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1 Introduction 

Local fractional calculus has played an important role in not only mathematics but also in 

physics and engineers [1-12]. There are many definitions of local fractional derivatives and local 

fractional integrals (also called fractal calculus). Hereby we write down local fractional derivative, 

given by [5-7] 
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with            0 01f x f x f x f x       , and local fractional integral of  f x , 

denoted by [5-6,8]  

             
1

0
0

1 1
lim

1 1

j Nb

a b j ja t
j

I f x f t dt f t t


 

 

 


  
            (1.2) 

with
1j j jt t t   and  1 2max , , ,...jt t t t     , where for 0,..., 1j N  , 

1,j jt t     is a partition 

of the interval ,a b  and 0 , Nt a t b  .  

More recently, a motivation of local fractional derivative and local fractional integral of 

complex functions is given [11]. Our attempt, in the present paper, is to continue to study local 

fractional calculus of complex function. As well, a short outline of local fractional complex 

analysis will be established.   
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2 Local fractional calculus of the complex-variable 

functions  

In this section we deduce fundamentals of local fractional calculus of the complex-valued 

functions. Here we start with local fractional continuity of complex functions.  

2.1 Local fractional continuity of complex-variable functions  

Definition 1 

Given 0z and 0z z   , then for any z we have [11]   

   0f z f z   .                      (2.1) 

Here complex function  f z is called local fractional continuous at 0z z , denoted by   

   
0

0lim
z z

f z f z


 .                           (2.2) 

A function  f z  is called local fractional continuous on the region , denoted by 

   f z C  . 

As a direct result, we have the following results: 

Suppose that    
0

0lim
z z

f z f z


  and    
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 , then we have that 
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and  
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f z g z f z g z


   ,                 (2.5) 

the last only if  0 0g z  . 

2.2 Local fractional derivatives of complex function 

Definition 2 

Let the complex function  f z  be defined in a neighborhood of a point 0z . The local fractional 

derivative of  f z  at 0z is defined by the expression [11]  
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, 0 1  .      (2.6) 

If this limit exists, then the function  f z  is called to be local fractional analytic at 0z , denoted 

by 

 
0z zD f z ,  

0z z

d
f z

dz



  or    0f z
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Remark 1. If the limits exist for all 0z in a region , then  f z  is said to be local fractional 

analytic in a region , denoted by   

   f z D 
.
 

Suppose that  f z  and  g z  are local fractional analytic functions, the following rules are 

valid [11].  

        d f z g z d f z d g z

dz dz dz

  

  


  ;             (2.7) 

            d f z g z d f z d g z
g z f z

dz dz dz

  

    ;         (2.8) 
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if   0g z  ; 

    d Cf z d f z
C

dz dz

 

  ,                 (2.10) 

where C  is a constant; 

If     y z f u z   where    u z g z , then 

           1d y z
f g z g z

dz

 
  .                (2.11) 

2.3 Local fractional Cauchy-Riemann equations 

Definition 3 
If there exists a function 

     , ,f z u x y i v x y  ,                    (2.12) 

whereu and v  are real functions of x and y . The local fractional complex differential 

equations   
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and  

   , ,
0
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y x
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are called local fractional Cauchy-Riemann Equations.  

Theorem 1 
Suppose that the function 

     , ,f z u x y i v x y 
             

(2.15) 
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is local fractional analytic in a region . Then we have  
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and  
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Proof. Since , we have the following identity  
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Consequently, the formula (2.18) implies that  
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In a similar manner, setting 0y   and taking into account the formula (2.19), we have

  0y
  such that  
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If 0x  , from (2.19) we have   0x
  such that  
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(2.22) 

Thus we get the identity  
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f z i

x x

 
 

 

 
 

 
.                          (2.24) 

Since  is local fractional analytic in a region , we have the 

following formula 

.         (2.25) 

Hence, from (2.25) , we arrive at the following identity 

     , ,f z u x y i v x y 

     , ,f z u x y i v x y 
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                    (2.26) 

and 

.                (2.27) 

This completes the proof of Theorem 1. 

Remark 2. Local fractional C-R equations are sufficient conditions that  is local fractional 

analytic in . 

The local fractional partial equations  
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and  
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           (2.29) 

are called local fractional Laplace equations, denoted by  

 , 0u x y                            (2.30) 

and 

 , 0v x y  ,                          (2.31) 

where  

2 2

2 2x y

 


 

 
  

 
                      (2.32) 

is called local fractional Laplace operator. 

Remark 3. Suppose that  , 0u x y  ,  ,u x y is a local fractional harmonic function in . 

2.4 Local fractional integrals of complex function   

Definition 4 

Let  f z  be defined, single-valued and local fractional continuous in a region . The local 

fractional integral of  f z  along the contour C  in   from point pz  to point qz , is 

defined as [11]  
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          (2.33) 

where for 0,1,...,i n 1i i iz z z    , 0 pz z and n qz z .  
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For convenience, we assume that 

   
0 0

0z zI f z                    (2.34) 

if 0z z . 

The rules for complex integration are similar to those for real integrals. Some important results are 

as follows [11]: 

Suppose that  f z and  g z  be local fractional continuous along the contourC in .  

                 1 1 1

1 1 1C C C

f z g z dz f z dz g z dz
  

  
  

        ;           

(2.35) 

         1

1 1C C

k
kf z dz f z dz

 

 


     ,          (2.36) 

for a constant k ;   

               
1 2
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        ,   (2.37) 

where 1 2C C C  ; 

         
1 1

1 1

1 1C C

f z dz f z dz
 

  

 
     ;      (2.38) 

          1 1

1 1C C

f z dz f z dz ML
 

 
 

     ,     (2.39) 

where M is an upper bound of  f z  on C  and 
   1

1 C

L dz




   .  

Theorem 2 

If the contour C  has end points pz and qz  with orientation pz  to qz  , and if function 

 f z  has the primitive  F z  on C , then we have  

        1

1 q p

C

f z dz F z F z



 

   .          (2.40) 

Remark 4. Suppose that    f z D  . For 0,1,...,k n and 0 1   there exists a local 

fractional series 
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(2.41) 

with      kf z D   , where          ...

k times

k
z zf z D D f z  


.  

This series is called Yang-Taylor series of local fractional analytic function (for real function case, 

see [12].)   
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Theorem 3 

If C  is a simple closed contour, and if function  f z  has a primitive on C , then [11]  

    1
0

1 C

f z dz





   .               (2.42) 

Corollary 4  

If the closed contours 1C  , 2C  is such that 2C lies inside 1C , and if  f z  is local fractional 

analytic on 1C  , 2C  and between them, then we have [11] 
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f z dz f z dz
 

 


     .       (4.43) 

Theorem 5  

Suppose that the closed contours 1C , 2C is such that 2C lies inside 1C , and if  f z  is local 

fractional analytic on 1C , 2C and between them, then we have[11] 
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     .       (2.44) 

3 Generalized local fractional integral formulas of 

complex functions 

In this section we start with generalized local fractional integral formulas of complex functions 

and deduce some useful results.  

Theorem 6 

Suppose that  f z  is local fractional analytic within and on a simple closed contour C  and 

0z is any point interior to C . Then we have  
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   .         (3.1) 

Proof. From(2.44), we arrive at the formula  

,   

(3.2) 

where .  

Setting implies that  

                       (3.3) 
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 1 0:C z z
  

 0z z
  

 0z z E i    
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and 

.                          (3.4) 

Taking (3.3) and (3.4), it follows from (3.2) that  
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From (3.5) , we get 
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Furthermore  
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   .            (3.7) 

Substituting (3.7) into (3.6) and (3.3) implies that  
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   .             (3.8) 

The proof of the theorem is completed.   

Likewise, we have the following corollary:  

Corollary 7 

Suppose that  f z  is local fractional analytic within and on a simple closed contourC and 0z is 

any point interior toC . Then we have  
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f z
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i z z

 
   

 
   .             (3.9) 

Proof. Taking into account formula (3.1), we arrive at the identity.   

Theorem 8 

Suppose that  f z  is local fractional analytic within and on a simple closed contour C  and 

0z is any point interior to C . Then we have  
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1 C

dz
i

z z


 

 



   .                  (3.9)  

Proof. Taking   1f z  , from (3.9) we deduce the result.  

Theorem 9 

Suppose that  f z  is local fractional analytic within and on a simple closed contourC and 0z is 

any point interior toC . Then we have  

    dz i E i d
    

  



 

9 

 
 

 0

1
0

1 n
C

dz

z z






   , for 1n  .          (3.10) 

Proof. Taking   1f z  , from (3.9) we deduce the result.  

4 Complex Yang-Taylor’s series and local fractional 

Laurent’s series 

In this section we start with a Yang-Taylor’s expansion formula of complex functions and deduce 

local fractional Laurent series of complex functions.   

4.1 Complex Yang-Taylor’s expansion formula   

Definition 5 

Let  f z  be local fractional analytic inside and on a simple closed contour C  having its 

center at 0z z . Then for all points z  in the circle we have the Yang-Taylor series 

representation of  f z , given by  
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            (4.1) 

For 0:C z z R
   , we have the complex Yang-Taylor series  
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  .                         (4.2) 

From (3.44) the above expression implies  
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for 0:c z z R
   .   

Successively, it follows from (4.3) that  
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  ,                        (4.4) 

where  
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    ,    (4.5) 
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for 0:C z z R
   .  

Hence, the above formula implies the relation (4.2).  

Theorem 10 

Suppose that complex function
 

 f z is local fractional analytic inside and on a simple closed 

contour  having its center at 0z z . There exist all points z in the circle such that we have the 

Yang-Taylor’s series of  f z   

   0
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k
k

f z a z z






  ,                    (4.5) 

where 
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    ,  

for 0:C z z R
  

.
  

Proof. Setting 1 0:C z z R
   and using (3.1) , we have   
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Substituting (4.8) into (4.6) implies that  
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Taking the Yang-Taylor formula of analytic function into account, we have the following relation   
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where NR is reminder in the form  
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There exists a Yang-Taylor series  
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where is  0f z is local fractional analytic at 0z z . 

Taking into account the relation
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Furthermore 

lim 0N
N
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From (4.9), we have  
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Hence 
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Hence the proof of the theorem is completed.  

4.2 Singular point and poles  

Definition 6 

A singular point of a function  f z  is a value of z  at which  f z  fails to be local 

fractional analytic. If  f z  is local fractional analytic everywhere in some region except at an 

interior point 0z z , we call  f z  an isolated singularity. 

If  

   
 0

n

z
f z

z z






                         

(4.16) 

and 

   0z                               (4.17) 

where  z is local fractional analytic everywhere in a region including 0z z , and if n  is a 

positive integer, then  f z  has an isolated singularity at 0z z , which is called a pole of order

n .  

If 1n  , the pole is often called a simple pole;  

if 2n  , it is called a double pole, and so on.  

4.3 Local fractional Laurent’s series   

Definition 7 

If  f z  has a pole of order n  at 0z z  but is local fractional analytic at every other point 

inside and on a contour C with center at 0z , then  

     0

n
z z z f z

  
                      

 (4.18) 

is local fractional analytic at all points inside and on C  and has a Yang-Taylor series about 

0z z  so that 
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This is called a local fractional Laurent series for  f z .   

More generally, it follows that  
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as a local fractional Laurent series.  

For 0:C r z z R
     we have a local fractional Laurent series  
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  .                     (4.21) 

From (3.44), the above expression implies that   
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where 0:C r z z R
    .     

Setting 1 0:C z z r
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Successively, it follows from the above that  
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where  
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   ,                (4.24) 

for 0:C r z z R
    .  

Theorem 11 

If  f z  has local fractional analytic at every other point inside a contour C  with center at 0z , 

then  f z  has a local fractional Laurent series about 0z z  so that  
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  , 0 1  ,              (4.25) 

where for 0:C r z z R
    we have 
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Proof. Setting 1 0:C z z r
   and 2 0:C z z R

   , from (2.44) we have that  
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Taking the right side of (4.27) into account implies that for 2C    
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From (4.27) we get  
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Furthermore 
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  (4.33) 

Combing the formulas (4.30) and (4.33), we have the result.  

Hence, the proof of the theorem is finished.  

5 Generalized residue theorems 

In this section we start with a local fractional Laurent series and study generalized residue 

theorems.  

Definition 8 

Suppose that 0z is an isolated singular point of  f z . Then there is a local fractional Laurent 

series 
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k

k
i

f z a z z






 
                    

(5.1) 

valid for 0z z R
   . The coefficient 1a of  0z z

  is called the generalized residue of 

 f z at 0z z , and is frequently written as  
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One of the coefficients for the Yang-Taylor series corresponding to  



 

16 

     0
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z z z f z

   ,                              (5.3) 

the coefficient 1a  is the residue of  f z  at the pole 0z z . It can be found from the 

formula 

   
 

      
00

1

1 01

1
Re lim

1

n
n

nz zz z

d
s f z a z z f z

n dz








 
  

 
              (5.4) 

where n is the order of the pole.  

Setting    0

k

k
i

f z a z z






  , the expression (5.3) yields  

 

   

    

0 0

1

1 0 1 0 ....

n k

k
i

n

n n

z

z z a z z

a a z z a z z

 

 







   

  

     

            (5.5) 

We know that this is  

   
 

1
0

1 1

n z
a

n







 
 

,                        (5.6) 

which is the coefficient of   1

0

n
z z

 . 

The generalized residue is thus  

 
   
 0

1
0

1Re
1

n

z z

z
s f z a

n







 

 
,                  (5.7) 

where      0

n
z z z f z

   .  

Corollary 12  

If  f z  is local fractional analytic within and on the boundary C  of a region   except at a 

number of poles a within , having a residue 1a , then    

   
    

0

1
Re

2 1 z z
C

f z dz s f z
i


   


   .           (5.8) 

Proof. Taking into account the definitions of local fractional analytic function and the pole we 

have local fractional Laurent’s series 

   0

k

k
i

f z a z z






                     (5.9) 

and therefore  

       0 1 0 0 0

n n

n nf z a z z a z z a a z z
   

                 .   (5.10) 

Hence we have the following relation 

          0

1 1

1 1
k

k
iC C

f z dz a z z dz
  

 





        
    .    (5.11) 
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furthermore 

        
 1

0

1 1

1 1C C

a
f z dz dz

z z

 
 


       .        (5.12) 

From (3.9), it is shown that  

      
     

 1
1

0

1 1 1 1

1 12 2C C

a
f z dz dz a

i i z z

 
     


   

       .     (5.13) 

Hence we have the formula  

       1

1
2

1 C

f z dz i a
  

 
   .          (5.14) 

Taking into account the definition of generalized residue, we have the result.  

This proof of the theorem is completed.  

From (5.8) , we deduce the following corollary:  

Corollary 13  

If  f z  is local fractional analytic within and on the boundary C  of a region   except at 

a finite number of poles 0 1 2, , ...z z z within  , having residues 1 1 1, , ...a b c    respectively, 

then    

   
     1 1 1

0

1
Re ...

2 1 k

n

z z
iC

f z dz s f z a b c
i


  

  


    
 

 .        (5.15) 

It says that the local fractional integral of  f z  is simply  2 i
  times the sum of the 

residues at the singular points enclosed by the contourC . 

6 Applications: Gauss formula of complex function 

Theorem 14 

Suppose that  f z is local fractional analytic and is any point, then for the circle 

 z R E i
   

  
 

we have  

 
       

2

0

1 1

12
f f RE i d

 
   


  

   .       (6.1)  

Proof. By using (3.1) there exists a simple closed contourC and 0z is any point interior to C such 

that  

 
 

   
 

 
 1 1

12 C

f z
f dz

i z


 


 

 
   .           (6.2) 

When C can been taken to be  R E i   
  for  0, 2  , substituting the relations 

         z R E i
   

                    (6.3) 
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and 

    dz i R E i d
    

    ,               (6.4) 

in (6.2) implies that  

 
   

     
 

1 1

12 C

f RE i i R E i d
f

R E ii

   


   


   


 


 

     (6.5) 

and some cancelling gives the result.  
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