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In this work, we consider the solvability of the Fokker-Planck equation with both time-dependent
drift and diffusion coefficients by means of the similarity method. By the introduction of the simi-
larity variable, the Fokker-Planck equation is reduced to an ordinary differential equation. Adopting
the natural requirement that the probability current density vanishes at the boundary, the resulted
ordinary differential equation turns out to be integrable, and the probability density function can
be given in closed form. New examples of exactly solvable Fokker-Planck equations are presented,
and their properties analyzed.
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I. INTRODUCTION

The Fokker-Planck equation (FPE) is one of the basic tools which is widely used for studying the effect of fluctuations
in macroscopic systems [1]. It has been employed in many areas: Physics, chemistry, hydrology, biology, even finance,
and others. Because of its broad applicability, it is therefore of great interest to obtain solutions of the FPE for various
physical situations. Many methods, including analytical, approximate and numerical ones, have been developed to
solve the FPE.
Generally, it is not easy to find analytic solutions of the FPE. Exact analytical solutions of the FPE are known

for only a few cases, such as linear drift and constant diffusion coefficients [1]. In most cases, one can only solve
the equation approximately, or numerically. The well-known analytic methods for solving the FPE include a change
of variables, perturbation expansion, eigenfunction expansion, variational approach, Green’s function, path integral,
moment method, and the continued-fraction method (for a review of these method, see eg. [1]). Symmetry methods
have also been quite useful in solving the FPE [2]. Two interesting analytic approximation approaches are the WKB
analysis [1] and the normal mode analysis [3]. The finite-difference [4] and finite-element methods [5] are among some
useful numerical methods. Most of these methods, however, are concerned only with FPE’s with time-independent
diffusion and drift coefficients.
Solving the FPE’s with time-dependent drift and/or diffusion coefficient is in general an even more difficult task.

It is therefore not surprising that the number of papers on such kind of FPE is far less than that on FPE with
time-independent coefficients. Some recent works on the FPE with time-dependent diffusion coefficients appear in
[6–8], and works involving time-dependent drift coefficients can be found in [9–11]. Refs. [12–14] consider the FPE’s
with both time-dependent diffusion and drift coefficients. The symmetry properties of the one-dimensional FPE with
arbitrary coefficients of drift and diffusion are investigated in [14]. Such properties may in some cases allow one to
transform the FPE into one with constant coefficients. It is proved that symmetry group of these equations can be of
one, two, four or six parameters and the criteria are also obtained.
In our previous work [11], we have considered, within the framework of a perturbative approach, the similarity solu-

tions of a class of FPE which have constant diffusion coefficient and small time-dependent drift coefficient. Motivated
by our previous work, in this paper we would like to study the solvability of the FPE with both time-dependent drift
and diffusion coefficients by means of the similarity method.
One advantage of the similarity method is that it allows one to reduce the order of a partial differential equation

[15]. Thus the FPE can be transformed into an ordinary differential equation which may be easier to solve. However,
for the FPE to admit similarity solutions, it must possess proper scaling property under certain scaling transformation
of the basic variables. This all boils down to the scaling behaviors of the drift and diffusion coefficients. To study
these scaling behaviors is the main aim of the present work.
The plan of the paper is as follows. Sect. II discusses the scaling form of the FPE. Then in Sect. III the similarity

method is applied to reduce the FPE into an ordinary differential equation, and the exact solution of the probability
density expressed in closed form. Sect. IV and V present detailed analyses of the similarity solutions of the FPE which
are related to the confluent hypergeometric equation. Those related to the hypergeometric equation are considered
in Sect. VI. Sect. VII shows an example which is not related to (confluent) hypergeometric equation. Sect. VIII
concludes the paper.

http://arxiv.org/abs/1106.3034v1
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II. SCALING OF FOKKER-PLANCK EQUATION

The general form of the FPE in (1 + 1)-dimension is

∂W (x, t)

∂t
=

[

− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]

W (x, t) , (1)

where W (x, t) is the probability distribution function, D(1)(x, t) is the drift coefficient and D(2)(x, t) the diffusion
coefficient. The drift coefficient represents the external force acting on the particle, while the diffusion coefficient
accounts for the effect of fluctuation. W (x, t) as a probability distribution function should be normalized, i.e.,
∫

domainW (x, t) dx = 1 for t ≥ 0.
As mentioned in the Introduction, it is difficult, if not impossible, to find exact solutions of the general FPE with

time-dependent drift and diffusion coefficients. Here we shall be content with a more modest aim by seeking a special
class of solutions, namely, the similarity solutions of the FPE. Such solutions are possible provided that the FPE
possesses certain scaling symmetry. Below we shall show that, if both the drift and diffusion coefficients assume
proper scaling forms, then the FPE can be solved with the similarity method.
Consider the scale transformation

x̄ = εax , t̄ = εbt, (2)

where ε, a and b are real parameters. Suppose under this transformation, the probability density function and the
two coefficients scale as

W̄ (x̄, t̄) = εcW (x, t), D̄(1)(x̄, t̄) = εdD(1)(x, t) , D̄(2)(x̄, t̄) = εeD(2)(x, t). (3)

Here c, d and e are also some real parameters. Written in the transformed variables, eq.(1) becomes

εb−c ∂W̄

∂t̄
=

[

− εa−c−d ∂

∂x̄
D̄(1)(x̄, t̄) + ε2a−c−e ∂2

∂x̄2
D̄(2)(x̄, t̄)

]

W̄ (x̄, t̄) . (4)

One sees that if the scaling indices satisfy b = a− d = 2a− e, then eq.(4) has the same functional form as eq.(1). In
this case, the FPE admits similarity solutions. We shall present such solutions below.

III. SIMILARITY METHOD

The similarity method is a very useful method for solving a partial differential equation which possesses proper
scaling behavior. One advantage of the similarity method is to reduce the order of a partial differential equation
through some new independent variables (called similarity variables), which are certain combinations of the old inde-
pendent variables such that they are scaling invariant, i.e., no appearance of parameter ε, as a scaling transformation
is performed.
In our case, the second order FPE can be transformed into an ordinary differential equation which may be easier

to solve. Here there is only one similarity variable z, which can be defined as

z ≡ x

tα
, where α =

a

b
and a , b 6= 0 . (5)

For a , b 6= 0, one has α 6= 0 ,∞. In what follows we derive the scaling forms and closed form solutions of the
probability and current density functions.

A. Probability distribution function

The general scaling form of the probability density function W (x, t) is W (x, t) = (tδ1/xλ1)y(z), where λ1 and δ1 are
two real parameters and y(z) is a scale-invariant function under the sale transformation (2). From the assumed scaling
behavior of W (x, t) in (3), we have −c/a = λ1 − (δ1/α). Without loss of generality and for clarity of presentation, we
hereby assume the parameters (λ1, δ1) = (0, αc/a). This gives

W (x, t) = tα
c
a y(z) . (6)
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The normalization of the distribution function is
∫

domain
W (x, t) dx =

∫

domain

[

tα(1+
c
a
) y(z)

]

dz = 1 . (7)

For the above relation to hold at all t ≥ 0, the t-dependent term in the integrand must vanish, and so one must have
c = −a, and thus

W (x, t) = t−αy(z). (8)

Next we determine the scaling forms of the drift and diffusion coefficients D(1)(x, t) and D(2)(x, t). Following the
same way of determining the transformation between W (x, t) and y(z), we can have D(1)(x, t) = (tδ2/xλ2)ρ1(z). The
scaling behavior for D(1)(x, t) leads to d = bδ2 − aλ2. For simplicity, we set λ2 = 0. This gives δ2 = α − 1, where
the relations between the scaling exponents, namely, b = a− d and α = a/b, have been used. A similar procedure is
applied to determine D(2)(x, t) in terms of ρ2(z). To summarize, the scaling forms of the coefficients are

D(1)(x, t) = tα−1ρ1(z) , D(2)(x, t) = t2α−1ρ2(z) . (9)

With eqs. (5), (6) and (9), the FPE is reduced to

ρ2(z) y
′′(z) +

[

2ρ′2(z)− ρ1(z) + αz
]

y′(z) +
[

ρ′′2 (z)− ρ′1(z) + α
]

y(z) = 0 , (10)

where the prime denotes the derivative with respect to z. Thus it is seen that the solvability of the FPE, eq. (1),
under the similarity method depends solely on that of eq. (10). An easy way to find exact solutions of eq. (10) is to
relate it to either the hypergeometric equation or the confluent hypergeometric equation. This requires that ρ1(z) be
a linear function of z, and ρ2(z) a (linear) quadratic function of z for the (confluent) hypergeometric case.
However, it turns out ρ1 and ρ2 need not be so restricted in order to make eq. (10) exactly solvable. This is because

eq. (10) is exactly integrable. By integrating it once, we get

ρ2y
′(z) + (ρ′2 − ρ1) y(z) + αzy(z) = C, (11)

where C is an integration constant.
To proceed further we shall assume the following conditions on the constant C and the boundary condition on

W (x, t):

C = 0, zy(z)|boundary = xW (x, t)|boundary = 0, (12)

where W (x, t) = t−α y(z) and z = x/tα have been used. As will be seen in the next subsection, these conditions
are equivalent to the requirement that the probability current density J(x, t) be vanished at the boundary, i.e.,
J(x, t)|boundary = 0. With these conditions, the FPE is reduced to

ρ2y
′(z) + (ρ′2 − ρ1) y(z) + αzy(z) = 0. (13)

This equation is easily solved to give

y(z) ∝ exp

(
∫ z

dz
ρ1(z)− ρ′2(z)− αz

ρ2(z)

)

. (14)

Thus the probability density function W (x, t) is given by

W (x, t) = At−α exp

(
∫ z

dz
ρ1(z)− ρ′2(z)− αz

ρ2(z)

)

z= x
tα

, (15)

where A is the normalization constant. It is interesting to see that the similarity solution of the FPE can be given in
an such analytic closed form. Exact similarity solutions of the FPE can be obtained as long as ρ1(z) and ρ2(z) are
such that the integral in eq. (15) is integrable.
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B. Probability current density

Now we would like to present a simple and interesting relation between the probability distribution function W (x, t)
and the associated current density J(x, t). From the continuity equation

∂

∂t
W (x, t) = − ∂

∂x
J(x, t) , (16)

we have

J(x, t) = D(1)(x, t)W (x, t) − ∂

∂x

[

D(2)(x, t)W (x, t)
]

. (17)

Using eqs. (5), (8) and (9), we get

J(x, t) = t−1 [(ρ1 − ρ′2) y(z)− ρ2y
′(z)] . (18)

From eq. (13), we can reduce the above equation to

J(x, t) =
1

t
α z y(z) =

αx

t
W (x, t). (19)

Thus the conditions in (12) imply that J(x, t) is proportional to W (x, t) and x, and that J(x, t)|boundary = 0, as
mentioned before.
Eq. (19) can also be obtained by scaling consideration as follows. Under the scale transformation, the scaling

behavior of J(x, t) take the form J̄(x̄, t̄) = εh J(x, t), where h = −b is determined from expression (17) with the
help of (2), (3), the relation b = a − d = 2a − e and c = −a. The general scaling form of the probability current is
J(x, t) = (tδ3/xλ3)Σ(z). Without loss of generality we choose the set of parameters (λ3, δ3) = (0,−1). This gives

J(x, t) = t−1 Σ(z) . (20)

Inserting the similarity solution W (x, t) = t−α y(z) and (20) into eq. (16), one finds αy(z) + αzy′(z) = Σ′(z). This
can be integrated to give Σ(z) =

∫

[αy(z)+αzy′(z)] dz+constant = αzy(z)+ constant. Adopting the conditions (12)
then gives eq. (19)
As mentioned before, exact similarity solutions of the FPE can be obtained as long as ρ1(z) and ρ2(z) are such

that the integral in eq. (15) is integrable. Below we present several examples of FPE with time-dependent coefficients
which care exactly solvable by the similarity method.

IV. FPE WITH ρ1(z) = µ1z + µ2 AND ρ2(z) = µ4

Let us take ρ1(z) and ρ2(z) as

ρ1(z) = µ1z + µ2 , ρ2(z) = µ4 , (21)

where µ1, µ2 and µ4 are real constants. This choice of ρ1 and ρ2 generate the following drift and diffusion coefficients:

D(1)(x, t) = µ1
x

t
+ µ2 t

α−1 , D(2)(x, t) = µ4 t
2α−1 . (22)

Eq. (10) in this case is related to the confluent hypergeometric equation.
From eq. (15), the function y(z) is

y(z) ∝















exp
{

1
µ4

[

(µ1 − α) z2

2 + µ2z
]}

, µ1 6= α

exp
{

µ2

µ4

z
}

, µ1 = α

(23)

We shall discuss these two cases separately.
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A. µ1 6= α

For this case, the normalized solution, from eq. (15), are

W (x, t) =

√

α− µ1

2πµ4t2α
exp

{

− α− µ1

2µ4t2α

(

x− µ2t
α

α− µ1

)2}

, (24)

where either (µ4 > 0, µ1 < α) or (µ4 < 0, µ1 > α) must be satisfied. The well-known diffusion equation is in this
class with α = 1/2, µ1 = µ2 = 0 and µ4 > 0.
The solution (24) is a Gaussian (or normal) distribution in x. The full width at half maximum (FWHM) of the

solution is related to the parameters α, µ1, µ4 and time t as C1

√

(µ4t2α)/(α− µ1), where C1 = 2
√
2 ln 2. Hence,

from eq. (22), one can see that the FWHM is affected by the coefficient µ1 of term x/t of the drift coefficient and the
coefficient µ4 of the term t2α−1 of the diffusion coefficient respectively. It also can be seen that the location of the peak
of the solution, x = (µ2t

α)/(α − µ1), depends on the parameters α, µ1, µ2 and time t. From eq. (22), it is seen that
the location of the peak of the probability density can only be influenced by the drift coefficient. The parameter µ2 in
the drift coefficient plays an important role in the determination of the location of the peak. For instance, if µ2 = 0,
then the peak stays at the origin and will not change with time. The value of the peak is

√

(α− µ1)/(2πµ4t2α), and
is dependent on the parameters α, µ1, µ4 and time t. Thus it is affected by both the drift and diffusion coefficients.
One notes that at fixed time t, W (x, t) with µ2 and −µ2 are the mirror images to each other with respect to the

y-axis as the rest of the parameters are kept fixed. Furthermore, when the parameters (2α− µ1,−µ4) take the place
of (µ1, µ4) with the rest unchanged, the corresponding two W (x, t)’s are the mirror images to each other. One then
finds that W (x, t) is invariant as the parameters (µ1, µ2, µ4) are replaced by (2α− µ1,−µ2,−µ4).
As shown previously, the FWHM and the peak value are both related to (µ4t

2α)/(α − µ1). The parameter α can
be either positive or negative. When α > 0, the FWHM of the solution (24) is getting broader, the peak is turning
smaller and is moving away from the origin with time. On the other hand, if α < 0, then the FWHM of the solution
will shrink, the peak value will become higher and move toward the origin as time elapses. The situation where the
FWHM is neither expanding nor contracting is impossible because α 6= 0.
FIG. 1 shows the evolutions of the probability density in solution (24) for a set of the parameters, where µ1 6= α.

FIG. 1: Plot of W (x, t) versus x for solution (24) with α = 1, µ1 = 1/2, µ2 = 1, µ4 = 1 and time t = 1.0, 2.0, 3.0, 4.0.

For the set of parameters taken in FIG. 1, the drift and diffusion coefficient are D(1)(x, t) = x/(2t) + 1 and
D(2)(x, t) = t, respectively. From the figures above and the analysis in Sect. IV. A, one sees that the peak of the
probability distribution W (x, t) moves to the right as time increases. This is due to the presence of the drift force.
Furthermore, owing to the presence of µ1 and µ4 in the drift and diffusion coefficient, the FWHM of W (x, t) is getting
wider, and the peak value is getting smaller.
FIG. 1 shows the evolution of the solution of the FPE with a set of time-dependent drift and diffusion coefficient.

In the next two subsections, we shall study the difference in behavior of the solutions as one of the coefficients changes
from being time-independent to being time-dependent, while the other coefficient is being kept fixed.
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B. µ1 = α

In this case, the normalized solution is

W (x, t) =
∣

∣

∣

µ2

µ4 tα

∣

∣

∣
exp

{ µ2

µ4 tα
x
}

, (25)

where it is valid in x ≥ 0 for (µ2/µ4) < 0; x ≤ 0 for (µ2/µ4) > 0.
Solution (25) is the time-dependent solution of the FPE with the time-dependent drift coefficient D(1)(x, t) =

αx/t + µ2t
α−1 and diffusion coefficient D(2)(x, t) = µ4t

2α−1. It possess certain symmetry properties. For instance,
when the ratio of µ2/µ4 is taken to be the same for different sets of (µ2, µ4), the solution (25) is invariant. Also, when
(µ2, µ4) are replaced with (−µ2, µ4) or (µ2,−µ4), the corresponding W (x, t)’s are the mirror images to each other
with the other parameters fixed.
In the following, one example is given to illustrate the solution (25) and the probability current J(x, t) of solu-

tion (25).
FIG. 2 displays the evolutions of the probability density in solution (25) for a set of the parameters, where µ1 = α.

FIG. 3 shows the probability current J(x, t) corresponding to the solution (25) with the same set of the parameters
as in FIG. 2.

FIG. 2: Plot of W (x, t) versus x for solution (25) with α = 3, µ1 = 3, µ2 = −6, µ4 = 2 and time t = 1.0, 1.3, 1.6, 1.9.

FIG. 3: Plot of J(x, t) versus x for solution (25) with the same set of parameters as in FIG. 2.
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The time evolution of W (x, t) in FIG. 2 demonstrates the decreasing of the concentration near the origin and the
spreading to the area away from the origin with time.
From (19) and (25), one can find that the maximum probability current J(x, t) occurs at x = −µ4t

α/µ2, which
moves with time.
The plots in FIG. 2 are the same for an infinite set of (µ2, µ4) with µ2/µ4 = −3 with other parameters remaining the

same. It means that FPE’s with drift coefficient D(1)(x, t) = 3x/t− 3µ4t
2 and diffusion coefficient D(2)(x, t) = µ4t

5

have the same solutions for arbitrary µ4 6= 0.

C. Examples with the same drift but different diffusion coefficients

Let us take µ2 = 0, and consider two different values of α, namely, α = 1/2 and α = 1. The case with α = 1/2
corresponds to D(1)(x, t) = µ1x/t and D(2)(x, t) = µ4, with the probability distribution

W (x, t) =

√

1− 2µ1

4πµ4t
exp

{

−
(1− 2µ1

4µ4t

)

x2
}

. (26)

The other case, α = 1, leads to D(1)(x, t) = µ1x/t, D
(2)(x, t) = µ4t and

W (x, t) =

√

1− µ1

2πµ4t2
exp

{

−
(1− µ1

2µ4t2

)

x2
}

. (27)

These two examples have the same drift force, and differ only in the diffusion coefficients: constant in the first case,
and linear in time in the second. One can thus study how the time-dependent diffusion modifies the behavior of the
system with constant diffusion.
As µ2 = 0, the peak of the probability distribution will not move with time. Comparing eqs. (26) and (27), one sees

that the FWHM is changed from C1

√

(2µ4t)/(1− 2µ1) to C1

√

(µ4t2)/(1− µ1), and the value of the peak is changed

from
√

(1− 2µ1)/(4πµ4t) to
√

(1 − µ1)/(2πµ4t2). The two distributions coincide only at time tc = 2(1−µ1)/(1−2µ1).
The evolution of the solutions (26) and (27) are plotted in FIG. 4 and FIG. 5 respectively with two sets of the

parameters, which are the same except α.

FIG. 4: Plot of W (x, t) versus x for solution (26) with α = 1/2, µ1 = 1/4, µ2 = 0, µ4 = 1, and time t = 1.0, 3.0, 5.0, 7.0.

Because of µ2 = 0, the peaks in both of the figures are not moving as expected. It is seen that before time tc = 3,
W (x, t) in FIG. 4 has a larger FWHM and a smaller peak value than W (x, t) in FIG. 5, and after tc = 3, the situation
reverses. That is because when 0 < t < 1, the diffusion coefficient µ4 causes more diffusion than µ4t does. It hence
leads the peak value of W (x, t) in FIG. 4 to be smaller than that in FIG. 5. However, when t > 1, the time-dependent
diffusion coefficient µ4t starts to have more influence than the constant diffusion coefficient µ4 does. When t = 3,
both W (x, t) has the same value for all x. After t = 3, the peak value of W (x, t) in FIG. 5 is always smaller than
W (x, t) in FIG. 4.
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FIG. 5: Plot of W (x, t) versus x for solution (27) with α = 1, µ1 = 1/4, µ2 = 0, µ4 = 1, and time t = 1.0, 3.0, 5.0, 7.0

D. Examples with the same diffusion but different drift coefficients

When the set of parameters α = 1/2, and µ1 = µ2 = 0 is taken, one has D(1)(x, t) = 0, D(2)(x, t) = µ4 and
probability distribution

W (x, t) =

√

1

4πµ4t
exp

{

− 1

4µ4t
x2

}

(28)

The other set of parameter α = 1/2 and µ1 = 0 leads to D(1)(x, t) = µ2/
√
t, D(2)(x, t) = µ4 and probability

distribution

W (x, t) =

√

1

4πµ4t
exp

{

− 1

4µ4t

(

x− 2µ2

√
t
)2}

(29)

In this case, (28) is the solution of the diffusion equation with a constant diffusion coefficient µ4. The solution (28)
demonstrates only the effect of the diffusion. Eq. (29) gives the solution with additional drift µ2/

√
t. The probability

distribution (29) moves with time but keeps its FWHM at the value of 4
√

(ln 2)µ4t same as the solution (28). It is
easy to see in (29) that when µ2 takes the positive (negative) value, W (x, t) will move in the +x (−x) direction as

time elapses, and the peak value
√

1/(4πµ4 t) gets smaller with time.
The evolution of these solutions (28) and (29) are plotted in FIG. 6 and FIG. 7 respectively with two sets of the

parameters, which are the same except µ2.

V. FPE WITH ρ1(z) = µ1z + µ2 AND ρ2(z) = µ3z

The next interesting exactly solvable example we shall discuss is an FPE with ρ1(z) = µ1z + µ2 and ρ2(z) = µ3z.
Eq. (10) with this choice is related to the confluent hypergeometric equation. The corresponding drift and diffusion
coefficients are

D(1)(x, t) = µ1
x

t
+ µ2 t

α−1 , D(2)(x, t) = µ3 x t
α−1 . (30)

Eq. (15) is integrable and gives

W (x, t) =

(

α−µ1

µ3 tα

)

µ2

µ3

Γ
(µ2

µ3

) x
µ2

µ3
−1

exp
{

− α− µ1

µ3 tα
x
}

. (31)
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FIG. 6: Plot of W (x, t) versus x for solution (28) with α = 1/2, µ1 = µ2 = 0, µ4 = 1, and time t = 1.0, 3.0, 5.0, 7.0.

FIG. 7: Plot of W (x, t) versus x for solution (29) with α = 1/2, µ1 = 0, µ2 = 1, µ4 = 1, and time t = 1.0, 3.0, 5.0, 7.0.

The form of W (x, t) implies that the domain of x is defined only on half-line. For definiteness we shall take x ∈ [0,∞).
Normalizability of W (x, t) then requires

α− µ1

µ3
> 0,

µ2

µ3
≥ 1. (32)

It is seen that the distribution W (x, t) is invariant under the changes (µ2, µ3, x) and (−µ2,−µ3,−x) (other param-
eters being the same). This means that the distributions W (x, t) with the parameters (µ2, µ3) and (−µ2,−µ3) are
mirror images of each other with respect to the y-axis. It is also worth noticing that for a given α, one will have the
same solutions for different drift and diffusion coefficients as long as the quantity (µ1 − α)/µ3 remains unchanged.
Furthermore, the system is invariant under the transformations α → −α, µ1 → µ1 − 2α, t → 1/t, and µ2, µ3 and µ4

unchanged. Hence the distribution with (α, µ1) at time t is the same as the distribution with (−α, µ1 − 2α) at time
1/t.
The properties of the solution (31) are analyzed in the following. For µ2 = µ3, W (x, t) becomes the exponential

function, whose peak is always located at the origin. Its peak value is |(µ1 − α)/(µ3 t
α)|, which is dependent on the

parameters α, µ1 µ3 and time t, and hence is affected by both the drift and diffusion coefficients. The peak at x = 0
is increasing (decreasing) as t increase (decreases) for α < 0 (α > 0). That means, by an appropriate choice of the
drift and diffusion parameters, one can have a situation where the probability function is accumulating at the origin.
For such situation, the effect of the drift force is stronger than that of the diffusion, causing the distribution to be
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pushed toward the origin as time elapses. An example of such situation is depicted in FIG. 8, which demonstrates
the evolution of solution (31) with α = −2 and µ2 = µ3.

FIG. 8: Plot of W (x, t) versus x for solution (31) with α = −2, µ1 = −3, µ2 = µ3 = 1/2, and time t = 0.5, 0.8, 1.1, 1.4.

The case of µ2 > µ3 is depicted in FIG. 9, which shows the evolution of W (x, t) under the influence of the time-
dependent drift coefficient D(1)(x, t) = x/t + t and diffusion coefficient D(2)(x, t) = xt/2. Since µ3 = 1/2 > 0, the
location of the peak is at x = t2/2.

FIG. 9: Plot of W (x, t) versus x for solution (31) with α = 2, µ1 = 1, µ2 = 2µ3 = 1, and time t = 1.0, 1.5, 2.0, 2.5.

VI. FPE RELATED TO THE HYPERGEOMETRIC EQUATIONS

We now consider the cases related to the hypergeometric equation. This corresponds to the case where ρ1(z) and
ρ2(z) are linear and quadratic function of z, respectively. Here we present two cases as examples.

A. ρ1(z) = µ1z and ρ2(z) = z2 + µ4

When one takes ρ1(z) = µ1z and ρ2(z) = z2 + µ4.



11

From eq. (15), the normalized solution of the FPE, with the time-dependent drift coefficient D(1)(x, t) = µ1x/t and
diffusion coefficient D(2)(x, t) = x2/t+ µ4 t

2α−1, is

W (x, t) =
Γ(β)

√
πµ4 Γ(β − 1

2 )

1

tα

[ 1

µ4

( x

tα

)2

+ 1
]

−β

, (33)

where β = (α+ 2− µ1)/2. The conditions µ1 < 1 + α and µ4 > 0 must be satisfied.
The probability current is again given by eq. (19), i.e., J(x, t) = (αx/t)W (x, t).
Graphs showing the evolution of W (x, t) and probability current J(x, t) in solution (33) with a set of parameters

are presented as follows.

FIG. 10: Plot of W (x, t) versus x for solution (33) with α = 2, β = 1, µ1 = 2, µ4 = 1, and time t = 1.0, 1.5, 2.0, 2.5.

FIG. 11: Plot of J(x, t) versus x for solution (33) with the same set of parameters as in FIG. 10.

In FIG. 10, the drift and diffusion coefficient are D(1) = 2x/t and D(2)(x, t) = x2/t+ t3. The location of the peak
of the solution (33) does not change with time even there exits a drift coefficient 2x/t. This is because the drift force
is always pointing towards the origin. Diffusion causes the concentration around the origin to diffuse away and hence
the peak value drops.
From the formula J(x, t) = (αx/t)W (x, t), it can be understood that in FIG. 11 the value of J(x, t) at the origin

is zero and for x > 0 (x < 0), its value is of positive(negative). It represents that the probability density in x > 0
(x < 0) region flows in the +x (−x) direction with the origin as a separate point. The maximum probability current
can also be found that it moves away from the origin with time.
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B. ρ1(z) = (α+ 1/2)z + 1 and ρ2(z) = z2 − z

Take ρ1(z) = (α + 1/2)z + 1 and ρ2(z) = z2 − z and this case corresponds to the FPE with the drift coefficient
D(1)(x, t) = (α+ 1/2)x/t+ tα−1 and the diffusion coefficient D(2)(x, t) = (x2/t)− x tα−1.
Eq. (14) gives

y(z) ∝
√
z − 1

z2
. (34)

The normalized solution of the FPE is

W (x, t) =
2

π

√
xtα − t2α

x2
. (35)

It should be noted that the leftmost point xL at which W (x, t) = 0 is at xL = tα, which shifts rightward away from
the origin at time increases. For t > 0, the peak of W (x, t) is located at x = 4tα/3 that can only in the region of
x > 0 and is moving with time.
Graphs showing the evolution of W (x, t) in solution (35) with a set of parameters is presented in FIG. 12.

FIG. 12: Plot of W (x, t) versus x for solution (35) with α = 1 and time t = 1.0, 2.0, 3.0, 4.0.

VII. AN ADDITIONAL EXAMPLE: ρ1(z) = z3 AND ρ2(z) = −z2

As mentioned earlier, it is not necessary to restrict the forms of ρ1(z) and ρ2(z) so that eq. (10) is related to
the confluent hypergeometric equation or the hypergeometric equation in order to obtain exactly solvable FPE. We
now consider an example not related to those two types of equations. Take α = 2, ρ1(z) = z3 and ρ2(z) = −z2,
which correspond to the drift and diffusion coefficient D(1)(x, t) = x3/t5 and D(2)(x, t) = −x2/t. Eq. (14) gives
y(z) ∝ exp{−z2/2}. The normalized solution of the corresponding FPE is

W (x, t) =
1√
2πt4

exp
{

− 1

2t4
x2

}

. (36)

The solution (36) is the Gaussian distribution in the variable x. The location of the peak of the solution does

not change with time, but the peak value varies as 1/
√
2πt4 that decreases with time. The FWHM also has the

time-dependence as 2
√
2 ln 2 t2, which is getting broader with time. Evolution of W (x, t) is depicted in FIG. 13.
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FIG. 13: Plot of W (x, t) versus x for solution (36) for time t = 1.0, 1.2, 1.4, 1.6.

VIII. SUMMARY

The FPE is an important equation in many different areas. The general analytic solutions of the FPE’s with both
time-dependent drift and diffusion coefficients are generally difficult to obtain. In this paper, we present new exact
similarity solutions of the FPE. Such similarity solutions exist when the FPE possesses proper scaling behavior.
The similarity method makes use of the scaling-invariant property of the FPE. By the introduction of the similarity

variable, the FPE can be reduced to an ordinary differential equation, which may be easier to solve. The general
expression of the ordinary differential equation corresponding to the FPE with time-dependent drift and diffusion
coefficients is given in this paper. It is interesting to find, by the natural requirement that the probability current
density vanishes at the boundary, that the resulted ordinary differential equation is integrable, and the probability
density function can be given in closed form. We present several new examples of exactly solvable Fokker-Planck
equations with time-dependent coefficients. Symmetry properties of the solutions are also discussed.
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