A short introduction to local fractional complex analysis

Yang Xiao-Jun
Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou Campus, Xuzhou, Jiangsu, 221008, P. R.C
dyangxiaojun@163.com

This paper presents a short introduction to local fractional complex analysis. The generalized local fractional complex integral formulas, Yang-Taylor series and local fractional Laurent's series of complex functions in complex fractal space, and generalized residue theorems are investigated.

Key words: Local fractional calculus, complex-valued functions, fractal, YangTaylor series, local fractional Laurent series, generalized residue theorems

MSC2010: 28A80, 30C99, 30B99

1 Introduction

Local fractional calculus has played an important role in not only mathematics but also in physics and engineers [1-12]. There are many definitions of local fractional derivatives and local fractional integrals (also called fractal calculus). Hereby we write down local fractional derivative, given by [5-7]

$$
\begin{equation*}
f^{(\alpha)}\left(x_{0}\right)=\left.\frac{d^{\alpha} f(x)}{d x^{\alpha}}\right|_{x=x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right)}{\left(x-x_{0}\right)^{\alpha}} \tag{1.1}
\end{equation*}
$$

with $\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right) \cong \Gamma(1+\alpha) \Delta\left(f(x)-f\left(x_{0}\right)\right)$, and local fractional integral of $f(x)$, denoted by [5-6,8]

$$
\begin{equation*}
{ }_{a} I_{b}^{(\alpha)} f(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(t)(d t)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \lim _{\Delta t \rightarrow 0} \sum_{j=0}^{j=N-1} f\left(t_{j}\right)\left(\Delta t_{j}\right)^{\alpha} \tag{1.2}
\end{equation*}
$$

with $\Delta t_{j}=t_{j+1}-t_{j}$ and $\Delta t=\max \left\{\Delta t_{1}, \Delta t_{2}, \Delta t_{j}, \ldots\right\}$, where for $j=0, \ldots, N-1,\left[t_{j}, t_{j+1}\right]$ is a partition of the interval $[a, b]$ and $t_{0}=a, t_{N}=b$.

More recently, a motivation of local fractional derivative and local fractional integral of complex functions is given [11]. Our attempt, in the present paper, is to continue to study local fractional calculus of complex function. As well, a short outline of local fractional complex analysis will be established.

2 Local fractional calculus of the complex-variable functions

In this section we deduce fundamentals of local fractional calculus of the complex-valued functions. Here we start with local fractional continuity of complex functions.

2.1 Local fractional continuity of complex-variable functions

Definition 1

Given z_{0} and $\left|z-z_{0}\right|<\delta$, then for any Z we have [11]

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon^{\alpha} . \tag{2.1}
\end{equation*}
$$

Here complex function $f(z)$ is called local fractional continuous at $Z=Z_{0}$, denoted by

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) \tag{2.2}
\end{equation*}
$$

A function $f(z)$ is called local fractional continuous on the region \mathfrak{R}, denoted by

$$
f(z) \in C_{\alpha}(\mathfrak{R}) .
$$

As a direct result, we have the following results:
Suppose that $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$ and $\lim _{z \rightarrow z_{0}} g(z)=g\left(z_{0}\right)$, then we have that

$$
\begin{array}{r}
\lim _{z \rightarrow z_{0}}[f(z) \pm g(z)]=f\left(z_{0}\right) \pm g\left(z_{0}\right), \\
\lim _{z \rightarrow z_{0}}[f(z) g(z)]=f\left(z_{0}\right) g\left(z_{0}\right), \tag{2.4}
\end{array}
$$

and

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}[f(z) / g(z)]=f\left(z_{0}\right) / g\left(z_{0}\right), \tag{2.5}
\end{equation*}
$$

the last only if $g\left(z_{0}\right) \neq 0$.

2.2 Local fractional derivatives of complex function

Definition 2

Let the complex function $f(z)$ be defined in a neighborhood of a point Z_{0}. The local fractional derivative of $f(z)$ at Z_{0} is defined by the expression [11]

$$
\begin{equation*}
{ }_{z_{0}} D_{z}^{\alpha} f(z)=: \lim _{z \rightarrow z_{0}} \frac{\Gamma(1+\alpha)\left[f(z)-f\left(z_{0}\right)\right]}{\left(z-z_{0}\right)^{\alpha}}, 0<\alpha \leq 1 . \tag{2.6}
\end{equation*}
$$

If this limit exists, then the function $f(z)$ is called to be local fractional analytic at Z_{0}, denoted by

$$
{ }_{z_{0}} D_{z}^{\alpha} f(z),\left.\frac{d^{\alpha}}{d z^{\alpha}} f(z)\right|_{z=z_{0}} \text { or } f^{(\alpha)}\left(z_{0}\right) .
$$

Remark 1. If the limits exist for all z_{0} in a region \mathfrak{R}, then $f(z)$ is said to be local fractional analytic in a region \mathfrak{R}, denoted by

$$
f(z) \in D(\mathfrak{R}) .
$$

Suppose that $f(z)$ and $g(z)$ are local fractional analytic functions, the following rules are valid [11].

$$
\begin{gather*}
\frac{d^{\alpha}(f(z) \pm g(z))}{d z^{\alpha}}=\frac{d^{\alpha} f(z)}{d z^{\alpha}} \pm \frac{d^{\alpha} g(z)}{d z^{\alpha}} ; \tag{2.7}\\
\frac{d^{\alpha}(f(z) g(z))}{d z^{\alpha}}=g(z) \frac{d^{\alpha} f(z)}{d z^{\alpha}}+f(z) \frac{d^{\alpha} g(z)}{d z^{\alpha}} ; \tag{2.8}\\
\frac{d^{\alpha}\left(\frac{f(z)}{g(z)}\right)}{d z^{\alpha}}=\frac{g(z) \frac{d^{\alpha} f(z)}{d z^{\alpha}}+f(z) \frac{d^{\alpha} g(z)}{d z^{\alpha}}}{g(z)^{2}} \tag{2.9}
\end{gather*}
$$

if $g(z) \neq 0$;

$$
\begin{equation*}
\frac{d^{\alpha}(C f(z))}{d z^{\alpha}}=C \frac{d^{\alpha} f(z)}{d z^{\alpha}} \tag{2.10}
\end{equation*}
$$

where C is a constant;
If $y(z)=(f \circ u)(z)$ where $u(z)=g(z)$, then

$$
\begin{equation*}
\frac{d^{\alpha} y(z)}{d z^{\alpha}}=f^{(\alpha)}(g(z))\left(g^{(1)}(z)\right)^{\alpha} \tag{2.11}
\end{equation*}
$$

2.3 Local fractional Cauchy-Riemann equations

Definition 3

If there exists a function

$$
\begin{equation*}
f(z)=u(x, y)+i^{\alpha} v(x, y) \tag{2.12}
\end{equation*}
$$

where u and v are real functions of x and y. The local fractional complex differential equations

$$
\begin{equation*}
\frac{\partial^{\alpha} u(x, y)}{\partial x^{\alpha}}-\frac{\partial^{\alpha} v(x, y)}{\partial y^{\alpha}}=0 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{\alpha} u(x, y)}{\partial y^{\alpha}}+\frac{\partial^{\alpha} v(x, y)}{\partial x^{\alpha}}=0 \tag{2.14}
\end{equation*}
$$

are called local fractional Cauchy-Riemann Equations.

Theorem 1

Suppose that the function

$$
\begin{equation*}
f(z)=u(x, y)+i^{\alpha} v(x, y) \tag{2.15}
\end{equation*}
$$

is local fractional analytic in a region \mathfrak{R}. Then we have

$$
\begin{equation*}
\frac{\partial^{\alpha} u(x, y)}{\partial x^{\alpha}}-\frac{\partial^{\alpha} v(x, y)}{\partial y^{\alpha}}=0 \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{\alpha} u(x, y)}{\partial y^{\alpha}}+\frac{\partial^{\alpha} v(x, y)}{\partial x^{\alpha}}=0 \tag{2.17}
\end{equation*}
$$

Proof. Since $f(z)=u(x, y)+i^{\alpha} v(x, y)$, we have the following identity

$$
\begin{equation*}
f^{(\alpha)}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{\Gamma(1+\alpha)\left[f(z)-f\left(z_{0}\right)\right]}{\left(z-z_{0}\right)^{\alpha}} . \tag{2.18}
\end{equation*}
$$

Consequently, the formula (2.18) implies that

$$
\begin{align*}
& \lim _{\Delta z \rightarrow 0} \frac{\Gamma(1+\alpha)[f(z+\Delta z)-f(z)]}{\Delta z^{\alpha}} \\
= & \lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}} \frac{\Gamma(1+\alpha)\left[u(x+\Delta x, y+\Delta y)-u(x, y)+i^{\alpha}(v(x+\Delta x, y+\Delta y)-v(x, y))\right]}{\Delta x^{\alpha}+i^{\alpha} \Delta y^{\alpha}} . \tag{2.19}
\end{align*}
$$

In a similar manner, setting $\Delta y \rightarrow 0$ and taking into account the formula (2.19), we have $(\Delta y)^{\alpha} \rightarrow 0$ such that

$$
\begin{equation*}
f^{(\alpha)}\left(z_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{\Gamma(1+\alpha)\left[u(x, y+\Delta y)-u(x, y)+i^{\alpha}(v(x, y+\Delta y)-v(x, y))\right]}{i^{\alpha} \Delta y^{\alpha}} . \tag{2.20}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f^{(\alpha)}\left(z_{0}\right)=-i^{\alpha} \frac{\partial^{\alpha} u(x, y)}{\partial y^{\alpha}}+\frac{\partial^{\alpha} v(x, y)}{\partial y^{\alpha}} \tag{2.21}
\end{equation*}
$$

If $\Delta x \rightarrow 0$, from (2.19) we have $(\Delta x)^{\alpha} \rightarrow 0$ such that

$$
\begin{equation*}
f^{(\alpha)}\left(z_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Gamma(1+\alpha)\left[u(x+\Delta x, y)-u(x, y)+i^{\alpha}(v(x+\Delta x, y)-v(x, y))\right]}{\Delta x^{\alpha}} \tag{2.22}
\end{equation*}
$$

Thus we get the identity

$$
\begin{equation*}
f^{(\alpha)}\left(z_{0}\right)=\frac{\partial^{\alpha} u(x, y)}{\partial x^{\alpha}}+i^{\alpha} \frac{\partial^{\alpha} v(x, y)}{\partial x^{\alpha}} . \tag{2.24}
\end{equation*}
$$

Since $f(z)=u(x, y)+i^{\alpha} v(x, y)$ is local fractional analytic in a region \mathfrak{R}, we have the following formula

$$
\begin{equation*}
f^{(\alpha)}\left(z_{0}\right)=\frac{\partial^{\alpha} u(x, y)}{\partial x^{\alpha}}+i^{\alpha} \frac{\partial^{\alpha} v(x, y)}{\partial x^{\alpha}}=-i^{\alpha} \frac{\partial^{\alpha} u(x, y)}{\partial y^{\alpha}}+\frac{\partial^{\alpha} v(x, y)}{\partial y^{\alpha}} . \tag{2.25}
\end{equation*}
$$

Hence, from (2.25) , we arrive at the following identity

$$
\begin{align*}
& \frac{\partial^{\alpha} u(x, y)}{\partial x^{\alpha}}-\frac{\partial^{\alpha} v(x, y)}{\partial y^{\alpha}}=0 \tag{2.26}\\
& \text { and } \\
& \frac{\partial^{\alpha} u(x, y)}{\partial y^{\alpha}}+\frac{\partial^{\alpha} v(x, y)}{\partial x^{\alpha}}=0 . \tag{2.27}
\end{align*}
$$

This completes the proof of Theorem 1.
Remark 2. Local fractional C-R equations are sufficient conditions that $f(z)$ is local fractional analytic in \mathfrak{R}.

The local fractional partial equations

$$
\begin{equation*}
\frac{\partial^{2 \alpha} u(x, y)}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha} u(x, y)}{\partial y^{2 \alpha}}=0 \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2 \alpha} v(x, y)}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha} v(x, y)}{\partial y^{2 \alpha}}=0 \tag{2.29}
\end{equation*}
$$

are called local fractional Laplace equations, denoted by

$$
\begin{equation*}
\nabla^{\alpha} u(x, y)=0 \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{\alpha} v(x, y)=0 \tag{2.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla^{\alpha}=\frac{\partial^{2 \alpha}}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha}}{\partial y^{2 \alpha}} \tag{2.32}
\end{equation*}
$$

is called local fractional Laplace operator.
Remark 3. Suppose that $\nabla^{\alpha} u(x, y)=0, u(x, y)$ is a local fractional harmonic function in \mathfrak{R}.

2.4 Local fractional integrals of complex function

Definition 4

Let $f(z)$ be defined, single-valued and local fractional continuous in a region \mathfrak{R}. The local fractional integral of $f(z)$ along the contour C in \mathfrak{R} from point Z_{p} to point Z_{q}, is defined as [11]

$$
\begin{align*}
& I_{C}{ }^{\alpha} f(z) \\
& =\frac{1}{\Gamma(1+\alpha)} \lim _{\Delta z \rightarrow 0} \sum_{i=0}^{n-1} f\left(z_{i}\right)(\Delta z)^{\alpha} \tag{2.33}\\
& =\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}
\end{align*}
$$

where for $i=0,1, \ldots, n \Delta z_{i}=z_{i}-z_{i-1}, \quad z_{0}=z_{p}$ and $z_{n}=z_{q}$.

For convenience, we assume that

$$
\begin{equation*}
{ }_{z_{0}} I_{z_{0}}{ }^{(\alpha)} f(z)=0 \tag{2.34}
\end{equation*}
$$

if $Z=Z_{0}$.
The rules for complex integration are similar to those for real integrals. Some important results are as follows [11]:
Suppose that $f(z)$ and $g(z)$ be local fractional continuous along the contour C in \mathfrak{R}.

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C}(f(z)+g(z))(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}+\frac{1}{\Gamma(1+\alpha)} \int_{C} g(z)(d z)^{\alpha} ; \tag{2.35}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C} k f(z)(d z)^{\alpha}=\frac{k}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}, \tag{2.36}
\end{equation*}
$$

for a constant k;

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}+\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha}, \tag{2.37}
\end{equation*}
$$

where $C=C_{1}+C_{2}$;

$$
\begin{gather*}
\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}=-\frac{1}{\Gamma(1+\alpha)} \int_{-C_{1}} f(z)(d z)^{\alpha} \tag{2.38}\\
\left|\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}\right| \leq \frac{1}{\Gamma(1+\alpha)} \int_{C}|f(z)|\left|(d z)^{\alpha}\right| \leq M L \tag{2.39}
\end{gather*}
$$

where M is an upper bound of $f(z)$ on C and $L=\frac{1}{\Gamma(1+\alpha)} \int_{C}\left|(d z)^{\alpha}\right|$.

Theorem 2

If the contour C has end points Z_{p} and Z_{q} with orientation Z_{p} to Z_{q}, and if function $f(z)$ has the primitive $F(z)$ on C, then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}=F\left(z_{q}\right)-F\left(z_{p}\right) \tag{2.40}
\end{equation*}
$$

Remark 4. Suppose that $f(z) \in D(\mathfrak{R})$. For $k=0,1, \ldots, n$ and $0<\alpha \leq 1$ there exists a local fractional series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k \alpha)}\left(z_{0}\right)}{\Gamma(1+k \alpha)}\left(z-z_{0}\right)^{k \alpha} \tag{2.41}
\end{equation*}
$$

with $f^{(k \alpha)}(z) \in D(\Re)$, where $f^{(k \alpha)}(z)=\overbrace{D_{z}^{(\alpha)} \ldots D_{z}^{(\alpha)}}^{k \text { times }} f(z)$.
This series is called Yang-Taylor series of local fractional analytic function (for real function case, see [12].)

Theorem 3

If C is a simple closed contour, and if function $f(z)$ has a primitive on C, then [11]

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=0 \tag{2.42}
\end{equation*}
$$

Corollary 4

If the closed contours C_{1}, C_{2} is such that C_{2} lies inside C_{1}, and if $f(z)$ is local fractional analytic on C_{1}, C_{2} and between them, then we have [11]

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha} . \tag{4.43}
\end{equation*}
$$

Theorem 5

Suppose that the closed contours C_{1}, C_{2} is such that C_{2} lies inside C_{1}, and if $f(z)$ is local fractional analytic on C_{1}, C_{2} and between them, then we have[11]

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha} \tag{2.44}
\end{equation*}
$$

3 Generalized local fractional integral formulas of complex functions

In this section we start with generalized local fractional integral formulas of complex functions and deduce some useful results.
Theorem 6
Suppose that $f(z)$ is local fractional analytic within and on a simple closed contour C and Z_{0} is any point interior to C. Then we have

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{\alpha}}(d z)^{\alpha}=f\left(z_{0}\right) . \tag{3.1}
\end{equation*}
$$

Proof. From(2.44), we arrive at the formula

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{\alpha}}(d z)^{\alpha}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(z)}{\left(z-z_{0}\right)^{\alpha}}(d z)^{\alpha} \tag{3.2}
\end{equation*}
$$

where $C_{1}:\left|\left(z-z_{0}\right)^{\alpha}\right|=\varepsilon^{\alpha}$.
Setting $\left|\left(z-z_{0}\right)^{\alpha}\right|=\varepsilon^{\alpha}$ implies that

$$
\begin{equation*}
z^{\alpha}-z_{0}^{\alpha}=\varepsilon^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(d z)^{\alpha}=i^{\alpha} \varepsilon^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)(d \theta)^{\alpha} \tag{3.4}
\end{equation*}
$$

Taking (3.3) and (3.4), it follows from (3.2) that

$$
\begin{align*}
& \frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2 \pi} \frac{f\left(z_{0}+\varepsilon E(i \theta)\right)}{\varepsilon^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)} i^{\alpha} \varepsilon^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)(d \theta)^{\alpha} \tag{3.5}\\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2 \pi} f\left(z_{0}+\varepsilon E(i \theta)\right)(d \theta)^{\alpha}
\end{align*}
$$

From (3.5), we get

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2 \pi}\left(\lim _{\varepsilon \rightarrow 0} f\left(z_{0}+\varepsilon E(i \theta)\right)\right)(d \theta)^{\alpha}=\frac{f\left(z_{0}\right)}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)^{2}} \int_{0}^{2 \pi}(d \theta)^{\alpha} \tag{3.6}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\frac{f\left(z_{0}\right)}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2 \pi}(d \theta)^{\alpha}=f\left(z_{0}\right) \tag{3.7}
\end{equation*}
$$

Substituting (3.7) into (3.6) and (3.3) implies that

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{\alpha}}(d z)^{\alpha}=f\left(z_{0}\right) \tag{3.8}
\end{equation*}
$$

The proof of the theorem is completed.
Likewise, we have the following corollary:

Corollary 7

Suppose that $f(z)$ is local fractional analytic within and on a simple closed contour C and z_{0} is any point interior to C. Then we have

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(n+1) \alpha}}(d z)^{\alpha}=f^{(n \alpha)}\left(z_{0}\right) . \tag{3.9}
\end{equation*}
$$

Proof. Taking into account formula (3.1), we arrive at the identity.

Theorem 8

Suppose that $f(z)$ is local fractional analytic within and on a simple closed contour C and Z_{0} is any point interior to C. Then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{(d z)^{\alpha}}{\left(z-z_{0}\right)^{\alpha}}=(2 \pi)^{\alpha} i^{\alpha} \tag{3.9}
\end{equation*}
$$

Proof. Taking $f(z)=1$, from (3.9) we deduce the result.

Theorem 9

Suppose that $f(z)$ is local fractional analytic within and on a simple closed contour C and Z_{0} is any point interior to C. Then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{(d z)^{\alpha}}{\left(z-z_{0}\right)^{n \alpha}}=0, \text { for } n>1 \tag{3.10}
\end{equation*}
$$

Proof. Taking $f(z)=1$, from (3.9) we deduce the result.

4 Complex Yang-Taylor's series and local fractional Laurent's series

In this section we start with a Yang-Taylor's expansion formula of complex functions and deduce local fractional Laurent series of complex functions.

4.1 Complex Yang-Taylor's expansion formula

Definition 5

Let $f(z)$ be local fractional analytic inside and on a simple closed contour C having its center at $Z=Z_{0}$. Then for all points Z in the circle we have the Yang-Taylor series representation of $f(z)$, given by

$$
\begin{align*}
& f(z) \\
& =f\left(z_{0}\right)+\frac{f^{(\alpha)}\left(z_{0}\right)}{\Gamma(1+\alpha)}\left(z-z_{0}\right)^{\alpha}+ \tag{4.1}\\
& \frac{f^{(2 \alpha)}\left(z_{0}\right)}{\Gamma(1+2 \alpha)}\left(z-z_{0}\right)^{2 \alpha}+\ldots .+\frac{f^{(k \alpha)}\left(z_{0}\right)}{\Gamma(1+k \alpha)}\left(z-z_{0}\right)^{k \alpha}+\ldots
\end{align*}
$$

For $C:\left|z-z_{0}\right|^{\alpha} \leq R^{\alpha}$, we have the complex Yang-Taylor series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} . \tag{4.2}
\end{equation*}
$$

From (3.44) the above expression implies

$$
\begin{equation*}
a_{k}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha}=\frac{f^{(k \alpha)}\left(z_{0}\right)}{\Gamma(1+k \alpha)}, \tag{4.3}
\end{equation*}
$$

for $C:\left|z-z_{0}\right|^{\alpha} \leq R^{\alpha}$.
Successively, it follows from (4.3) that

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha}=\frac{f^{(k \alpha)}\left(z_{0}\right)}{\Gamma(1+k \alpha)} \tag{4.5}
\end{equation*}
$$

for $C:\left|z-z_{0}\right|^{\alpha} \leq R^{\alpha}$.
Hence, the above formula implies the relation (4.2).

Theorem 10

Suppose that complex function $f(z)$ is local fractional analytic inside and on a simple closed contour C having its center at $Z=Z_{0}$. There exist all points Z in the circle such that we have the Yang-Taylor's series of $f(z)$

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{4.5}
\end{equation*}
$$

where
$a_{k}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha}=\frac{f^{(k \alpha)}\left(z_{0}\right)}{\Gamma(1+k \alpha)}$,
for $C:\left|z-z_{0}\right|^{\alpha} \leq R^{\alpha}$.
Proof. Setting $C_{1}:\left|z-z_{0}\right|^{\alpha}=R^{\alpha}$ and using (3.1), we have

$$
\begin{equation*}
f(z)=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{G_{1}} \frac{f(\xi)}{(\xi-z)^{\alpha}}(d \xi)^{\alpha} . \tag{4.6}
\end{equation*}
$$

Taking $\xi \in C_{1}$, we get

$$
\begin{equation*}
\frac{\left|z-z_{0}\right|^{\alpha}}{\left|\xi-z_{0}\right|^{\alpha}}=q^{\alpha}<1 \tag{4.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{1}{(\xi-z)^{\alpha}} \\
& =\frac{1}{\left(\xi-z_{0}\right)^{\alpha}} \frac{1}{1-\frac{\left(z-z_{0}\right)^{\alpha}}{\left(\xi-z_{0}\right)^{\alpha}}} \\
& =\frac{1}{\left(\xi-z_{0}\right)^{\alpha}} \frac{1}{1-\left(\frac{z-z_{0}}{\xi-z_{0}}\right)^{\alpha}} \tag{4.8}\\
& =\sum_{n=1}^{\infty} \frac{1}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}\left(z-z_{0}\right)^{n \alpha} .
\end{align*}
$$

Substituting (4.8) into (4.6) implies that

$$
\begin{align*}
& f(z) \\
& =\sum_{n=1}^{N}\left[\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(\xi)(d \xi)^{\alpha}}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}\right]\left(z-z_{0}\right)^{n \alpha} \tag{4.9}\\
& +\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \sum_{n=N}^{\infty}\left[\frac{f(\xi)\left(z-z_{0}\right)^{n \alpha}}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}\right](d \xi)^{\alpha} .
\end{align*}
$$

Taking the Yang-Taylor formula of analytic function into account, we have the following relation

$$
\begin{equation*}
f(z)=\sum_{n=0}^{N-1} \frac{f^{(n \alpha)}\left(z_{0}\right)\left(z-z_{0}\right)^{n \alpha}}{\Gamma(1+n \alpha)}+R_{N}, \tag{4.10}
\end{equation*}
$$

where R_{N} is reminder in the form

$$
\begin{equation*}
R_{N}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \sum_{n=N}^{\infty}\left[\frac{f(\xi)\left(z-z_{0}\right)^{n \alpha}}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}\right](d \xi)^{\alpha} \tag{4.11}
\end{equation*}
$$

There exists a Yang-Taylor series

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n \alpha)}\left(z_{0}\right)\left(z-z_{0}\right)^{n \alpha}}{\Gamma(1+n \alpha)} \tag{4.12}
\end{equation*}
$$

where is $f\left(z_{0}\right)$ is local fractional analytic at $Z=z_{0}$.
Taking into account the relation $\left|\frac{\left(z-z_{0}\right)^{n \alpha}}{\left(\xi-z_{0}\right)^{n \alpha}}\right|=q^{n \alpha}<1$ and $|f(z)| \leq M$, from (4.11) we get

$$
\begin{align*}
& \left|R_{N}\right| \\
& =\left|\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \sum_{n=N}^{\infty}\left[\frac{f(\xi)\left(z-z_{0}\right)^{n \alpha}}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}\right](d \xi)^{\alpha}\right| \\
& \leq \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}}\left|\sum_{n=N}^{\infty} \frac{|f(\xi)|\left|\left(z-z_{0}\right)^{n \alpha}\right| \mid}{\left|\left(\xi-z_{0}\right)^{(n+1) \alpha}\right|}\right|(d \xi)^{\alpha} \\
& \leq\left.\frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1} \mid}\right|_{n=N} ^{\infty} \frac{|M|}{\left|\left(\xi-z_{0}\right)^{\alpha}\right|}\left|\frac{\left|\left(z-z_{0}\right)^{n \alpha}\right|\left|\left(\xi-z_{0}\right)^{n \alpha}\right| \mid}{\mid(2 \pi)^{\alpha}}\right|(d \xi)^{\alpha} \tag{4.13}\\
& \leq \frac{(2 \pi)^{\alpha}}{(2 \pi)^{\alpha}} \cdot \frac{|M|}{\Gamma(1+\alpha)} \frac{q^{n \alpha}}{1-q^{\alpha}} \\
& \leq \frac{|M| R^{\alpha}}{\Gamma(1+\alpha)} \frac{q^{n \alpha}}{1-q^{\alpha}}
\end{align*}
$$

Furthermore

$$
\lim _{N \rightarrow \infty} R_{N}=0
$$

From (4.9), we have

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty}\left[\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(\xi)(d \xi)^{\alpha}}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}\right]\left(z-z_{0}\right)^{n \alpha} . \tag{4.14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{n}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(\xi)(d \xi)^{\alpha}}{\left(\xi-z_{0}\right)^{(n+1) \alpha}} \tag{4.15}
\end{equation*}
$$

Hence the proof of the theorem is completed.

4.2 Singular point and poles

Definition 6

A singular point of a function $f(z)$ is a value of Z at which $f(z)$ fails to be local fractional analytic. If $f(z)$ is local fractional analytic everywhere in some region except at an interior point $Z=z_{0}$, we call $f(z)$ an isolated singularity.

If

$$
\begin{equation*}
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{n \alpha}} \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(z) \neq 0 \tag{4.17}
\end{equation*}
$$

where $\phi(z)$ is local fractional analytic everywhere in a region including $Z=z_{0}$, and if n is a positive integer, then $f(z)$ has an isolated singularity at $Z=z_{0}$, which is called a pole of order n.

If $n=1$, the pole is often called a simple pole;
if $n=2$, it is called a double pole, and so on.

4.3 Local fractional Laurent's series

Definition 7

If $f(z)$ has a pole of order n at $z=z_{0}$ but is local fractional analytic at every other point inside and on a contour C with center at Z_{0}, then

$$
\begin{equation*}
\phi(z)=\left(z-z_{0}\right)^{n \alpha} f(z) \tag{4.18}
\end{equation*}
$$

is local fractional analytic at all points inside and on C and has a Yang-Taylor series about $Z=Z_{0}$ so that

$$
\begin{align*}
& f(z) \\
& =\frac{a_{-n}}{\left(z-z_{0}\right)^{n \alpha}}+\frac{a_{-n+1}}{\left(z-z_{0}\right)^{(n-1) \alpha}}+\ldots+ \tag{4.19}\\
& \frac{a_{-1}}{\left(z-z_{0}\right)^{\alpha}}+a_{0}+a_{1}\left(z-z_{0}\right)^{\alpha}+\ldots .+a_{n}\left(z-z_{0}\right)^{n \alpha}+\ldots
\end{align*}
$$

This is called a local fractional Laurent series for $f(z)$.
More generally, it follows that

$$
\begin{equation*}
f(z)=\sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{4.20}
\end{equation*}
$$

as a local fractional Laurent series.
For $C: r^{\alpha}<\left|z-z_{0}\right|^{\alpha}<R^{\alpha}$ we have a local fractional Laurent series

$$
\begin{equation*}
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{4.21}
\end{equation*}
$$

From (3.44), the above expression implies that

$$
\begin{equation*}
a_{k}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha} \tag{4.22}
\end{equation*}
$$

where $C: r^{\alpha}<\left|z-z_{0}\right|^{\alpha}<R^{\alpha}$.
Setting $C_{1}:\left|z-z_{0}\right|^{\alpha}=r^{\alpha}$ and $C_{2}:\left|z-z_{0}\right|^{\alpha}=R^{\alpha}$, from (2.44) we have

$$
f(z)=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{2}} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha}-\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha}
$$

Successively, it follows from the above that

$$
\begin{equation*}
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{4.23}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha}, \tag{4.24}
\end{equation*}
$$

for $C: r^{\alpha} \leq\left|z-z_{0}\right|^{\alpha} \leq R^{\alpha}$.

Theorem 11

If $f(z)$ has local fractional analytic at every other point inside a contour C with center at z_{0}, then $f(z)$ has a local fractional Laurent series about $Z=Z_{0}$ so that

$$
\begin{equation*}
f(z)=\sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha}, 0<\alpha \leq 1 \tag{4.25}
\end{equation*}
$$

where for C : $r^{\alpha}<\left|z-z_{0}\right|^{\alpha}<R^{\alpha}$ we have

$$
\begin{equation*}
a_{k}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(k+1) \alpha}}(d z)^{\alpha} . \tag{4.26}
\end{equation*}
$$

Proof. Setting $C_{1}:\left|z-z_{0}\right|^{\alpha}=r^{\alpha}$ and $C_{2}:\left|z-z_{0}\right|^{\alpha}=R^{\alpha}$, from (2.44) we have that

$$
\begin{equation*}
f(z)=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{2}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{\alpha}}(d \xi)^{\alpha}-\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{G_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{\alpha}}(d \xi)^{\alpha} . \tag{4.27}
\end{equation*}
$$

Taking the right side of (4.27) into account implies that for $\xi \in C_{2}$

$$
\begin{equation*}
\left|\frac{\left(\xi-z_{0}\right)^{\alpha}}{\left(z-z_{0}\right)^{\alpha}}\right|=\frac{\left|\xi-z_{0}\right|^{\alpha}}{R^{\alpha}}=q^{\alpha}<1 \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(\xi)| \leq M \tag{4.29}
\end{equation*}
$$

By using (4.29) it follows from (4.27) that

$$
\begin{align*}
& \frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{2}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{\alpha}}(d \xi)^{\alpha} \\
& =\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty}\left[\oint_{C_{2}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{(n+1) \alpha}}(d \xi)^{\alpha}\right]\left(z-z_{0}\right)^{n \alpha} . \tag{4.30}
\end{align*}
$$

From (4.27) we get

$$
\begin{align*}
& -\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{\alpha}}(d \xi)^{\alpha} \\
& =\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{N-1}\left[\oint_{C_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{(-n+1) \alpha}}(d \xi)^{\alpha}\right]\left(z-z_{0}\right)^{-n \alpha}+R_{N} \tag{4.31}
\end{align*}
$$

where

$$
\lim _{N \rightarrow \infty} R_{N}=\lim _{N \rightarrow \infty} \frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[\oint_{c_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{(-n+1) \alpha}}(d \xi)^{\alpha}\right]\left(z-z_{0}\right)^{-n \alpha}
$$

is reminder.

$$
\begin{aligned}
& \text { Since }|f(\xi)| \leq M_{1} \text {, taking }\left|\frac{\xi-z_{0}}{z-z_{0}}\right|^{n \alpha}=q^{n \alpha}<1 \text {, we have } \\
& \qquad \begin{aligned}
& \left|R_{N}\right| \\
& =\left|\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[\oint_{c_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{(-n+1) \alpha}}(d \xi)^{\alpha}\right]\left(z-z_{0}\right)^{-n \alpha}\right| \\
& \leq \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[\left.\oint_{C_{1}}\left|\frac{|f(\xi)|}{\left|\left(\xi-z_{0}\right)^{\alpha}\right|}\right| \frac{\xi-z_{0}}{z-z_{0}}\right|^{n \alpha}(d \xi)^{\alpha}\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& \leq \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[\oint_{C_{1}} \frac{\left|M_{1}\right|}{\mid\left(\xi-z_{0}\right)^{\alpha}}\left|\frac{\xi-z_{0}}{z-z_{0}}\right|^{n \alpha}(d \xi)^{\alpha}\right] \\
& \leq \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{\left|M_{1}\right|}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[\oint_{C_{1}} \frac{1}{\left|\left(\xi-z_{0}\right)^{\alpha}\right|}\left|\frac{\xi-z_{0}}{z-z_{0}}\right|^{n \alpha}(d \xi)^{\alpha}\right] \\
& \leq \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{\left|M_{1}\right|}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[\oint_{C_{1}} \frac{1}{\left|\left(\xi-z_{0}\right)^{\alpha}\right|} q^{n \alpha}(d \xi)^{\alpha}\right] \\
& \leq \frac{1}{(2 \pi)^{\alpha}} \cdot \frac{\left|M_{1}\right|}{\Gamma(1+\alpha)} \sum_{n=N}^{\infty}\left[(2 \pi)^{\alpha} q^{n \alpha}\right] \tag{4.32}\\
& \leq \frac{\left|M_{1}\right|}{\Gamma(1+\alpha)} \frac{q^{n \alpha}}{1-q^{\alpha}} .
\end{align*}
$$

Furthermore

$$
\lim _{N \rightarrow \infty} R_{N}=0
$$

Hence

$$
\begin{align*}
& -\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{\alpha}}(d \xi)^{\alpha} \\
& =\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty}\left[\oint_{C_{1}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{(-n+1) \alpha}}(d \xi)^{\alpha}\right]\left(z-z_{0}\right)^{-n \alpha} . \tag{4.33}
\end{align*}
$$

Combing the formulas (4.30) and (4.33), we have the result.
Hence, the proof of the theorem is finished.

5 Generalized residue theorems

In this section we start with a local fractional Laurent series and study generalized residue theorems.

Definition 8

Suppose that Z_{0} is an isolated singular point of $f(z)$. Then there is a local fractional Laurent series

$$
\begin{equation*}
f(z)=\sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{5.1}
\end{equation*}
$$

valid for $\left|z-z_{0}\right|^{\alpha} \leq R^{\alpha}$. The coefficient a_{-1} of $\left(z-z_{0}\right)^{-\alpha}$ is called the generalized residue of $f(z)$ at $Z=z_{0}$, and is frequently written as

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} f(z) . \tag{5.2}
\end{equation*}
$$

One of the coefficients for the Yang-Taylor series corresponding to

$$
\begin{equation*}
\phi(z)=\left(z-z_{0}\right)^{n \alpha} f(z), \tag{5.3}
\end{equation*}
$$

the coefficient a_{-1} is the residue of $f(z)$ at the pole $Z=z_{0}$. It can be found from the formula

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} f(z)=a_{-1}=\lim _{z \rightarrow z_{0}} \frac{1}{\Gamma(1+n \alpha)} \frac{d^{(n-1) \alpha}}{d z^{(n-1) \alpha}}\left\{\left(z-z_{0}\right)^{n \alpha} f(z)\right\} \tag{5.4}
\end{equation*}
$$

where n is the order of the pole.
Setting $f(z)=\sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha}$, the expression (5.3) yields

$$
\begin{align*}
& \phi(z) \\
& =\left(z-z_{0}\right)^{n \alpha} \sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{5.5}\\
& =a_{-n}+a_{-n+1}\left(z-z_{0}\right)^{\alpha}+a_{-1}\left(z-z_{0}\right)^{(n-1) \alpha}+\ldots
\end{align*}
$$

We know that this is

$$
\begin{equation*}
a_{-1}=\frac{\phi^{(n-1) \alpha}\left(z_{0}\right)}{\Gamma(1+n \alpha)} \tag{5.6}
\end{equation*}
$$

which is the coefficient of $\left(z-z_{0}\right)^{(n-1) \alpha}$.
The generalized residue is thus

$$
\begin{equation*}
\operatorname{Re}_{z=z_{0}} f(z)=a_{-1}=\frac{\phi^{(n-1) \alpha}\left(z_{0}\right)}{\Gamma(1+n \alpha)}, \tag{5.7}
\end{equation*}
$$

where $\phi(z)=\left(z-z_{0}\right)^{n \alpha} f(z)$.

Corollary 12

If $f(z)$ is local fractional analytic within and on the boundary C of a region \mathfrak{R} except at a number of poles a within \mathfrak{R}, having a residue a_{-1}, then

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha} \Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=\operatorname{Res}_{z=z_{0}} f(z) \tag{5.8}
\end{equation*}
$$

Proof. Taking into account the definitions of local fractional analytic function and the pole we have local fractional Laurent's series

$$
\begin{equation*}
f(z)=\sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha} \tag{5.9}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
f(z)=\cdots+a_{-n}\left(z-z_{0}\right)^{-n \alpha}+\cdots+a_{-1}\left(z-z_{0}\right)^{-\alpha}+a_{0}+\cdots+a_{n}\left(z-z_{0}\right)^{n \alpha}+\cdots \tag{5.10}
\end{equation*}
$$

Hence we have the following relation

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \oint_{C}\left(\sum_{i=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k \alpha}\right)(d z)^{\alpha} \tag{5.11}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{a_{-1}}{\left(z-z_{0}\right)^{\alpha}}(d z)^{\alpha} . \tag{5.12}
\end{equation*}
$$

From (3.9), it is shown that

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{a_{-1}}{\left(z-z_{0}\right)^{\alpha}}(d z)^{\alpha}=a_{-1} . \tag{5.13}
\end{equation*}
$$

Hence we have the formula

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=(2 \pi)^{\alpha} i^{\alpha} a_{-1} . \tag{5.14}
\end{equation*}
$$

Taking into account the definition of generalized residue, we have the result.
This proof of the theorem is completed.
From (5.8), we deduce the following corollary:

Corollary 13

If $f(z)$ is local fractional analytic within and on the boundary C of a region \mathfrak{R}^{α} except at a finite number of poles $Z_{0}, z_{1}, z_{2} \ldots$ within \mathfrak{R}^{α}, having residues $a_{-1}, b_{-1}, c_{-1} \ldots$ respectively, then

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\alpha} i^{\alpha} \Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=\sum_{i=0}^{n} \operatorname{Res}_{z=z_{k}} f(z)=a_{-1}+b_{-1}+c_{-1}+\ldots \tag{5.15}
\end{equation*}
$$

It says that the local fractional integral of $f(z)$ is simply $(2 \pi)^{\alpha} i^{\alpha}$ times the sum of the residues at the singular points enclosed by the contour C.

6 Applications: Gauss formula of complex function

Theorem 14

Suppose that $f(z)$ is local fractional analytic and ω is any point, then for the circle

$$
|z-\omega|^{\alpha}=\left|R^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)\right|
$$

we have

$$
\begin{equation*}
f(\omega)=\frac{1}{(2 \pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2 \pi} f(\omega+R E(i \theta))(d \theta)^{\alpha} \tag{6.1}
\end{equation*}
$$

Proof. By using (3.1) there exists a simple closed contour C and z_{0} is any point interior to C such that

$$
\begin{equation*}
f(\omega)=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(z)}{(z-\omega)^{\alpha}}(d z)^{\alpha} \tag{6.2}
\end{equation*}
$$

When C can been taken to be $\omega^{\alpha}+R^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)$ for $\theta \in[0,2 \pi]$, substituting the relations

$$
\begin{equation*}
(z-\omega)^{\alpha}=R^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right) \tag{6.3}
\end{equation*}
$$

$$
\begin{equation*}
(d z)^{\alpha}=i^{\alpha} R^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)(d \theta)^{\alpha} \tag{6.4}
\end{equation*}
$$

in (6.2) implies that

$$
\begin{equation*}
f(\omega)=\frac{1}{(2 \pi)^{\alpha} i^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_{C} \frac{f(\omega+R E(i \theta)) i^{\alpha} R^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)(d \theta)^{\alpha}}{R^{\alpha} E_{\alpha}\left(i^{\alpha} \theta^{\alpha}\right)} \tag{6.5}
\end{equation*}
$$

and some cancelling gives the result.

References

[1] K.M.Kolwankar, A.D.Gangal. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos, 6 (4), 1996, 505-513.
[2] A.Carpinteri, P.Cornetti. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals,13, 2002,85-94.
[3] F.B.Adda, J.Cresson. About non-differentiable functions. J. Math. Anal. Appl., 263 (2001), 721-737.
[4] A.Babakhani, V.D.Gejji. On calculus of local fractional derivatives. J. Math. Anal. Appl.,270, 2002, 66-79.
[5] F. Gao, X.Yang, Z. Kang. Local fractional Newton's method derived from modified local fractional calculus. In: Proc. of the second Scientific and Engineering Computing Symposium on Computational Sciences and Optimization (CSO 2009), 228-232, IEEE Computer Society,2009.
[6] X.Yang, F. Gao. The fundamentals of local fractional derivative of the one-variable nondifferentiable functions. World Sci-Tech R\&D, 31(5), 2009, 920-921.
[7] X.Yang, F.Gao. Fundamentals of Local fractional iteration of the continuously nondifferentiable functions derived from local fractional calculus. In: Proc. of the 2011 International Conference on Computer Science and Information Engineering (CSIE2011), 398-404, Springer, 2011.
[8] X.Yang, L.Li, R.Yang. Problems of local fractional definite integral of the one-variable nondifferentiable function. World Sci-Tech R\&D, 31(4), 2009, 722-724.
[9] J.H He. A new fractional derivation. Thermal Science.15, 1, 2011, 145-147.
[10] W. Chen. Time-space fabric underlying anomalous disusion. Chaos, Solitons and Fractals, 28, 2006, 923-929.
[11] X.Yang. Fractional trigonometric functions in complex-valued space: Applications of complex number to local fractional calculus of complex function. ArXiv:1106.2783v1 [math-ph].
[12] X.Yang. Generalized local fractional Taylor's formula for local fractional derivatives. ArXiv:1106.2459v1 [math-ph].

