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Analyzing real data on international trade covering the time interval 1950-2000, we show that
in each year over the analyzed period the network is a typical representative of the ensemble of
maximally random weighted networks, whose directed connections (bilateral trade volumes) are
only characterized by the product of the trading countries’ GDPs. It means that time evolution
of this network may be considered as a continuous sequence of equilibrium states, i.e. quasi-static
process. This, in turn, allows one to apply the linear response theory to make (and also verify)
simple predictions about the network. In particular, we show that bilateral trade fulfills fluctuation-
response theorem, which states that the average relative change in import (export) between two
countries is a sum of relative changes in their GDPs. Yearly changes in trade volumes prove that
the theorem is valid. Supported by the well-known qualitative findings about economic crises, we
argue that the theorem provides valuable quantitative insights into the mechanisms underlying the
emergence of worldwide crises.

PACS numbers: 89.65.Gh,89.75.-k,05.40.-a,02.10.Ox

In recent years, an extensive research effort has been
devoted to analyzing the structure, function, and dynam-
ics of the international trade network (ITN) [1–6] from
a complex network perspective [7]. The knowledge of
topological properties of this network and its evolution
over time is not only important per se (e.g., because it
enhances our descriptive knowledge of the stylized facts
pertaining to the ITN), but it may also be relevant to
a better explanation of macroeconomic dynamics [8–10].
In particular, it has been suggested that the analysis of
ITN may help in recognizing the pattern of economic in-
terdependencies responsible for the propagation of crises
across countries [11–13] and that it can be used to explain
the role of international trade in spurring the efficiency
of economic recovery after recession [14, 15]. The ap-
proach to international trade described in this article is
a significant step towards clarifying the above-mentioned
macroeconomic issues.

Here, we use quantitative and numerical (data-driven)
methods originating from statistical mechanics to de-
scribe and predict the behavior of ITN. We analyze a set
of year-by-year trade relationships between all countries
of the world, covering the time interval 1950− 2000 [16].
Although the total number of countries and the over-
all economic conditions influencing the network change
over the course of the period, in each year ITN is shown
to be a typical representative of the ensemble in which
every network, G, is assigned the probability [17, 18]
P (G) ∝ e−H(G); where H(G) =

∑

i,j θijwij plays the
role of network Hamiltonian; wij represents the volume
of trade between two countries, i and j; θij ∝ (xixj)

−1 is
the field parameter conjugated to this trade connection;
and xixj corresponds to the product of the GDPs of the
trade partners.

Behind the descriptive power of our approach (which
has been confirmed in a number of tests reported in this
article consisting in comparison of GDP-driven Monte

Carlo simulations of the trade network with real data on
ITN), it is also important to stress the predictive abilities
of the model. In particular, we show here that bilateral
trade fulfills a simple fluctuation-response theorem [22],
which states that the average relative change in trade
is a sum of the relative changes in the GDPs of trade
partners. We argue that the theorem provides valuable
insights into mechanisms underlying the emergence and
propagation of worldwide crises. Yearly changes in im-
port/export volumes between countries prove that the
theorem is valid.

The results reported in this work are based on the em-
pirical analysis of expanded trade data collected by K.
S. Gleditsch [16]. The data set [19] contains, for each
world country in the period 1950−2000, the detailed list
of bilateral import and export volumes. The data on the
population size of each country and its GDP per capita

has been taken from the Penn World Tables (PWT) [20].

The trade data are employed to build a sequence of
matrices, W(t), corresponding to snapshots of weighted
directed ITN in the consecutive years, t = 1950, . . . , 2000.
In the network, each country is represented by a node and
the direction of links follows that of wealth flow. The
entry, wij(t), of the trade matrix, W(t), represents the
weight of the directed connection. From the point of view
of the country denoted by i, wij(t) refers to the volume of
export to j, while, from the point of view of the country
labeled by j, it is seen as the volume of import from
i. Precisely due to differences in reporting procedures
between countries, when analyzing the data one often
encounters small deviations between exports from i to j
and imports from i to j. To overcome the problem, in
our analysis we define wij(t) as the arithmetic average of
the two values.

In this article, apart from trade matrices, which con-
tain complete but often excessively detailed information
about ITN, we also use several other quantities that make
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theoretical description of the network possible. In partic-
ular, to characterize the economic performance of a coun-
try we use its total GDP value, xi(t). To get the whole set
of total GDPs, {xi(t)}, we simply multiply the GDP per

capita by the population size of each country. Further-
more, to describe the intensity of the trade relationships
of a country we define the so-called out-strength, souti (t),
and in-strength, sini (t), of the corresponding node. The
quantities are calculated as the total weight of connec-
tions (outgoing and incoming, respectively) that are at-
tached to the node, e.g. souti (t) =

∑

j wij(t), and they
represent total volumes of export and import of the con-
sidered country in a given year, t.

Finally, we would like to stress that both GDP data,
{xi(t)}, and trade matrices, W(t), used in this study are
given in millions of contemporary U.S. dollars (that is,
in terms of the value of one U.S. dollar in the reported
year, t). To factor out the effects of inflation and to allow
for a direct comparison between snapshots of ITN in dif-
ferent years, one usually expresses the data in standard
reference money units (e.g. in 1996 U.S. dollars [14]). In
our approach, however, the disturbing effects mentioned
are ruled out in a natural way by the fact that whenever
the variables, xi(t) or wij(t), are used in the calcula-
tions, they are intrinsically divided by the normalization
constant that equals the sum of all variables of a given
type, i.e. X(t) =

∑

i xi(t) or T (t) =
∑

i,j wij(t), respec-
tively. (In what follows, whenever there is no confusion
we will often omit explicit time dependence of the quan-
tities). As a byproduct, the above observation allows one
to present the main results of this article in a very con-
cise way, with the help of relative quantities defined as
follows:

ξi = xi/X, σ
(... )
i = s

(... )
i /T and vij = wij/T. (1)

The first contributions dealing with international trade
from a complex network perspective used a binary-
network approach, in which one has assumed that a (pos-
sibly directed) link between any two countries is either
present or not, depending on whether the trade volume
that it carries is larger than a given threshold [1–3]. With
reference to this line of research we would like to highlight
the paper by Garlaschelli and Loffredo (2004), published
in Physical Review Letters [3]. In the paper, the authors
used the same real-world data to analyze an unweighted
and undirected version of ITN, i.e. a network of partner-
ship in trade. They have shown that the total GDP of a
country, xi, can be identified with the fitness variable [21]
that, once a form of the probability of trade connection
between two countries is introduced, completely deter-
mines the expected structural properties of this network.
This in turn implies that ITN viewed as a binary network
is a typical representative of exponential random graphs
[17]. Furthermore, one can expect that the same holds
true for the weighted version of this network [18].

To verify this conjecture, we start by considering the
most general ensemble of directed weighted networks,
which is described by the following Hamiltonian

H(G) =
∑

i

∑

j 6=i

θijwij , (2)

with a separate parameter θij coupling to each weighted
connection. Our aim is to check whether the Hamiltonian
is correct and, if so, how the parameters {θij} depend
on different indicators characterizing the global economy.
In order to do this, we first examine the ensemble as it
stands.
Thus, given that wij is a real number greater than 0

(as is true for trade volumes), the partition function of
this ensemble can be written as

Z({θij}) =
∏

i

∏

j 6=i

∫ ∞

0

e−θijwijdwij =
∏

i

∏

j 6=i

1

θij
. (3)

This allows us to rewrite the probability of a network,
P (G) = e−H(G)/Z, in the following way

P (G) =
∏

i

∏

j 6=i

pij(wij), (4)

where

pij(wij) = e−θijwijθij (5)

is the probability that there is a directed link of weight
wij from i to j. The expression for pij(wij) that we arrive
at is the exponential distribution. Its mean value, that
is given by

〈wij〉 = 1/θij, (6)

can be used to calculate the average values of a node’s
out- and in-strength

〈souti 〉 =
∑

j 6=i

〈wij〉 =
∑

j 6=i

1

θij
and 〈sini 〉 =

∑

j 6=i

1

θji
.

(7)
At this stage one can start to make comparisons of

theoretical predictions with the empirical data on inter-
national trade. With good reason, it is convenient to
begin by putting together Eq. (7) and the corresponding
empirical relations (see Fig. 1 a):

〈souti 〉 = Axi and 〈sini 〉 = Axi, (8)

where A is the time-dependent parameter having the
same value for both out- and in-strength of the nodes.
Analyzing the expressions, one finds that the simplest
way to merge the theoretical approach with real data is
to assume a multiplicative form of the parameter θij , i.e.

θij = θiθj , (9)
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FIG. 1. Structural properties of a single snapshot of ITN. The data are shown in two ways, by using regular and
relative quantities, cf. Eq. (1). a, Total import and export volumes of all world countries in 1995 vs. GDP (filled and open
points, respectively) and their comparison with the expected values described by Eqs. (8) and (11) (solid lines). b, Bilateral
trade flows in 1995 vs. the product of the trading countries’ GDPs (points) as compared with their theoretical prediction
based on Eqs. (6) and (12) (lines). Black points correspond to real data, while gray points represent trade volumes obtained
from GDP-driven Monte Carlo simulations. Since trade flows smaller than a given threshold are rarely specified in economic
reports (in particular, the considered data set [19] does not contain trade volumes smaller than 1000 USD), the cloud of black
points cover smaller area than the one corresponding to numerical simulations. The effect of unreported exports/imports is
also perceptible in the insets of both panels, which show the relationship between the average trade volume and the product
of GDPs obtained with logarithmic binning of the latter. In the insets, points represent real data, while the solid lines stand
for their theoretical prediction. c, Distributions of trade volumes in 1995. Filled and open squares correspond to real and
simulated data, respectively. The solid lines represent distributions of expected trade flows which, for each pair of countries in
a given year, can be calculated using Eqs. (6) or (12).

where θi and θj represent some single-node characteris-
tics controlling for the potential ability of the two nodes
to be connected. One should note that the symmetric ex-
pression for θij , Eq. (9), is consistent with observations
made by other authors, showing the symmetric character
of bilateral trade relations ( see e.g. [3, 6]).
To calculate explicit values of all the parameters {θi},

one just has to insert Eq. (9) into the theoretical for-
mula for 〈souti 〉, Eq. (7), and then equate the obtained
relation to the empirical one, Eq. (8). (The analogous
calculations can be done for 〈sini 〉.) As a result, one
gets the following expression: 〈souti 〉 =

∑

j θ
−1
j /θi = Axi,

which, when summed over i, yields an important relation
between theoretical and empirical quantities describing

ITN: T =
(
∑

i θ
−1
i

)2
= AX , from which it follows that

θi =
1√
T

X

xi

=
1√
T

1

ξi
and θij =

1

T

1

ξiξj
, (10)

where the relative quantity ξi has been introduced earlier,
in Eq. (1).
The expressions, Eqs. (10), together with other relative

parameters that were defined in Eq. (1), can be used to
rewrite the most important results of this approach in a
very concise way. In particular, as described in terms of
trade, the average out- and in-strength of a node, Eq. (7),
when divided by the world’s trade volume, T , turns out
to be equal to the country’s share in the world’s GDP,
X , i.e.

〈σout
i 〉 = 〈σin

i 〉 = ξi. (11)

In a similar fashion, the average weight of a directed con-
nection when divided by T , is given by

〈vij〉 = ξiξj =
1

ηij
. (12)

Finally, the structural network Hamiltonian, Eq. (2),
when written in relative variables has the following form

H(G) =
∑

i

∑

j 6=i

ηijvij . (13)

To verify the correctness of the assumed network
Hamiltonian, a series of data-driven Monte Carlo sim-
ulations employing the Metropolis algorithm has been
performed. The obtained results are shown in Figure 1.
In particular, in Figure 1 b, the set of all bilateral trade
volumes recorded in a given year versus the product of
the trading countries’ GDPs is compared with the cor-
responding set of weights of directed connections in a
typical network of the considered ensemble. Although
the two sets (clouds) of points are quite dispersed, they
overlap significantly, and their shape is well-described by
Eq. (12). Moreover, as shown in the panel c in the same
figure, the distributions of trade volumes within these
clouds fit very well with each other and agree with the
distribution of expected trade flows, P (〈vij〉), testifying
in favor of our simple, yet realistic, approach.
In general, extensive comparisons between real data on

international trade and its GDP-driven Monte Carlo sim-
ulations show that, although the total number of world’s
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FIG. 2. Fluctuation-response theorem for ITN. To
confirm validity of the theorem, for each connection in the
trade network at the turns of 1950 − 2000, one has cal-
culated quantities corresponding to both sides of Eq. (15):
the relative change in normalized trade volume, dvij/vij ≃
(vij(t + 1) − vij(t))/vij(t), and the sum of relative changes
in GDP of trading countries, dξi/ξi + dξj/ξj , where dξi/ξi ≃
(ξi(t + 1) + ξi(t))/ξ(t). Then, the results were grouped ac-
cording to similarities in both: local fields conjugated to the
corresponding trade flows, ηij , Eq. (12), and their year-by-
year changes, dηij = dξi/ξi +dξj/ξj , characterizing the initial
economic conditions influencing trade and the magnitude of
the applied perturbation, respectively. Each group of connec-
tions, V (m,n), was characterized by two integers, m and n.
The trade flow, vij , was classified as belonging to V (m,n) if
m − 1 ≤ ln ηij < m and n − 1 ≤ 100 dηij < n. (Note that
the grouping with respect to m is in fact logarithmic binning
with respect to the expected trade volume, Eq. (12), while
the parameter m describes linear binning with respect to the
sum of percentage changes in relative GDPs of trade part-
ners.) Points shown in the figure were obtained by averaging
results pertaining to single connections of ITN over the prede-
fined groups, V (m,n). Sizes of points depend on the number
of trade volumes contributing to the average, according to
the key in the figure. The figure illustrates the fluctuation-
response theorem as applied to trade volumes whose expected
share, 〈vij〉, Eq. (12), in the global trade, T , is greater than
10−4.

countries, N(t), and their GDPs, {xi(t)}, change over
the analyzed period of 50 years, ITN is continuously
well-characterized by the same Hamiltonian. This means
that the time evolution of this network may be consid-
ered as a continuous sequence of equilibrium states (i.e.
quasi-static process) that is yearly sampled by the na-
tional reporting procedures. Furthermore, since differ-
ences between snapshots of ITN in the consecutive years
are rather small, one can expect that they could be de-
scribed with the help of liner response theory, of which
the simplest (but not yet trivial) result is the fluctuation-
response theorem [22] applying to equilibrium ensembles.

In the case of exponential random graphs with the
Hamiltonian of the form H(G) =

∑

i

∑

j 6=i ηijvij ,

Eq. (13), the fluctuation-response theorem is given by

〈v2ij〉 − 〈vij〉2 = −d〈vij〉
dηij

. (14)

The l.h.s. of this expression describes fluctuations in rela-
tive weight, vij = wij/T , of the directed connection from
i to j, whereas its r.h.s. characterizes susceptibility of
this link to its conjugated local field, ηij . The suscepti-
bility is defined as the derivative of 〈vij〉 with respect to
ηij and describes what happens with the expected trade
volume, 〈vij〉, when one changes the parameter ηij , which
determines external conditions for the bilateral exchange.
In simple words, the theorem states that in equilibrium
the average response of vij to changes in ηij is propor-
tional to fluctuations in vij .
Taking into account the exponential distribution of

weights, p(vij) = e−ηijvijηij , which follows from Eq. (5)
and whose variance equals the square of the mean, the
fluctuation-response theorem, Eq. (14), can be trans-
formed into the formula

d〈vij〉
〈vij〉

= −dηij
ηij

=
dξi
ξi

+
dξj
ξj

. (15)

Written in such a way, the theorem states that rela-
tive changes in normalized (i.e. divided by T ) bilateral
trade volumes can be estimated on the basis of changes
in the GDP of trade partners. Yearly changes in im-
port/export volumes between different countries prove
that the fluctuation-response theorem for ITN is correct
(see Figure 2).
Relying on Eq. (15) one can, for example, expect that a

decline of, say, 2 percent in the relative GDP of a country,
given that its trade partners do not change their share
of the world’s GDP, will translate into a similar decline
in all its bilateral trade volumes. The example shows
that the theorem can be used to make simple predictions
about the world-wide diffusion of trade-based economic
perturbations. Furthermore, assuming that the struc-
ture of ITN is a proxy for meaningful financial linkages
between countries, the expression may also help one to
understand how financial ripples originating in one coun-
try propagate to other countries, giving rise (or not) to
global financial contagion. In particular, in the light of
this theorem, it becomes apparent that a crisis is ampli-
fied if the epicenter country is better integrated into the
trade network [13]. This happens because the decline of
its GDP, through the proportional downward effect on
trade and financial linkages, affects more countries. It
also becomes clear that the impact of a crisis on any
target country is cushioned if the country in question is
better integrated into ITN, due to the fact that, in the
case of such countries, the decline of only one bilateral
trade volume does not significantly influence GDP.
The current economic crisis illustrates a critical need

for new and fundamental understandings of the struc-

ture and dynamics of economic networks. This sentence
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opens the perspective article from the special issue of Sci-
ence [7] on complex systems and networks entitled ”Eco-
nomic networks: The new challenges” by F. Schweitzer
et al. In their article [9], the authors summarize what we
know and what we need to know about different economic
networks (including ITN) to reduce the risk of global
depression and to design effective strategies to promote
economic recovery [23]. Our approach to ITN, exploit-
ing ideas originating in statistical mechanics, is in line
with this challenging research area. Having the mathe-
matically tractable yet realistic model of ITN introduced
here, and given the quasi-static time evolution of this
network, we believe that, apart from the fluctuation-
response theorem, Eq. (15), other well-known results of
non-equilibrium statistical physics [24] may be applied to
estimate recession (or economic growth) impact on inter-
national trade.
This work was supported by the Polish Ministry of

Science, Grant No. 496/N-COST/2009/0.
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