then given by Kurt
Johansson [21], who also pointed out the relation to a CLT for the unitary random
matrix ensemble. We refer to the survey [34] for an interesting account of the history
of Szegö’s theorem and elaborations. The proof in the Riemann surface cases in the
present paper is partly inspired by the argument in [21], where the determinantal
Moser-Trudinger inequalities on S1 (refered to above) were used to reduce the upper
bound in the convergence to the smooth case, also using analytic continuation.
There are also similar convergence results for other weighted measures in the plane
appearing in Random Matrix Theory, but rather strong regularity assumptions on
φ are then imposed [21, 22].

Acknowledgment. The author is grateful to Balint Virag, Manjunath Krishnapur
and Steve Zelditch for helpful comments and their interest in this work.

1.4. Notation1. Let L→ X be a holomorphic line bundle over a compact complex
manifold X.

1.4.1. Metrics on L. We will fix, once and for all, a Hermitian metric ‖·‖ on L.
Its curvature form times the normalization factor i

2π will be denoted by ω. The
normalization is made so that [ω] defines an integer cohomology class, i.e. [ω] ∈
H2(X,Z). The local description of ‖·‖ is as follows: let s be a trivializing local
holomorphic section of L, i.e. s is non-vanishing an a given open set U in X. Then
we define the local weight Φ of the metric ‖·‖ by the relation

‖s‖2 = e−Φ

The (normalized) curvature current ω may now by defined by the following expres-
sion:

ω =
i

2π
∂∂Φ := ddcΦ,

(where we, as usual, have introduced the real operator dc := i(−∂+∂)/4π to absorb
the factor i

2π ). The point is that, even though the function φ is merely locally well-

defined the form ω is globally well-defined (as any two local weights differ by log |g|2

for g a non-vanishing holomorphic function). The current ω is said to be positive
if the weight Φ is plurisubharmonic (psh). If Φ is smooth this simply means that

the Hermitian matrix ωij = ( ∂2Φ
∂zi∂z̄j

) is positive definite (i.e. ω is a Kähler form)

and in general it means that, locally, Φ can be written as a decreasing limit of such
smooth functions.

1general references for this section are the books [16, 11]. See also [?] for the Riemann surface
case.
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1.4.2. Holomorphic sections of L. We will denote by H0(X,L) the space of all
global holomorphic sections of L. In a local trivialization as above any element Ψ
in H0(X,L) may be represented by a local holomorphic function f, i.e.

Ψ = fs

The squared point-wise norm ‖Ψ‖2 (x) of Ψ, which is a globally well-defined function
on X, may hence be locally written as

‖Ψ‖2 (x) = (|f |2e−Φ)(x)

It will be convenient to take the curvature current ω as our geometric data associ-
ated to the line bundle L. Strictly speaking, it only determines the metric ‖·‖ up to
a multiplicative constant but all the geometric and probabilistic constructions that
we will make are independent of the constant.

1.4.3. Metrics and weights vs ω− psh functions. Having fixed a continuous Her-
mitian metric ‖·‖ on L with (local) weight Φ0 any other metric may be written
as

‖·‖2φ := e−φ ‖·‖2

for a continuous function φ on X, i.e. φ ∈ C0(X). In other words, the local weight
of the metric ‖·‖φ may be written as Φ = φ + Φ0 and hence its curvature current
may be written as

ddcΦ = ω + ddcφ := ωφ

This means that we have a correspondence between the space of all (singular)
metrics on L with positive curvature current and the space PSH(X,ω) of all upper-
semi continuous functions on X such that ωφ ≥ 0 in the sense of currents. Note for

example, that if Ψ ∈ H0(X,L) then log ‖Ψ‖2 ∈ PSH(X,ω). In particular, in the
Riemann surface case PSH(X,ω)(= SH(X,ω)) is the space of all usc functions φ
such that ∆ωφ ≥ −1, where ∆ω denotes the Laplacian wrt the Riemannian metric
corresponding to ω, i.e.

∆ωφ = (ddcφ)/ω

2. Proofs of the main results

For a general Kähler manifold (X,ω) there is well-known energy type functional
which may be written as

(2.1) Eω(φ) :=
1

(n+ 1)!V

n
∑

j=0

ˆ

X
ωjφ ∧ (ω)n−j

Up to normalization it can be defined as the primitive of the Monge-Ampère oper-
ator seen as a one-form on the space of all Kähler potentials φ (and it was in this
form it was first introduced by Mabuchi in Kähler geometry; see [4] and references
therein).

We now turn to the case when X is a Riemann surface, i.e. n = 1. In particular,
after an integration by parts Eω can then be expressed in terms of the usual Dirichlet
energy on a Riemann surface:

(2.2) V Eω(φ) = −
1

2

ˆ

dφ ∧ dcφ+

ˆ

φω

Following [3] it will also be convenient to consider a variant of the setting given in
the introduction of the paper where the Hilbert space is the space H0(X, kL+KX)
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of holomorphic one-form with values in L equipped with the canonical Hermitian
product induced by the weight Φ on L : .

(2.3) 〈Ψ,Ψ〉X := i

ˆ

X
Ψ ∧ Ψ̄e−kΦ

(equivalently, one picks a volume form µ on X and takes 1/µ as the metric on
KX). We will call this the adjoint setting and the corresponding process on X the
adjoint determinantal point process at level k. Note that if δN denotes the empirical
measure for this latter process then

E(δN ) = i

N
∑

i=1

Ψi ∧ Ψ̄ie
−Φ

(the measure above was called the Bergman measure in [3]). The following propo-
sition is essentially well-known.

Proposition 2.1. Let L → X be a line bundle over a Riemann surface equipped
with a metric e−Φ with strictly positive curvature form ω(= ddcΦ) such that the
Riemannian metric on X defined by ω has constant scalar curvature. Then the
canonical determinantal point processes associated to kL (with N(= Nk) particles)
satisfy

sup
X

|
EN (δN/N)

ω/V
− 1| ≤ ǫN ,

where ǫN = O(1/N∞) (as the error terms in Theorem 1.1)

Proof. Consider the Hilbert space H0(kL) with Hermitian product defined by

〈s, s〉 :=

ˆ

X
|s|2e−kΦ(ddcΦ)

and fix an orthonormal base (si) (depending on k). To simplify the notation we
assume that V :=

´

X ω = 1 (the proof in the general case is essentially the same).
By Lu’s theorem (see [36] and references therein) there is an asymptotic Bergman
kernel expansion

(

N
∑

i=1

|si|
2e−kΦ) = k +

R

2
+ a1(x)k

−1 + a2(x)k
−2...,

where R is the scalar curvature of ω and ai can be expressed as a universal polyno-
mials in the covariant derivatives of the curvature tensor of the Hermitian metric
ω (more generally this is true in any dimension n if the rhs above is multiplied by
kn−1). Since we have assumed that n = 1 the coefficents ai are in fact universal
polynomials in differential operators applied to R. But since R is constant it follows
that ai must also be constant and we will conclude the argument by showing that,
in general,

´

X aiω = 0. To this end first note that by the Riemann-Roch theorem

Nk =

ˆ

X
(
N
∑

i=1

|si|
2e−kΦω = k +

ˆ

R/2ω

and thus comparing the previous two expansions forces ai = 0. All in all this means
that

1

N
(

N
∑

i=1

|si|
2e−kΦ) =

k + R
2 +O(k−∞)

k + R
2

= 1 +O(k−∞)

which concludes the proof with an O(k−∞)−error term. It be pointed out that in the
case whenX is the sphere it follows immediately from the fact thatX is homogenous
(under the SU(2)−action) that the error term in the previous proposition vanishes.
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More generally, in the case of stricly positive genus g, when L is the theta line
bundle (g = 1) or a multiple of the canonical line bundle KX , the error term can be
estimated by Ce−Ck for some positive constant C. This can be shown by lifting the
problem to the universal cover of X where the full Bergman kernel is constant by
homogenity. When g = 1 the calculation can then be done essentially explicetely
using theta functions (see [13]) and when g > 1 the proof uses Selberg’s trace
formula (the author is grateful to Steve Zelditch for pointing this out). �

2.1. Proof of Theorem 1.1 (determinantal Moser-Trudinger inequality).
We start with the following non-asymptotic inequality.

Proposition 2.2. Let L → X be a line bundle over a Riemann surface equipped
with a smooth metric with strictly positive curvature form ω. Consider the corre-
sponding adjoint determinantal point process. Then the following estimate holds

1

N
logE(e−φ)− Eω(φ) ≤ sup

X
|
E(δ/N)

ω/V
− 1|(−Eω(φ− sup

X
φ))

for any smooth function φ satisfying ωφ := ddcφ + ω ≥ 0, where δ(= δN ) denotes
the empirical measure of the process.

Proof. The proof is a simple modification of the proof Theorem 33 in [3]. As a
courtesy to the reader we will recall the main points the argument in [3]. An
important ingredient in the proof is the notion of a C0−geodesic segments in
C0(X)∩PSH(X,ω). This may be defined as the continuous path φt connecting φ0
and φ1 in C0(X) ∩ PSH(X,ω) obtained as the upper envelope of all S1− invari-
ant π∗ω−psh extensions to the n+1−dimensional complex manifold X × [0, 1[×S1

(where π denotes the projection from X × [0, 1[×S1 to X). In particular, φt is con-
vex in the real paramter t. See [3] for the precise construction. Now consider the
following functional on C0(X), which is invariant under addition of constants.

Fω(φ) := Eω0(φ) +
1

N
logE(e−φ)

The following variational formulas hold:

(i)−
1

N
d(logE(e−φt)/dt =

〈

Eωφt
(δ/N), dφt/dt

〉

, (ii) dEω0(φt)/dt =
1

V
〈ωφt, dφt/dt〉

Moreover, if φt is a C0−geodesic in Psh(X,ω) then

(i′) logE(e−φt) is convex, (ii′) Eω0(φt) is affine

in the real parameter t (the item (i′) above follows from the Toeplitz determinant
representation 1.5 combined with the positivity results for direct image bundles in
[8]; see also the appendix in [3] for another proof using the structure of determinan-
tal point processes). Now, for any given φ ∈ C0(X) ∩ Psh(X,ω) we let φt be the
C0−geodesic such that φ0 = 0 and φ1 = φ. By the concavity of Fω(φt) (resulting
from (i′) combined with (ii′)) and since Fω(φ0) = 0 we have

Fω(φ) ≤ d(Fω(φt))/dtt=0 =

ˆ

(V E(δ/N)/ω − 1)
1

V
ω(−dφt/dt)t=0

Next, note that, since the inequality in the theorem that we are about to prove is
invariant under φ → φ + C we may as well assume that supX φ = 0. Since φt is
convex in t we have −dφt/dt ≤ φ1 − φ0 = φ (we are using right derivatives, which
always exist by convexity) and hence

Fω(φ) ≤ sup
X

(V E(δ/N)/ω − 1)
1

V
(

ˆ

ω(−dφt/dt)t=0

9



Next, note that, combining (ii) and (ii′) above gives

(

ˆ

ω(−dφt/dt)t=0 = dEω(φt)/dtt=0 = −Eω(φ)

and hence
Fω(φ) ≤ sup

X
(V E(δ/N)/ω − 1)(−Eω(φ))

Finally, replacing φ with φ− supX φ finishes the proof of the lemma. �

To reduce the case of a general smooth function φ to an ω−psh one we will make
use of the psh-projection Pω mapping smooth functions to ω−psh ones:

(2.4) (Pωφ)(x) := sup {ψ(x) : ψ ∈ PSH(X,ω), ψ ≤ φ onX}

It is not hard to see that Pωφ is continuous when φ is and moreover that the
following “orthogonality relation” holds [5]

(2.5)

ˆ

X
(φ− Pωφ)dd

c(Pωφ) = 0

Moreover, as shown in [1] if φ ∈ C1,1(X), i.e. the differential dφ is Lipshitz contin-
uous then φ ∈ C∞(X).

Proposition 2.3. Let (X,ω) be a Riemann surface with a Kähler. Then

(i) Eω(φ) ≤ Eω(Pωφ), (ii) ‖d(Pωφ)‖
2
X ≤ ‖dφ‖2X

for any φ ∈ C∞(X).

Proof. (i) was proved in [3] and (ii) is proved in a similar way, as we will next see.
Integrating by parts gives

‖d(Pωφ)‖
2
X =

ˆ

(−Pωφ)dd
c(Pωφ) =

ˆ

(−Pωφ)(dd
cPωφ+ ω) +

ˆ

(Pωφ)ω

Next, since Pωφ = φ a.e. with respect to (ddcPωφ+ω) (by formula 2.5) this means
that

‖d(Pωφ)‖
2
X =

ˆ

(−φ)(ddcPωφ+ω)+

ˆ

(Pωφ)ω =

ˆ

(−φ)(ddcPωφ)+

ˆ

(Pωφ−φ)ω

But since (Pωφ− φ) ≤ 0 and ω ≥ 0 the last term above is non-positive and hence

‖d(Pωφ)‖
2
X ≤ ‖d(Pωφ)‖X ‖dφ‖X ,

also using the Cauchy-Schwartz inequality for the first term above. Dividing out
‖d(Pωφ)‖X (which is always non-zero if φ is) proves Step 2. �

2.1.1. End of proof of Theorem 1.1. We start with the proof of the inequality 1.8.
Consider the line bundle kL with Φ the weight of a metric on L with curvature
ω := ddcΦ > 0 and decompose

kL =: Lk +KX , kΦ =: Φk +Φω

where Φω := log( ω
V idz∧dz̄ ) defines the weight of a metric on on KX . Then the Hilbert

space H0(kL) associated to the weighted measure ( ωV , ω) is naturally isomorphic to

the Hilbert space H0(Lk +KX) associated to the weight Φk in the adjoint setting,
just using that, by definition,

e−kΦ
ω

V
= e−Φkidz ∧ dz̄

We will write ωk := ddcΦk (and we let Nk be the dimension of H0(kL) and Vk the
volume (degree) of Lk. Then

(2.6) ωk/Vk = ω/V
10



and in particular ωk > 0. This follows immediately from the fact that the forms in
rhs and the lhs above both integrate to one over X and moreover, by assumption,
ω satisfies the Kähler-Einstein equation:

ddcφω(:= -Ricω) = λω

for some constant λ, so that ωk is proportinal to ω.
Step one: scaling by k and assuming (ωk)φ(:= ωk + ddcφ) ≥ 0.
Applying Prop 2.2 and Prop 2.1 to (Lk, ωk) and φ and using formula 2.2 gives,

using 2.6,

1

Nk
logE(e−φ) + Eωk

(φ) ≤ ǫk

(

1

2Vk
‖dφ‖2X +

ˆ

(sup
X
φ− φ)

ω

V

)

Next, we recall the following basic inequality: there is a constant C (only depending
on ω) such that

sup
X
ψ ≤

ˆ

X
ψω + C

for any ψ such that ωψ ≥ 0 (as follows immediately from Green’s formula; see
[17] for more general inequalities). Setting ψ = φ/k and applying the previous
inequality to the rhs in the preceeding inequality gives, since ωk/k ∼ ω, that

1

Nk
logE(e−φ) + Eωk

(φ) ≤ ǫk(‖dφ‖
2
X + kC)

Step two: using Pωk

Let now φ be a general smooth function. Since P(ωk)φ ≤ φ we have 1
N logE(e−φ) ≤

1
N logE(e−P(ωk)φ) and hence the previous step applied to Pωk

φ combined with (i)
in the previous proposition and step one gives

1

Nk
logE(e−φ) + Eωk

(φ)− ǫk ≤ ǫk ‖d(Pωφ‖
2
X ≤ ǫk ‖dφ‖

2
X

also using (ii) in the previous proposition in the last inequality. Finally,using the
scaling property

(2.7) logE(e−(ψ+c))/N = −c+ logE(e−ψ)/N

together with formula 2.2 and the identity 2.6 we can rewrite

1

Nk
logE(e−φ) + Eωk

(φ) =
1

Nk
logE(e−(φ−

´

X φ ω
V )−

1

Vk

1

2
‖dφ‖2X

All in all this means that

logE(e−φ) ≤ (
Nk

Vk

1

2
+ ǫk) ‖dφ‖

2
X + ǫk

Finally, by the Riemann-Roch theorem

Nk

Vk
=
k deg(L)− deg(KX)/2

k deg(L)− deg(KX)
=

Nk

Nk − deg(KX)/2
=

Nk

Nk + (1− g)

finishing the proof of the inequality 1.8.
To prove the second inequality 1.9 in the theorem we first note that

ˆ

φ(ω/V − E(δ/N)) ≤ ǫN ‖φ‖L1(X)/R (:= ǫN inf
c∈R

‖φ+ c‖L1(X))

Indeed, the lhs above is invariant under the action of R, φ → φ + c, and hence
the inequality follows immediately from Prop 2.1. The inequality 1.8 then follows
immediately from the fact that φ→ dφ is invariant under the action of R combined
with the scaling property 2.7 (just take ψ = φ−

´

φω and c =
´

φ(ω/V −E(δ/N))).
11



2.2. Proof of Cor 1.2. The proof is a standard application of Markov’s inequality:
for any given t > 0 we have

Prob{Y > 1} = Prob{etY > et} ≤ e−tE(etY ),

where in our case Y = 1
Nǫ(φ(x1) + ... + φ(xN ). By the previous theorem the rhs

above is bounded by e−t+ct
2/2eǫN for c = (aN + ǫN )

∥

∥d( 1
Nǫφ)

∥

∥

2
. Taking t = 1/c

shows that the first factor may be estimated by e−
1
2c which finishes the proof of the

corollary.

2.3. Proof of Theorem 1.3 (Sharp Szegö type limit theorem). We will use
the following notation for the fluctuation of the linear statistic determined by a
function φ on X :

φ̃ :=

N
∑

i=1

(φ(xi)− E(φ(xi))

We start by proving the following universal bound on the variance for the canonical
processes, which is of independent interest.

Proposition 2.4. For any given function φ on X the following upper bound on the
variance of the corresponding linear statistic holds:

E(|φ̃|2)/4 ≤ (1 + ǫN ) ‖dφ‖
2
X + ǫN ‖φ‖2L1(X)/R

where ǫN denotes a sequence, independent of φ, tending to zero. In particular, if
φ ∈ L1(X) and dφ ∈ L2(X) then the variance is uniformly bounded from above by
a constant independent of N.

Proof. We will denote by ǫN a sequence tending to zero, which may change from
line to line. By the second inequality in Theorem 1.1 we have

E(e−tφ̃) ≤ e(1+ǫN )) 1
2
t2‖dφ‖2X+ǫN t‖φ‖L1(X)/ReǫN

Using 2ab ≤ a2 + b2 hence gives

E(e−tφ̃) ≤ e
1
2
t2fN eǫN , fN =

(

(1 + ǫN ) ‖dφ‖
2
X + ǫN ‖φ‖2L1(X)/R + ǫN

)

Repeating the argument in the proof of 1.2 (involving Markov’s inequality) hence
gives

Prob{(φ̃ > λ} ≤ e
−λ2 1

2
1

fN eǫN

Now using the push-forward formula for the integral in E(|φ̃|2) we can write

E(|φ̃|2) =

ˆ ∞

0
(Prob{φ̃2 > λ})d(λ2) +

ˆ ∞

0
(Prob{(−φ̃)2 > λ})d(λ2)

≤ 2 · 2fNe
ǫN

where we used that
´∞
0 e−

1
2

1
a
sds = 2a in the last step, finishing the proof. �

As shown in [2] we have for any fixed smooth function φ and t ∈ R

(2.8) E(eitφ̃) → e−t
2 1
2

´

X
dφ∧dcφ

as N → ∞. Using the variance estimate above we can extend the previous conver-
gence to the case when we merely assume that ‖dφ‖X <∞ (and hence ‖φ‖L1(X) <

∞). To this end take a sequence φj ∈ C∞(X) such that ‖d(φj − φ)‖X → 0 and
‖φj − φ‖L1(X) → 0. Since

|E(eitφ̃j )− E(eitφ̃)|2 ≤ E(|ũ|2)
12



for u = φj − φ (just using 1− eis ≤ |s|) we deduce that

|E(eitφ̃j )− E(eitφ̃)|2 ≤ C(‖d(φ− φj)‖
2
X + ‖φ− φj‖

2
L1(X)

for N >> 1 and hence letting first N and then j tend to infinity proves the con-
vergence 2.8 in the non-smooth case as well.

Next, we observe that the convergence 2.8 moreover holds for any t ∈ C. Indeed,

fk(t) := E(eitφ̃)

is a sequence of holomorphic functions on C such that for t in a fixed compact
subset K of C

|fk(t)| ≤ E(e−(Im(t))φ̃) ≤ CK

using the second inequality in Theorem 1.1. Since fk converges point-wise to the

holomorphic function f(t) = e−t
2
´

dφ∧dcφ for t ∈ R it hence follows (e.g. by Vitali’s
theorem) that fk converges to f everywhere on C. In other words we have now
proved Theorem 1.3 for the case of real and imaginary φ. Finally, if φ is complex
valued we consider φs = u+ sv where φ = φs for s = i. The previous convergence

shows that E(e−φ̃s) converges to an explicit holomorphic function (as above) for
s ∈ R.Moreover, since the upper bound on |fk(s)| still holds (by the same argument)
the previous argument also shows that the convergence holds for any s ∈ C and in
particular for s = i.

2.4. A brief acount of the higher dimensionsional case. Let us now come
back to the case when X is n−dimensional and fix a Kähler form ω on X. In
[2] the analogue of the convergence in Theorem 1.3 was shown to hold as long as
φ ∈ C1(X). More precisely, in the convergence statement φ has to be replaced by

k−(n−1)/2φ and the norm ‖dφ‖2X by

‖dφ‖2(X,ω) =

ˆ

dφ ∧ dcφ ∧
ωn−1

(n− 1)!
(=

ˆ

|∇φ|2dV )).

However, when n > 1 there are integrable functions φ with
´

X |∇φ|2ωn < ∞, but
´

e−φdV = ∞ (as is well-known in the context of Sobolev inequalities). As a conse-

quence, it is not hard to check that for such a function φ we have E(e−(φ(x1)+··· )) =
∞ and in particular the analogue of the convergence in Theorem 1.3 cannot hold
(after perhaps scaling φ). Moreover, the corresponding analogue of the Moser-
Trudinger inequality in Theorem 1.1 fails when n > 1 (as is seen by approximating
φ as above with a monotone smooth sequence φj). Explicit counter-examples are
obtained, already when N = 1, by letting X = P

n(⊇ C
n
z ) and ω be the standard

SU(n + 1)−invariant metric on P
n and taking φj(z) := m log(1/j+|z|2

1+|z|2 ) (for a fixed

m ≥ n) decreasing to φ(z). Note that φj is even ω−psh.
On the other hand, another variant of the determinantal Moser-Trudinger in-

equality in Theorem 1.1 does hold in higher dimensions. More precisely, 1
2 ‖dφ‖

2
X

has to be replaced by Aubin’s J−functional (which is comparable to
´

dφ ∧ dcφ ∧
(ωφ)

n. Moreover φ has to be assumed ω−psh (i.e. ωφ ≥ 0) (otherwise there are
counter-examples, as explained in [3]) When X = P

n (or more generally X is a
rational homogenous manifold) the corresponding inequality is the content of Cor
2 in [3], with vanishing error terms ǫN . More generally, the arguments in Step one
in the proof of Theorem 1.1 extend in a straight-forward manner to the higher-
dimensional case when the Kähler metric ω has a constant scalar curvature (but
then the error terms ǫNk

are then of the order O(1/k)).
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