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Abstract. With the new viscous hydrodynamic + hadron cascade hybrid code

VISHNU, a rather precise (O(25%)) extraction of the QGP shear viscosity (η/s)QGP from

heavy-ion elliptic flow data is possible if the initial eccentricity of the collision fireball

is known with < 5% accuracy. At this point, eccentricities from initial state models

differ by up to 20%, leading to an O(100%) uncertainty for (η/s)QGP. It is shown

that a simultaneous comparison of elliptic and triangular flow, v2 and v3, puts strong

constraints on initial state models and can largely eliminate the present uncertainty in

(η/s)QGP. The variation of the differential elliptic flow v2(pT ) for identified hadrons

between RHIC and LHC energies provides additional tests of the evolution model.

Prologue – how to measure (η/s)QGP: Hydrodynamics converts the initial spatial

deformation of the fireball created in relativistic heavy-ion collisions into final state

momentum anisotropies. Viscosity degrades the conversion efficiency εx=
〈〈y2−x2〉〉
〈〈y2+x2〉〉

→

εp=
〈Txx−T yy〉
〈Txx+T yy〉

of the fluid; for given initial fireball ellipticity εx, the viscous suppression

of the dynamically generated total momentum anisotropy εp is monotonically related to

the specific shear viscosity η/s. The observable most directly related to εp is the total

charged hadron elliptic flow vch2 [1]. Its distribution in pT depends on the chemical

composition and pT -spectra of the various hadron species; the latter evolve in the

hadronic stage due to continuously increasing radial flow (and so does v2(pT )), even

if (as expected at top LHC energy [2]) εp fully saturates in the QGP phase. When (as

happens at RHIC energies) εp does not reach saturation before hadronization, dissipative

hadronic dynamics [3] affects not only the distribution of εp over hadron species and pT ,

but even the final value of εp itself, and thus of vch2 from which we want to extract η/s.

To isolate the QGP viscosity (η/s)QGP we therefore need a hybrid code that couples

viscous hydrodynamics of the QGP to a realistic model of the late hadronic stage, such

as UrQMD [4], that describes its dynamics microscopically. VISHNU [5] is such a code.

Extraction of (η/s)QGP from 200AGeV Au+Au collisions at RHIC: The

left panel in Fig. 1 shows that such an approach yields a universal dependence of
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the ellipticity-scaled total charged hadron elliptic flow, vch2 /εx, on the charged hadron

multiplicity density per overlap area, (1/S)(dNch/dy), that depends only on (η/s)QGP

but not on the details of the initial state model that provides εx and S [6]. Pre-

equilibrium flow and bulk viscous effects on these curves are small [6].

0 10 20 30 40
(1/S) dN

ch
/dy (fm

-2
)

0

0.05

0.1

0.15

0.2

0.25

v 2/ε

 0.0       0.4     810
 0.08     0.6     810
 0.16     0.9     810
 0.24     0.9     810

              .
               .
                       .
                 .

hydro (η/s)+UrQMD

 η/s     τ0    dN/dyGlauber / KLN
(fm/c)   max.

0.16   0.9    810
0.24   1.2    810

0.08   0.6    810
0.0     0.4    810

η/s
0.0

0.08

0.16

0.24

(b)

0 10 20 30
(1/S) dN

ch
/dy (fm

-2
)

0

0.05

0.1

0.15

0.2

0.25

v 2/ε

0 10 20 30 40
(1/S) dN

ch
/dy (fm

-2
)

hydro (η/s) + UrQMD hydro (η/s) + UrQMDMC-GlauberMC-KLN
0.0
0.08

0.16

0.24

0.0

0.08

0.16

0.24

η/sη/s

v
2
{2} / 〈ε2

part
〉1/2

Gl

(a) (b)

〈v
2
〉 / 〈ε

part
〉
Gl

v
2
{2} / 〈ε2

part
〉1/2

KLN

〈v
2
〉 / 〈ε

part
〉
KLN

Figure 1. (Color online) Centrality dependence of eccentricity-scaled elliptic flow [6].

The QGP viscosity can be extracted from experimental vch2 data by comparing them

with these universal curves. The right panels of Fig. 1 show this for MC-Glauber and

MC-KLN initial state models [6]. In both cases the slope of the data [7] is correctly

reproduced (not true for ideal nor viscous hydrodynamics with constant η/s). Due

to the ∼20% larger ellipticity of the MC-KLN fireballs, the magnitude of vch2,exp/εx
differs between the two models. Consequently, the value of (η/s)QGP extracted from

this comparison changes by more than a factor 2 between them. Relative to the initial

fireball ellipticity all other model uncertainties are negligible. Without constraining εx
more precisely, (η/s)QGP cannot be determined to better than a factor 2 from elliptic

flow data alone, irrespective of any other model improvements. Taking the MC-Glauber

and MC-KLN models to represent a reasonable range of initial ellipticities, Fig. 1 gives

1< 4π(η/s)QGP< 2.5 for temperatures Tc <T < 2Tc probed at RHIC.
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Figure 2. (Color online) Eccentricity-scaled elliptic flow as function of impact

parameter for pions, kaons and protons from single-shot and event-by-event ideal fluid

evolution of fluctuating initial conditions from the MC-Glauber (left) and MC-KLN

(right) models.

VISHNU with (η/s)QGP=
1
4π

for MC-Glauber and 2
4π

for MC-KLN provides an

excellent description of all aspects of soft (pT < 1.5GeV) hadron production (pT -
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spectra and differential v2(pT ) for all charged hadrons together as well as for individual

identified species) in 200AGeV Au+Au collisions at all but the most peripheral collision

centralities [8]. Such a level of theoretical control is unprecedented.

Event-by-event hydrodynamics of fluctuating fireballs: In Fig. 1 we evolved

a smooth averaged initial profile (“single-shot hydrodynamics”). This overestimates

the conversion efficiency v2/ε [9, 10]. Fig. 2 shows that event-by-event ideal fluid

dynamical evolution of fluctuating fireballs reduces v2/ε by a few percent [10]. The

effect is only ∼ 5% for pions but larger for heavier hadrons. We expect it to be less in

viscous hydrodynamics which dynamically dampens large initial fluctuations. A reduced

conversion efficiency v2/ε from event-by-event evolution will reduce the value of (η/s)QGP

extracted from vch2 ; based on what we see in ideal fluid dynamics, the downward shift

for (η/s)QGP will at most be of order 0.02-0.03.

Predictions for spectra and flow at the LHC: The successful comprehensive fit

of spectra and elliptic flow at RHIC [8] allows for tightly constrained LHC predictions.

Fig. 3 shows such predictions for both pure viscous hydrodynamics VISH2+1 [11] and

VISHNU [12]. A straightforward extrapolation with fixed (η/s)QGP overpredicts the LHC

0 20 40 60 80
centrality

0

0.02

0.04

0.06

0.08

0.1

v 2

RHIC: η/s=0.16
LHC: η/s=0.16
LHC: η/s=0.20
LHC: η/s=0.24

STAR

ALICE
v

2
{4}

MC-KLN
Reaction Plane

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 +

 p
 
 
 

 

 

v 2

pT (GeV)

RHIC LHC

20~30%

AuAu@ PbPb@ MC-KLN, /s = 0.20

Figure 3. (Color online) Total charged hadron elliptic flow as function of centrality

(VISHNU, left [12]) and differential elliptic flow for identified hadrons for 20-30%

centrality (VISH2+1, right [11]) for 200AGeV Au+Au collisions at RHIC and

2.76ATeV Pb+Pb collisions at the LHC. Experimental data are from [13].

vch2 values by 10-15%; a slight increase of (η/s)QGP from 0.16 to 0.20 (for MC-KLN)

gives better agreement with the ALICE data [13]. However, at LHC energies v2 becomes

sensitive to details of the initial shear stress profile [11], and no firm conclusion can be

drawn yet whether the QGP turns more viscous (i.e. less strongly coupled) at higher

temperatures. The right panel shows that, at fixed pT < 1GeV, v2(pT ) increases from

RHIC to LHC for pions but decreases for all heavier hadrons. The similarity at RHIC

and LHC of vch2 (pT ) for the sum of all charged hadrons thus appears accidental.

Constraining initial state models by simultaneous measurement of v2 and v3:

While the ellipticities ε2 differ by about 20% between MC-KLN and MC-Glauber models,

their triangularities ε3 (which are entirely due to event-by-event fluctuations) are almost



4

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

pT (GeV)

v 2
(%

)

 

 

Au+Au @ RHIC, 20-30%

MC-KLN-like, η/s = 0.217
MC-Glb.-like, η/s = 0.111
MC-Glb.-like, η/s = 0.224

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

pT (GeV)

v 3
(%

)

 

 

Au+Au @ RHIC, 20-30%

MC-KLN-like, η/s = 0.217
MC-Glb.-like, η/s = 0.224
MC-Glb.-like, η/s = 0.111

Figure 4. (Color online) pT -differential elliptic and triangular flow from viscous

hydrodynamics for initial eccentricities from the MC-KLN and MC-Glauber models.

identical [10]. This suggests to use triangular flow v3 (which is almost entirely [10] driven

by ε3) to obtain a model-independent measurement of (η/s)QGP. Fig. 4 shows vπ2 (pT )

and vπ3 (pT ) for deformed Gaussian fireballs with average eccentricities ε2 and ε3 (with

random relative angle) taken from the fluctuating Glauber (“MC-Glauber-like”) and

KLN (“MC-KLN-like”) models. It demonstrates that a given set of flow data requires

shear viscosities that differ by a factor 2 to reproduce v2(pT ) and but the same shear

viscosities in both models to reproduce v3(pT ). A good fit by both models to v2(pT )

produces dramatically different curves for v3(pT ), and vice versa. The figure illustrates

the strong discriminating power for such simultaneous studies and gives hope for a much

more precise extraction of (η/s)QGP in the near future.
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