The QGP shear viscosity – elusive goal or just around the corner?

<u>Chun Shen</u>¹, Steffen A Bass², Tetsufumi Hirano^{3,4}, Pasi Huovinen⁵, Zhi Qiu¹, Huichao Song⁶ and Ulrich Heinz¹

¹ Department of Physics, The Ohio State University, Columbus, Ohio 43026, USA

² Department of Physics, Duke University, Durham, North Carolina 27708, USA

³ Department of Physics, Sophia University, Tokyo 102-8554, Japan

 4 Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

⁵ ITP, J.W.Goethe-Universität, D-60438 Frankfurt a. M., Germany

⁶ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract. With the new viscous hydrodynamic + hadron cascade hybrid code VISHNU, a rather precise ($\mathcal{O}(25\%)$) extraction of the QGP shear viscosity (η/s)_{QGP} from heavy-ion elliptic flow data is possible *if* the initial eccentricity of the collision fireball is known with < 5% accuracy. At this point, eccentricities from initial state models differ by up to 20%, leading to an $\mathcal{O}(100\%)$ uncertainty for (η/s)_{QGP}. It is shown that a simultaneous comparison of elliptic and triangular flow, v_2 and v_3 , puts strong constraints on initial state models and can largely eliminate the present uncertainty in (η/s)_{QGP}. The variation of the differential elliptic flow $v_2(p_T)$ for identified hadrons between RHIC and LHC energies provides additional tests of the evolution model.

Prologue – how to measure $(\eta/s)_{QGP}$: Hydrodynamics converts the initial spatial deformation of the fireball created in relativistic heavy-ion collisions into final state momentum anisotropies. Viscosity degrades the conversion efficiency $\varepsilon_x = \frac{\langle\!\langle y^2 - x^2 \rangle\!\rangle}{\langle\!\langle y^2 + x^2 \rangle\!\rangle} \rightarrow$ $\varepsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle}$ of the fluid; for given initial fireball ellipticity ε_x , the viscous suppression of the dynamically generated total momentum anisotropy ε_p is monotonically related to the specific shear viscosity η/s . The observable most directly related to ε_p is the total charged hadron elliptic flow $v_2^{\rm ch}$ [1]. Its distribution in p_T depends on the chemical composition and p_T -spectra of the various hadron species; the latter evolve in the hadronic stage due to continuously increasing radial flow (and so does $v_2(p_T)$), even if (as expected at top LHC energy [2]) ε_p fully saturates in the QGP phase. When (as happens at RHIC energies) ε_p does not reach saturation before hadronization, dissipative hadronic dynamics [3] affects not only the distribution of ε_p over hadron species and p_T , but even the final value of ε_p itself, and thus of $v_2^{\rm ch}$ from which we want to extract η/s . To isolate the QGP viscosity $(\eta/s)_{\rm QGP}$ we therefore need a hybrid code that couples viscous hydrodynamics of the QGP to a realistic model of the late hadronic stage, such as UrQMD [4], that describes its dynamics microscopically. VISHNU [5] is such a code.

Extraction of $(\eta/s)_{QGP}$ from 200 A GeV Au+Au collisions at RHIC: The left panel in Fig. 1 shows that such an approach yields a universal dependence of

the ellipticity-scaled total charged hadron elliptic flow, $v_2^{\text{ch}}/\varepsilon_x$, on the charged hadron multiplicity density per overlap area, $(1/S)(dN_{\text{ch}}/dy)$, that depends only on $(\eta/s)_{\text{QGP}}$ but not on the details of the initial state model that provides ε_x and S [6]. Preequilibrium flow and bulk viscous effects on these curves are small [6].

Figure 1. (Color online) Centrality dependence of eccentricity-scaled elliptic flow [6].

The QGP viscosity can be extracted from experimental $v_2^{\rm ch}$ data by comparing them with these universal curves. The right panels of Fig. 1 show this for MC-Glauber and MC-KLN initial state models [6]. In both cases the slope of the data [7] is correctly reproduced (not true for ideal nor viscous hydrodynamics with constant η/s). Due to the ~20% larger ellipticity of the MC-KLN fireballs, the magnitude of $v_{2,\rm exp}^{\rm ch}/\varepsilon_x$ differs between the two models. Consequently, the value of $(\eta/s)_{\rm QGP}$ extracted from this comparison changes by more than a factor 2 between them. Relative to the initial fireball ellipticity all other model uncertainties are negligible. Without constraining ε_x more precisely, $(\eta/s)_{\rm QGP}$ cannot be determined to better than a factor 2 from elliptic flow data alone, irrespective of any other model improvements. Taking the MC-Glauber and MC-KLN models to represent a reasonable range of initial ellipticities, Fig. 1 gives $1 < 4\pi(\eta/s)_{\rm QGP} < 2.5$ for temperatures $T_{\rm c} < T < 2T_{\rm c}$ probed at RHIC.

Figure 2. (Color online) Eccentricity-scaled elliptic flow as function of impact parameter for pions, kaons and protons from single-shot and event-by-event ideal fluid evolution of fluctuating initial conditions from the MC-Glauber (left) and MC-KLN (right) models.

VISHNU with $(\eta/s)_{\text{QGP}} = \frac{1}{4\pi}$ for MC-Glauber and $\frac{2}{4\pi}$ for MC-KLN provides an excellent description of all aspects of soft $(p_T < 1.5 \text{ GeV})$ hadron production $(p_T - 1.5 \text{ GeV})$

spectra and differential $v_2(p_T)$ for all charged hadrons together as well as for individual identified species) in 200 A GeV Au+Au collisions at all but the most peripheral collision centralities [8]. Such a level of theoretical control is unprecedented.

Event-by-event hydrodynamics of fluctuating fireballs: In Fig. 1 we evolved a smooth averaged initial profile ("single-shot hydrodynamics"). This overestimates the conversion efficiency v_2/ε [9, 10]. Fig. 2 shows that event-by-event ideal fluid dynamical evolution of fluctuating fireballs reduces v_2/ε by a few percent [10]. The effect is only ~ 5% for pions but larger for heavier hadrons. We expect it to be less in viscous hydrodynamics which dynamically dampens large initial fluctuations. A reduced conversion efficiency v_2/ε from event-by-event evolution will reduce the value of $(\eta/s)_{\text{QGP}}$ extracted from v_2^{ch} ; based on what we see in ideal fluid dynamics, the downward shift for $(\eta/s)_{\text{QGP}}$ will at most be of order 0.02-0.03.

Predictions for spectra and flow at the LHC: The successful comprehensive fit of spectra and elliptic flow at RHIC [8] allows for tightly constrained LHC predictions. Fig. 3 shows such predictions for both pure viscous hydrodynamics VISH2+1 [11] and VISHNU [12]. A straightforward extrapolation with fixed $(\eta/s)_{QGP}$ overpredicts the LHC

Figure 3. (Color online) Total charged hadron elliptic flow as function of centrality (VISHNU, left [12]) and differential elliptic flow for identified hadrons for 20-30% centrality (VISH2+1, right [11]) for 200 A GeV Au+Au collisions at RHIC and 2.76 A TeV Pb+Pb collisions at the LHC. Experimental data are from [13].

 v_2^{ch} values by 10-15%; a slight increase of $(\eta/s)_{QGP}$ from 0.16 to 0.20 (for MC-KLN) gives better agreement with the ALICE data [13]. However, at LHC energies v_2 becomes sensitive to details of the initial shear stress profile [11], and no firm conclusion can be drawn yet whether the QGP turns more viscous (i.e. less strongly coupled) at higher temperatures. The right panel shows that, at fixed $p_T < 1 \text{ GeV}, v_2(p_T)$ increases from RHIC to LHC for pions but decreases for all heavier hadrons. The similarity at RHIC and LHC of $v_2^{ch}(p_T)$ for the sum of all charged hadrons thus appears accidental.

Constraining initial state models by simultaneous measurement of v_2 and v_3 : While the ellipticities ε_2 differ by about 20% between MC-KLN and MC-Glauber models, their triangularities ε_3 (which are entirely due to event-by-event fluctuations) are almost

Figure 4. (Color online) p_T -differential elliptic and triangular flow from viscous hydrodynamics for initial eccentricities from the MC-KLN and MC-Glauber models.

identical [10]. This suggests to use triangular flow v_3 (which is almost entirely [10] driven by ε_3) to obtain a model-independent measurement of $(\eta/s)_{\text{QGP}}$. Fig. 4 shows $v_2^{\pi}(p_T)$ and $v_3^{\pi}(p_T)$ for deformed Gaussian fireballs with average eccentricities ε_2 and ε_3 (with random relative angle) taken from the fluctuating Glauber ("MC-Glauber-like") and KLN ("MC-KLN-like") models. It demonstrates that a given set of flow data requires shear viscosities that differ by a factor 2 to reproduce $v_2(p_T)$ and but the same shear viscosities in both models to reproduce $v_3(p_T)$. A good fit by both models to $v_2(p_T)$ produces dramatically different curves for $v_3(p_T)$, and vice versa. The figure illustrates the strong discriminating power for such simultaneous studies and gives hope for a much more precise extraction of $(\eta/s)_{\text{QGP}}$ in the near future.

Acknowledgments: This work was supported by the U.S. Department of Energy under grants No. DE-AC02-05CH11231, DE-FG02-05ER41367, DE-SC0004286, and (within the framework of the JET Collaboration) DE-SC0004104; by the Japan Society for the Promotion of Science through Grant-in-Aid for Scientific Research No. 22740151; by the ExtreMe Matter Institute (EMMI); and by BMBF under project No. 06FY9092. We gratefully acknowledge extensive computing resources provided to us by the Ohio Supercomputer Center. C. Shen thanks the *Quark Matter 2011* organizers for support.

References

- [1] Heinz U 2005 Preprint nucl-th/0512051
- [2] Hirano T, Heinz U, Kharzeev D, Lacey R and Nara Y 2007 J. Phys. G 34 S879.
- [3] Hirano T, Heinz U, Kharzeev D, Lacey R and Nara Y 2006 Phys. Lett. B636 299
- [4] Bass S A et al. 1998 Prog. Part. Nucl. Phys. 41 255
- [5] Song H, Bass S A and Heinz U 2011 Phys. Rev. C 83 024912
- [6] Song H, Bass S A, Heinz U, Hirano T and Shen C 2011 Phys. Rev. Lett. 106 192301
- [7] Ollitrault J Y, Poskanzer A M and Voloshin S A 2009 Phys. Rev. C 80 014904
- [8] Song H, Bass S A, Heinz U, Hirano T and Shen C 2011 Phys. Rev. C 83 054910
- [9] Andrade R et al. 2006 Phys. Rev. Lett. 97 202302; Andrade R et al. 2008 ibid. 101 112301
- [10] Qiu Z and Heinz U 2011 Preprint 1104.0650
- [11] Shen C, Heinz U, Huovinen P and Song H 2011 Preprint 1105.3226
- [12] Song H, Bass S A and Heinz U 2011 Phys. Rev. C 83 054912
- [13] Aamodt K et al. [ALICE Collaboration] 2010 Phys. Rev. Lett. 105 252302