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In this paper we study the effect of, well-known, higher order corrections to the allowed beta
decay spectrum on the determination of anti-neutrino spectra resulting from the decays of fission
fragments. In particular, we try to estimate the associated theory errors and find that induced
currents like weak magnetism may ultimately limit our ability to improve the current accuracy and
under certain circumstance could even largely increase the theoretical errors. We also perform a
critical evaluation of the errors associated with our method to extract the anti-neutrino spectrum
using synthetic beta spectra. It turns out, that a fit using only virtual beta branches with a judicious
choice of the effective nuclear charge provides results with a minimal bias. We apply this method
to actual data for 235U, 239Pu and 241Pu and confirm, within errors, recent results, which indicate
a net 3% upward shift in energy averaged anti-neutrino fluxes. However, we also find significant
shape differences which can, in principle, be tested by high statistics anti-neutrino data samples.
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I. INTRODUCTION

Neutrino physics as a branch of experimental physics started with Cowan’s and Reines’ detection of neutrinos
produced in a nuclear reactor [1]. Since then, reactor neutrino experiments have played a crucial role in shaping
our understanding of the physical properties of the neutrino1, for a review see e.g. Ref. [2], and will continue to do
so in the future [3–5]. In a nuclear reactor there are about 6 β-decays, and hence neutrinos, per fission or about
2 × 1020 neutrinos per second per GW of thermal power. Fortunately, there are only four isotopes whose fission
make up more than 99% of all reactor neutrinos with an energy above the inverse β-decay threshold: 235U, 239Pu,
241Pu and 238U. Nonetheless, the resulting neutrino flux is a superposition of thousands of β-decay branches of the
fission fragments of those four isotopes and thus, a first principles calculation is challenging, even with modern nuclear
structure data [6]. Therefore, reactor neutrino fluxes from the thermal fission of 235U, 239Pu and 241Pu are obtained by
inverting measured total β-spectra which have been obtained in the 1980s at the Institut Laue-Langevin (ILL) [7–9].
There are, currently, no corresponding total β-spectra for 238U since this isotope is fissioned only by fast neutrons.
Modern multi-baseline experiments [3–5] are designed to be independent of a very precise flux knowledge at the source,
however many of the previous measurements employed only one baseline [2] and initial data from Double Chooz [3]
and Daya Bay [4] most likely will be single baseline data, too.

Recently, a reevaluation of reactor neutrino spectra has been performed [6] and a significant upward shift in the
predicted fluxes of about 3% was found. This in turn translates into a weakening of existing reactor bounds on the
absence of ν̄e disappearance with wide ranging consequences on the possible existence of a sterile neutrino with a
∆m2 >∼ 1 eV2 [10, 11]. Here, we present an independent inversion of the ILL β-spectra into neutrino spectra for the
isotopes 235U, 239Pu and 241Pu. To this end, we first review various corrections to the allowed β-decay shape and
estimate the associated theory errors in section II. We will use virtual β-branches and apply the corrections obtained
in section II individually for each branch. We then use synthetic data sets and Monte Carlo simulations to quantify
the bias and statistical errors associated with the inversion procedure in section III A. In section III B we compute
the effective nuclear charge Z̄ and provide error estimates. We then apply the method which we have developed to
the actual β-data and present our result on the neutrino fluxes in section IV. In the following section V we perform
a critical comparison of our result with previously obtained neutrino fluxes and point out a possible explanation for
the flux shift in terms of known nuclear physics. Finally, we conclude in section VI.

II. BETA SPECTRA

In this section we describe corrections to the allowed β-spectrum shape and provide an estimate of the associated
uncertainty. Here, we mainly follow the notation of Ref. [12]. The allowed β-spectrum is given by [13]

Nβ(W ) = K p2(W −W0)2︸ ︷︷ ︸
phase space

F (Z,W ) , (1)

where W = E/(mec
2) + 1 and W0 is the value of W at the endpoint. K is a normalization constant. F (Z,W ) is the

so called Fermi function and given by

F (Z,W ) = 2(γ + 1)(2pR)2(γ−1)eπαZW/p
|Γ(γ + iαZW/p)|2

Γ(2γ + 1)2
with γ =

√
1− (αZ)2 , (2)

where R the nuclear radius, which in itself has a dependence on A. The Fermi function accounts for the fact that
the outgoing electron is moving in the Coulomb field of the nucleus and is derived from the solution of the Dirac
equation for a point-like and infinitely heavy nucleus. The Fermi function is the leading order QED correction to
nuclear β-decay.

In equation 1 the β-spectrum shape for allowed decays is given, however fission fragments contain a significant
fraction of decay branches of unique and non-unique forbidden type. For forbidden decays the simple phase space
factor p2(W −W0)2 is multiplied by [14]

p2
ν + p2 1st unique , 2nd non-unique

p4
ν +

10

3
p2
νp

2 + p4 2nd unique , 3rd non-unique

p6
ν + 7p4

νp
2 + 7p4p2

ν + p6 3rd unique , 4th non-unique . (3)

1 Throughout this paper we will refer to both neutrino and anti-neutrino simply as neutrino and rely on the context for disambiguation.
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We see, that the forbidden space phase factor is symmetric under the exchange of p and pν and thus, if we had
mν = me, the whole expression would be symmetric between neutrino and electron energies, too. If we keep the
measured β-spectrum fixed and fit a β-shape to it, any change to the β-shape which is symmetric between Ee and Eν
would not change the neutrino spectrum. This the reason the corrections from forbidden decays to inverted neutrino
spectra have been found to be small [6–9] despite the overall large contribution of forbidden decays in fission fragments.

It turns out, that for precision studies a number of additional effects have to be taken into account and the modified
β-spectrum becomes [15]

Nβ(W ) = K p2(W −W0)2 F (Z,W )L0(Z,W )C(Z,W )S(Z,W )Gβ(Z,W ) (1 + δWMW ) . (4)

The neutrino spectrum is obtained by the replacements W →W0−W and Gβ → Gν . In the following we will describe
the physical origin and the actual expression used for each of these additional terms. The size of the contribution of
each of these terms for a typical β-decay is shown in figure 1.

Finite size corrections

There are two effects from the finite size of the nucleus: the electric charge distribution is no longer point-like and
the hypercharge distribution is no longer point-like, i.e. the nucleon is moving inside the nuclear potential. For all
finite size corrections we need to be able to determine the nuclear radius2 as a function of A and we use the so called
Elton formula [17]

R = 0.0029A1/3 + 0.0063A−1/3 − 0.017A−1 (5)

in units of mec
2. The electromagnetic finite size effect is expressed by L0 and we use the approximation given in

Ref. [15]

L0(Z,W ) = 1+13
(αZ)2

60
−WRαZ

41− 26γ

15(2γ − 1)
−αZRγ 17− 2γ

30W (2γ − 1)
+a−1

R

W
+

5∑
n=0

an(WR)n+0.41(R−0.0164)(αZ)4.5 ,

(6)
where the an are given by

an =

6∑
x=1

bx(αZ)x , (7)

and the bx are taken from table 1 of Ref. [15] and reproduced in table V in appendix A. We checked that the error
of this approximation in comparison with numerically exact results given in [14] is smaller than 10−5. Neglecting the
last three terms in the above expression for L0 still produces accurate results and this form of L0 produces results very
close to the ones summarized as finite size effects in equation 8 of Ref. [6]. The weak interaction finite size correction
is of the following form for Gamow-Teller decays3 [15]

C(Z,W ) = 1 + C0 + C1W + C2W
2 with (8)

C0 = −233

630
(αZ)2 − (W0R)2

5
+

2

35
W0RαZ ,

C1 = −21

35
RαZ +

4

9
W0R

2 ,

C2 = −4

9
R2 .

In Ref. [18] it is estimated that the errors on both these corrections, L0 and C, are smaller than 10% of their size.
Thus, we can neglect this as a relevant source of error.

2 Differences due to different shapes of the charge distribution, e.g. constant within the nucleus or all charge on the surface are very
small and can be neglected, see e.g. [16]. Also, reasonable variations of the Elton formula have only a minor impact on our result, i.e.
a variation of 10% in A will change the total flux by 0.05%.

3 Almost all decays relevant in our problem are of this type and the corresponding expression for Fermi decays is numerically very close.
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Screening correction

S(Z,W ) accounts for screening of the nuclear charge by all the electrons in the atomic bound state and it effectively
reduces the charge “seen” be the outgoing electron. Our description of the screening correction S(Z,W ) follows
Ref. [16] and we introduce the following quantities

W̄ = W − V0 , p̄ =
√
W̄ 2 − 1 , y =

αZW

p
ȳ =

αZW̄

p̄
Z̃ = Z − 1 . (9)

V0 is the so called screening potential and derived from numerical calculations and can be parametrized as

V0 = α2Z̃4/3N(Z̃) , (10)

and N(Z̃) is taken as linear interpolation of the values in table 4.7 of Ref. [16], which is reproduced in table VI in
appendix A. Then, we obtain

S(Z,W ) =
W̄

W

(
p̄

p

)(2γ−1)

eπ(ȳ−y) |Γ(γ + iȳ)|2

Γ(2γ + 1)2
for W > V0 , (11)

and S(Z,W ) = 1 for W < V0. As can be seen from figure 1 the effect of the screening correction itself is rather small
and the theory behind it is well understood [16], therefore we will not regard it a source of theoretical errors.

Radiative corrections

Radiative corrections are due to the emission of virtual and real photons by the charged particles present in β-
decay and it is crucial to correctly account for both the virtual and real photon contribution to ensure the proper
cancellation of divergences. The finite part of the virtual photon exchange contribution does depend on the details
of nuclear structure, but only affects the decay width and not the spectral shape. Therefore, the shape effect can
be accurately computed. In our presentation we will suppress all terms which only affect the decay width, i.e. are
independent of energy, and keep only the energy dependent parts. The radiative correction at order α has been
computed by Sirlin [19] for the β-spectrum, with β = p/W

gβ = 3 lnMN −
3

4
+ 4

(
tanh−1 β

β

)(
W0 −W

3W
− 3

2
+ ln [2(W0 −W )]

)
+

4

β
L

(
2β

1 + β

)
+

1

β
tanh−1 β

(
2(1 + β2) +

(W0 −W )2

6W 2
− 4 tanh−1 β

)
, (12)

where L(x) is the Spence function, defined as L(x) =
∫ x

0
dt/t ln(1− t). The complete correction is then given by

Gβ(Z,W ) = 1 +
α

2π
gβ . (13)

The radiative correction for neutrinos, Gν , has been derived in Ref. [20] and we apply the form given in Ref. [20] to
the neutrino spectrum. The expressions are somewhat lengthy and involve integrals which can not be solved in closed
form, therefore we do not quote them here. More recently, the radiative correction for neutrinos has been derived in
closed form by Sirlin [21]4 and we find that the energy dependence of the new calculation, is numerically within 5%
of the previous one [20]. Due to the fact that all spectra are normalized to unity, differences in terms which do not
depend on energy will cancel. Thus. for our purposes the two results are equivalent and since the new result [21] is
rather compact, we quote it here

hν = 3 lnMN +
23

4
− 8

β̂
L

(
2β̂

1 + β̂

)
+ 8

(
tanh−1 β̂

β̂
− 1

)
ln(2Ŵ β̂)

+4
tanh−1 β̂

β

(
7 + 3β̂2

8
− 2 tanh−1 β

)
, (14)

where β̂ = p̂/Ê and p̂ =
√
Ŵ 2 − 1 and Ŵ = W0−Wν , where Wν is the energy of the neutrino. The neutrino radiative

correction then becomes, Gν(Z,Wν) = 1 + α/(2π)hν .

4 I would like to thank T. Schwetz-Mangold for bringing this new work to my attention.
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Weak magnetism

The term “weak magnetism” was coined by Gell-Mann and he proposed it as a sensitive test of the, then emerging,
V-A theory of weak interactions [22]. The weak magnetism contribution to β-decay belongs to the class of so called
induced currents, i.e. currents which do not correspond to couplings present in the initial Hamiltonian and they
appear only at finite momentum transfer. Out of these induced currents, the weak magnetism term typically yields
the largest contribution to the shape of the β-spectrum, see e.g. [23], and therefore we will only discuss this term.
The effect of weak magnetism is to modify the spectral shape of β-decay by a factor

1 + δWMW with δWM =
4

3

b

M c︸︷︷︸
=w

me , (15)

where c is the Gamow-Teller matrix element, b =
√

2µ, with µ the magnetic transition moment and M = AMN

the mass of the nucleus. Experimentally, the transition magnetic moment or b can be determined by measuring the
magnetic dipole M1 γ decay width, ΓM1, of the corresponding isovector transition of the isobaric analog state and b
is then given by

b =

(
6ΓM1M

2

αE3
γ

) 1
2

(16)

This derivation relies on the concept of conserved vector currents (CVC), which is essentially a necessary result of
gauge invariance. In the so called impulse approximation, one further assumes that the transition magnetic moment
is entirely given by the intrinsic anomalous magnetic moments of the proton, µp, and neutron, µn, and one obtains
for w, the following simple expression

w ' µp − µn
MN

∣∣∣∣CVCA
∣∣∣∣ . (17)

Note, that in general there also would be a contribution to b (or µ) from the orbital angular momentum of the decaying
nucleon, which we neglect here. Within the impulse approximation and neglecting orbital angular momentum5, there
is no dependence on nuclear structure and therefore, w has the same value for all Gamow-Teller β-decays. This
approximation is the basis for the statement in Ref. [24] that dS

dE = 4
3w = 0.5% MeV−1 is the universal value for the

weak magnetism slope parameter in all β decays. The validity of the necessary approximation seems to be supported
by the measured value for dS

dE in the A = 12 iso-triplet of 12B, 12C and 12N [25].
At the same time, one can use the CVC hypothesis and use equation 16 to infer the weak magnetism slope parameter

for a number of isotopes from their measured γ-decay parameters. In Ref. [26] this analysis has been performed on
a set of 12 nuclei and a large variation of both dS

dE and b was found, see table 11 of Ref. [26]. In table I we present
a somewhat enlarged set of nuclei for which we could identify the necessary information from the Evaluated Nuclear
Structure Data File (ENSDF) database [27]. The analysis follows the one outlined in Ref. [26]. For some of the nuclei
we find slightly different results in comparison to Ref. [26], which can be traced to changes in the nuclear database
and we have, in all cases, provided the corresponding reference.

This sample of nuclei is small, 16 nuclei only, and the majority is much lighter than typical fission fragments, which
raises the issue of how representative this sample is for fission fragments. On the other hand, these nuclei summarize
our current experimental understanding of weak magnetism. Setting these doubts aside, we can compute the average
value of dS

dE and its standard deviation as a measure of the error. In table I we have separated four isotopes based
on their unusually large log ft values. In those cases, the Gamow-Teller matrix element is very small and thus the
relative size of the weak magnetism contribution is enhanced. As a result, all of these 4 isotopes have large values
of dS

dE . Obviously, these 4 large-log ft isotopes will completely dominate the average and standard deviation and
therefore, here the question of how representative our sample is for fission fragments becomes acute. For the main
analysis presented in this paper, we therefore will exclude these 4 isotopes and this yields the following mean and
standard deviations

dS

dE
= (0.48± 0.47) % MeV−1 , (18)

5 Under these assumptions, there is also no contribution of the weak electric form factor, called d in the notation of [23], which could be
sizable.
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decay Ji → Jf Eγ ΓM1 bγ ft c bγ/Ac |dS/dE| Ref.

[keV] [eV] [s] [% MeV−1]
6He → 6Li 0+ → 1+ 3560 8.2 72 805 2.77 4.33 0.65 [28]
12N → 12C 1+ → 0+ 15110 43.6 38 13100 0.685 4.61 0.60 [29]
12B → 12C 1+ → 0+ 15110 43.6 38 11600 0.727 4.34 0.62 [29]

18Ne → 18F 0+ → 1+ 1040 0.268 247 1230 2.24 6.13 0.81 [30]
20F → 20Ne 2+ → 2+ 5790 2.55 64.5 93300 0.257 12.5 1.72 [31]
26Si → 26Al 0+ → 1+ 2700 0.0950 50.9 3550 1.32 1.48 0.19 [32]
34P → 34S 1+ → 0+ 5380 0.00494 5.38 145000 0.206 0.766 0.11 [32]

58Cu → 58Ni 1+ → 0+ 7390 0.475 55.9 74100 0.288 3.34 0.45 [33]
64Cu → 64Zn 1+ → 0+ 3187 0.000147 3.83 200000 0.176 0.341 0.05 [34]
66Cu → 66Zn 1+ → 0+ 3230 0.00112 10.7 214000 0.17 0.955 0.14 [35]

142Pm → 142Nd 1+ → 0+ 2590 0.000587 23.2 31600 0.441 0.371 0.05 [36]
144Eu → 144Sm 1+ → 0+ 3970 0.0950 158 31500 0.442 2.48 0.33 [37]

14O → 14N 0+ → 1+ 2310 0.0067 9.16 1.9× 107 0.018 36.3 4.97 [26]
14C → 14N 0+ → 1+ 2310 0.0067 9.16 1.1× 109 0.00237 276 37.6 [38]
32Si → 32P 0+ → 1+ 513 0.000264 39.8 1.55× 108 0.00631 197 26.8 [32]
32P → 32S 1+ → 0+ 4700 0.00171 3.66 7.94× 107 0.00881 13 1.78 [39]

TABLE I. Gamow-Teller decays and the associated parameters needed for a computation of the weak magnetism slope
parameter using the CVC hypothesis.

which essentially is identical to the value obtained from using the impulse approximation, but we also see that there
is significant variance. We will use the standard value of Ref. [24] and assign a 100% error to it.

If we include the large-log ft isotopes, the corresponding result would be

dS

dE
= (4.8± 10.9) % MeV−1 , (19)

that is, a ten times larger mean with a 2 times larger relative error. A shift of dS
dE by +0.5 % MeV−1 causes a shift

of the neutrino rate of about −1%. Thus, if one were to use equation 19 the resulting rate uncertainty would be
about 20% and the neutrino flux shift found in Ref. [6] would be quite easily absorbed in this error bar. Even just a
shift of the central value is sufficient to bring the neutrino fluxes nearly back to the original level. Obviously, large
values of log ft imply relatively long half-lives and long-lived isotopes play only a small role in neutrino emission6 from
fission fragments. However, if the endpoint energy is large, the relevant Gamow-Teller matrix element can be quite
small without leading to a very long lifetime. Also, it is not clear how large weak magnetism would be in forbidden
decays, since there the leading order nuclear matrix element is already quite small and thus all corrections tend to
have relatively more weight. Thus, the size of weak magnetism, or more generally induced currents, is the one major
source of theory uncertainty. In summary, the reactor anomaly [10] can be either attributed to new physics in the
form of a sterile neutrino or to a significant extent to some not well understood nuclear physics. In particular, a
detailed study of the breakdown of the impulse approximation in large-log ft nuclei in the relevant mass range would
be quite helpful, but is beyond the scope of this paper.

III. EXTRACTION OF THE ASSOCIATED NEUTRINO SPECTRUM

For a single β-decay branch the conversion from the β-spectrum into the corresponding neutrino spectrum is
straightforward due to energy conservation, if one neglects recoil effects, which are O(E0/(AMN )) ∼ 10−4. In
particular, if the β-spectrum has been measured with good precision, the neutrino spectrum can be known to the
same level of precision without any reliance on theory. In practice, however, most of the nuclei involved have many
β-branches, most of which are identified by γ-ray spectroscopy and not by direct measurement of the β-spectrum; in
these cases, β-decay theory as outlined in section II plays a crucial role in obtaining the associated neutrino spectrum.

6 i.e. above inverse β-decay threshold
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FIG. 1. Shown is the relative size of the various corrections listed in equation 4 for a hypothetical β-decay with Z = 46,
A = 117 and E0 = 10 MeV. The upper panel shows the effect on the neutrino spectrum, whereas the lower panels shows the
effect on the β-spectrum.

Of course, in a nuclear reactor a very large number of different nuclei and β-branches contributes to the neutrino
spectrum, which makes the task of a first principles calculation of the neutrino spectrum challenging and as we have
describe in section II, theory errors can play an important role, even if one were to assume that the actual nuclear
data itself were flawless. The problems of this direct or a priori approach have been explored in detail in Ref. [6],
with the conclusion that the inevitable incompleteness of the nuclear databases makes it impossible to account for all
neutrinos and reliance on measured total β-spectra can not be reduced beyond a certain level and eventually virtual
β-branches have to be used in addition to the a priori computed spectra.

The neutrino spectra, which were the state of the art prior to Ref. [6], were obtained by the exclusive use of virtual
β-branches, which parameters were determined by a fit to measured total β-spectra [7–9]. This procedure is not
independent of input from nuclear databases, either. Here, the information from nuclear databases enters in the form
of the empirical mean proton number of the fission fragments as a function of E0, which we call the effective nuclear
charge, Z̄, and is computed according to

Z̄(E0) =

∫ E0+∆/2

E0−∆/2
dE′η(E′)Z(E′)∫∞

0
dE′η(E′)

, (20)

with ∆ being an appropriately chosen energy interval.
From a mathematical point of view, the problem at hand is an inversion or unfolding problem: Given the measured

total β-spectrum Nβ , one tries to infer the underlying distribution of β-branches η, which we take to be a continuous
distribution over all possible endpoints7, E0

Nβ(Ee) =

∫
dE0Nβ(Ee, E0; Z̄) η(E0) . (21)

If we neglect the dependence on Z̄, problems like this one are known as Fredholm integral equation of the first kind.
These problems are ill-posed and in general have no unique solution, therefore it is necessary to provide an additional

7 For the moment we neglect the issue of forbidden decays.
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FIG. 2. The basic inversion procedure, shown for a synthetic data set for 235U. The green line shows the neutrino residuals in
50 keV bins and the blue lines shows the β-residuals in 50 keV bins. The thick red line depicts the neutrino residuals in 250 keV
bins.

constraint, a so called regularization scheme. The choice of regularization scheme is essentially an art and not a science,
since one has to find the appropriate compromise between finding a reasonably stable solution and the introduction
of an unacceptable bias into the result; for an introduction into the topic of regularized inversion see e.g. Ref. [40].
The regularization scheme, which has been developed for our case, relies essentially on averaging the solution over
a finite range of Eν , which corresponds to a top-hat filter. This procedure has been studied in great detail in [41]
based on a synthetic data set. The use of a synthetic data set as proxy for real data allows to quantify the size of
the bias and thus serves as a valuable tool to fine tune the regularization scheme. In Ref. [6] it was shown that a
β-spectrum computed from cumulative fission decay yields and the ENSDF database reproduces the measured total
β-spectrum for 235U within an error of about 10% and therefore can serve as an accurate proxy for the actual data
set. We will use a total β-spectrum derived from the endpoints contained in the ENSDF database8 and we use fission
yields for fission by 25 meV, i.e. thermal, neutrons from the JEFF database, version 3.1.1 [42]. Note, that we neglect
the contribution from epithermal and fast neutrons which would change the total spectrum by only a few percent
and therefore, does not affect its suitability or accuracy as proxy. We also do not apply the small correction for finite
irradiation time, this correction can be found in table VII of Ref. [6]. In computing the resulting β-spectra we apply
the results obtained in section II. We use this data set, which consists of approximately 550 isotopes and contains
about 8 000 individual β-branches, to perform a critical study of an inversion purely based on virtual branches.

In Ref. [41] it was shown that given a precise enough measurement of the total β-spectrum and accurate knowledge of
Z̄ the true neutrino spectrum could be recovered to better than within 1%. Unfortunately, several of the assumptions
made in this analysis do not apply here: first, the available data was taken with a resolution of 50 keV and secondly Z̄
can be known only approximately, since the underlying database is incomplete, otherwise there would be no need for
the use of virtual branches. Also, the analysis in Ref. [41] does not include the various corrections to a allowed β-decay
shape and the effect of statistical fluctuations of the actual β-data was not taken into account. In the following we
will quantify the impact of this various factors.

A. Bias & Statistical Errors

The basic procedure is to take the measured β-spectrum, for which, at this stage, we will substitute our simulated
β-spectrum and to start from the highest energy data point nNβ , where N is the number of data points. Then, one

fixes a certain size s of a slice S and takes the data points S1 = {nN−sβ , nN−s+1
β , . . . , nNβ }. We the fit an allowed

β-spectrum with a free endpoint E1 and amplitude a1 to the data contained in S1. We continue this β-branch to all
energies and subtract it from the remaining N − s data points. This procedure is repeated till all data points have
been fitted and as result we have a set of v = N/s endpoints and amplitudes {Ei, ai}, where v is the number of virtual

8 The endpoints, branching fractions, the assignment of the degree of forbiddeness and simple β-spectra which were computed according
to Ref. [6], i.e. without the terms C, S, Gν , were kindly provided in machine readable format by the authors of Ref. [6].
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FIG. 3. The neutrino flux from the inversion of 1000 random realizations of a synthetic β-spectrum for 235U relative to the
mean outcome of these 1000 trials. The red lines show a subset of 100 trials. The thick, ragged black line shows one particular
example. The smooth thick, blue lines show the standard deviation in each bin, which is the same as the square root of the
diagonal elements of the covariance matrix. The dark green lines are the statistical error of the β-spectrum scaled up by a
factor of 7.

branches. The set {Ei, ai} is a discrete approximation to η(E0) and can be used to compute the neutrino spectrum,
by trivially inverting each virtual β-branch into its corresponding neutrino spectrum. The result of this procedure for
235U with “data” in bins of 50 keV and s = 5, corresponding to 30 virtual branches, is shown as green line in figure 2.
The thin blue line shows the β-residuals, which are obviously very small.

The 50 keV anti-neutrino residuals show the telltale oscillations typical for all inversion procedures, they are a
direct consequence of the problem being ill-posed in the mathematical sense. To obtain a more regular solution,
we can average our result and obtain the thick red line by averaging over 250 keV bins. Clearly, this regularized
solution shows oscillations of much smaller amplitude, especially in the region of interest between 2 and 8 MeV. We
also observe that the remaining oscillations do not average to zero, e.g. between 4 and 6 MeV both, the regularized
and non-regularized, solutions predict a neutrino flux which is too low by about 1%; the result is biased. A finite bias
is not surprising and quite common in this type of inversion problem. Using a synthetic data set it is straightforward
to quantify the bias by comparing the result of the inversion with the known true flux, as done in figure 2. We, also,
can vary the starting point of the inversion by removing an increasing number of consecutive data data points at the
high energy end and repeat the procedure. The overall features stay the same, but the phase of the oscillations of
the non-regularized solution changes gradually and once we have removed s data points we obtain the initial solution
again. This variation of the phase introduces a slight spread in the magnitude of the bias, which we will assign as
error of the bias correction.

The oscillations apparent in figure 2 show that the inversion procedure amplifies small perturbations and may be
not stable with respect to statistical fluctuations, which in real data are inevitable. Given the statistical errors of the
β-spectra we can add random fluctuations with the same variance to our synthetic β-spectra and for each realization
of a randomized β-spectrum we can perform an inversion. We have done this for 1000 random data sets and the results
are shown as red lines in figure 3, where we plot the relative deviation from the mean. The thick black lines shows
one characteristic example. It is quite obvious that there are very strong anti-correlations between neighboring bins.
These anti-correlations are due to oscillations in the inversion procedure, which are excited by statistical fluctuations.
Since, these oscillations are unphysical and merely a feature of the inversion procedure, we do not want to propagate
these oscillations into the final result. The thick smooth, black line shows the standard deviation in each bin, which
turns out to be the same as the square root of the corresponding diagonal element of the covariance matrix of the
1000 randomized inversions. The range delimited by the standard deviation is a good estimate of the statistical
error, therefore, we will drop all off-diagonal elements of the covariance matrix. The resulting errors are found to
be several times larger in the inverted neutrino spectrum than they are in the underlying β-spectrum. The errors of
the β-spectrum are shown as dark green lines but multiplied by a factor of 7. Note, that this scaling factor is not
universal and depends sensitively on the details of the inversion, like bin width.
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FIG. 4. The effective nuclear charge Z̄ of the fission fragments of 235U as a function of E0. The area of the each black box
is proportional to the contribution of that particular Z to the fission yield in that energy bin. The lines are fits of quadratic
polynomials: black – ENSDF database, blue – adding those isotopes missing from ENSDF by assuming that there is only one
β-branch, each with E0 = Qβ , red – maximum pandemonium as defined in the text. The blue, filled boxes show the resulting
distribution of adding the missing isotopes with E0 = Qβ . The red, empty boxes show the distribution in the maximum
pandemonium approximation.

B. Effective average nuclear charge

Finally, we study the degree to which Z̄ can be determined and how the incompleteness of nuclear databases affects
the inversion procedure. We fit a second order polynomial in E0, where we weight each β-decay branch by it fission
yield YA,Z and the corresponding branching ratio biA,Z , the result is shown as a black line in figure 4. The black boxes
are a two-dimensional histogram of the Z distribution of the fission fragments using the ENSDF database. Note,
that this distribution is bi-modal, because fission proceeds into two asymmetric fragments, and it is therefore, quite
unexpected that a simple energy-dependent mean (Z̄) actually is sufficient to compute accurate neutrino spectra, as
previously shown in [41] and in figure 2.

We know from comparing the fission yields with the ENSDF database how many and which nuclei are missing
and although we have no detailed information on β-branches for those nuclei, ENSDF does contain the Qβ for all of
the missing nuclei. Thus, we can try to bracket the effect of the missing nuclei by computing Z̄ under two different
approximations. First, we assume there is indeed only one β-branch with E0 = Qβ for each missing isotope. In this
case, the effect of the missing isotopes is to add to the high energy part and increase Z̄ by a rather small amount,
as shown by the blue curve in figure 4. In nuclei far from stability, there will be very many, but individually quite
weak β-branches, which makes it very difficult to infer the correct level scheme and β-decay branching fractions from
γ-spectroscopy, this is termed as pandemonium effect [43]. In Ref. [6] the pandemonium effect is taken care of by
replacing about 50-100 of the nuclei in the ENSDF database by data which was obtained specifically avoiding the
pitfalls of the pandemonium. Here, we would like to use an approximation to this method, which we will call the
“maximum pandemonium”. We take the 17.5% most neutron rich nuclei9 from the ENSDF database and all the Qβ
values of the missing nuclei and replace all their β-spectra using the following algorithm: We distribute the β-decay
strength evenly between 0 and Qβ using about 10 decay branches. The result is shown as red line in figure 4. This
should yield a reasonable approximation, at least when one averages over a large number of nuclei, as we presently do.
The maximum pandemonium approximation is of course rather crude and would be not sufficient for a direct a priori
calculation of the neutrino spectrum, but it allows us to gauge the magnitude of the effect of the incompleteness of the
nuclear database we use. We repeat this exercise for the other isotopes as well and the results on Z̄ are summarized
in table II. The induced systematic error is correlated between the isotopes since it has a common physical cause.
Note, that this is the only place at which information from nuclear databases enters the computation of the neutrino
spectrum using only virtual β-branches. In principle, the nuclear mass A will show a similar change as a function

9 17.5% was chosen because the resulting deficit in the total β-spectra is very similar in magnitude and shape to the one shown in figure 5
of Ref. [6].
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Isotope c0 c1 c2
235U 48.992+0

−0.164 −0.399+0.161
−0 −0.084+0

−0.044
239Pu 49.650+0

−0.214 −0.447+0.036
−0 −0.089+0

−0.016
241Pu 49.906+0

−0.178 −0.510+0.160
−0 −0.044+0

−0.052

TABLE II. The coefficients for the parametrization of Z̄ for the various isotopes. Also given are the range as obtained from
the maximum pandemonium approximation. ci is the coefficient of Ei0. Note, that in our definition Z̄ is the charge of the
parent nucleus.

of E0, but variations of A have a much smaller impact on the neutrino spectrum and therefore fixing the effective
nuclear mass, Ā, at Ā = 117 does not lead to any relevant additional bias or error. The value for Ā is chosen based
on the average nuclear radius, where the average is determined by weighting each isotope with its cumulative fission
yield and we find a range of about 116-118 for 235U to 241Pu.

IV. APPLICATION TO 235U, 239PU AND 241PU

In this section, we will apply the results obtained so far to a direct inversion of the β-spectra which were measured
in the 1980s at ILL. We use the β-spectra for 235U as presented in Ref. [7], for 239Pu from Ref. [8, 9]10 and for 241Pu
from Ref. [9]. The original data for all 3 isotopes was recorded in 50 keV bins, but unfortunately was published only
in 250 keV bins, which is not sufficient for our purposes. We, however, were able to obtain finer binned data from
one of the authors [44] of Refs. [7–9]: for 235U we have data in 50 keV bins from 1.5 to 9.5 MeV, for 239Pu we have
data in 100 keV bins from 1 to 8 MeV and for 241Pu we have data in 100 keV bins from 1.5 to 9 MeV. Thus, we have
data for all 3 isotopes only in the energy interval between 1.5 and 8 MeV and, since the threshold for inverse β-decay
is 1.8 MeV and the results in Ref. [6] range from 2 to 8 MeV, we will present result only for this interval. Together
with the original data, also came the size of the statistical error in each bin, which when summed up over 250 keV
bins agree with the values published in Refs. [7–9], as do the data itself. Note, that the data on 235U not only has the
smallest bin size but also the smallest statistical errors, whereas 239Pu has the largest errors. There is a calibration
or normalization error for each data set and we take these values directly from Refs. [7–9] and list them in column 9
of tables VII-IX.

For each isotope we perform the inversion as outlined in section III but now for the actual data, we use 30 virtual
branches with a slice size of 5 for 235U and 23 virtual branches for 239Pu and 25 for 241Pu both with a slice size of 3.
We have tested that variations of the slice size around the values given only mildly affect the results and the chosen
values provide the smallest errors around 4 MeV. Also, with these choices the energy range of a slice is about the
same in all 3 isotopes and is close to 250 keV. By using synthetic data sets for each isotope we determine the bias
and statistical errors, the later is shown column 5 of tables VII-IX, where the square root of the diagonal elements
of the covariance matrix are given. We apply the resulting bias correction, column 3 of tables VII-IX, to the results
extracted from the actual data and assign the spread of biases obtained by varying the starting point of the inversions
as error, which is given in column 6 of tables VII-IX, see also section III A. Then we perform an inversion using the
upper and lower ends of the ranges for Z̄ from section III B and for the weak magnetism correction from section II.
The relative differences to the initial inversion result are listed as errors in columns 7 and 8 of tables VII-IX. Finally
the error components in columns 5-9 are added in quadrature and quoted as total error in column 10 of tables VII-IX.

The total error quoted in tables VII-IX is only an indication of the actual errors since there are correlations between
the various bins. The statistical error is uncorrelated between bins as well as the bias error. Both the errors due to
Z̄ and weak magnetism (WM) are fully correlated between all bins and all isotopes. The normalization errors is fully
correlated between bins and between isotopes, since they same apparatus and method to determine the normalization
was used for all 3 isotopes. Due to the asymmetric nature of the errors from Z̄ and weak magnetism (WM) they can
not be included exactly in a total covariance matrix. However, already the combined errors form Z̄ and WM are close
to symmetric and the overall errors are very close to symmetric, thus it is a reasonable approximation to neglect the
small asymmetry in errors for most applications.

For completeness, we also provide a parametrization of our results using the familiar exponential of a 5th order

10 The actual data on electron spectra is the same in both sources, however the neutrino spectrum was re-derived in the later reference
using updated nuclear databases.
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FIG. 5. Comparison of our result for 235U with previous inversions, labeled ILL for the results from Ref. [7] and labeled
1101.2663 for the results from Ref. [6]. The thin error bars show the theory errors from the effective nuclear charge Z̄ and weak
magnetism. The thick error bars are the statistical errors, whereas the light gray boxes show the error from the applied bias
correction. The green line, referred to as simple, shows the result, if we use the same description of β-decay as in Ref. [6]. The
black line, referred to as ILL inversion, shows our result if we completely follow the procedure outlined in Ref. [7], including
their effective nuclear charge.

polynomial [6, 45]:

φν(Eν) = exp

(
6∑
i

αiE
i−1
ν

)
. (22)

In performing the fit we follow the description given in Refs. [6, 45] but we do not include contributions from the
error on Z̄ and WM since they are correlated between isotopes and do not change the fit appreciably. The resulting
best fit parameters and the minimum χ2 values are given in table III.

Isotope χ2
min α1 α2 α3 α4 α5 α6

235U 49.3 4.367 −4.577 2.100 −5.294× 10-1 6.186× 10-2 −2.777× 10-3

239Pu 20.8 4.757 −5.392 2.563 −6.596× 10-1 7.820× 10-2 −3.536× 10-3

241Pu 15. 2.990 −2.882 1.278 −3.343× 10-1 3.905× 10-2 −1.754× 10-3

TABLE III. Result of a fit of a 5th order polynomial to the logarithm of the flux. The number of degrees of freedom is 25− 6.

Obviously, the fit for 235U is quite bad, with a χ2/dof of more than 2. Also, for all 3 isotopes the fit parameters
are highly correlated and we therefore do not provide any fit errors or correlation matrices, since it seems doubtful
whether these could be used to model the errors in the underlying neutrino fluxes. This parametrization should not
be used for actual data analysis or error propagation11. Instead, we recommend to rebin our results by using linear
interpolation and integrating the resulting fluxes over the new bins. In the same fashion the errors can be rebinned
and we provide results for 250 keV and 50 keV bins in machine readable format [46].

V. DISCUSSION

The β-spectra from Refs. [7–9] have been previously inverted into neutrino spectra and we, therefore, will start
by comparing our result with previous results [6–9]. In figure 5 we show our result (thick blue line) relative to the
results presented in Ref. [7], which is denoted as φILL. We clearly observe that our results point to a significantly

11 Nonetheless, this parametrization can be safely used to extrapolate our results to higher energies, since there, the errors of the actual
fluxes are sufficiently large to render the inaccuracies of this parametrization harmless.
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enhanced flux with respect to φILL. The results from Ref. [6] are shown as red line and up to about 5.5 MeV there
is good agreement, whereas at higher energies the result of Ref. [6] exhibits strong oscillation relative to both φILL

and our result, which may be due the coarser binning of the β-spectra used in Ref. [6]. The thin error bars are the
sum of the theory errors, i.e. the effective nuclear charge Z̄ and weak magnetism WM, the thick error bars show the
statistical errors and finally the gray boxes show the error from the bias correction. The theory errors are correlated
between all bins, the statistical and bias correction error are uncorrelated. Not shown is the, common to all data
sets, normalization error. The thin green line shows our result, if we use the same, simplified, description of the
β-decay spectrum as in Ref. [6] and we see that it is responsible for a sizable fraction of the difference of our result
with the others at energies above 5 MeV. Finally, the black lines shows our result, if we follow the procedure outlined
in Ref. [7], which in particular includes their form of Z̄ and the fact, that all corrections to a allowed β-spectrum
shape are applied in an average fashion and we recover the original result quite well. Similar figures can be made
for the other isotopes and the results, generally, would be similar, too; the error bars would be much larger due to
the 100 keV binning of the original data and the larger statistical errors in the β-spectra. As far as the origin of the
upward shift in flux relative to the original results [7–9] is concerned, we agree at some level with the comments made
in Ref. [6], where at energies below 4 MeV the main effect is ascribed to the branch-by-branch implementation of the
various corrections to a allowed β-spectrum shape. We would like to point out that both an implementation in each
virtual branch as well as an implementation in each physical branch in an a priori calculation yield the same effect.
Moreover, it is likely that a newly derived average correction based on modern nuclear databases maybe nearly as
accurate as a branch-by-branch implementation. Of course, to derive this new average correction would presumably
imply to actually study the corrections first branch-by-branch, so nothing would be gained. At energies above 5 MeV,
the new form of the effective nuclear charge Z̄ as given in table II does make up a large fraction of the shift. Note, that
in contrast to Ref. [6] we do find that an effective nuclear charge is sufficiently accurate and the effect of the actual
distribution of Z can be approximated quite well by its, properly defined, average; this conclusion is supported by the
results of Ref. [41]. At high energies the contribution from the wave function convolution and screening correction on
the β-shape contribute significantly to the overall shift. Once we combine all factors we find about the same upward
shift in all isotopes, however we would not characterize it as constant over all energies.

In table IV we quantify the mutual agreement or disagreement of the various fluxes and associated inverse β-decay
event rates, where we use the cross section from [47]. In this table we list for each isotope the total difference over
all energy bins from 2 − 8 MeV of the fluxes from Refs. [7–9] labeled φILL and the ones from Ref. [6] labeled φMLF

to our results. We provide the total error as well as the individual contributions from statistics, theory and the
bias correction. The ratio of the total difference to the total error is what we call the “rate significance”, i.e. the
significance of the total flux change. We find the total flux change relative to φILL to be in the range +(2.4− 3.2)%.
The upward shift in fluxes is significant at the (3.7 − 4.0)σ level. This shift is slightly larger than the one found in
Ref. [6], however if we compare our total flux with respect to φMLF we find very small differences for 235U and 241Pu.
For 239Pu the situation is different and we have a lower total flux than φMLF, which however is entirely due to the
first energy bin and could be due a spurious oscillation in the inversion procedure in either analysis. If we perform
the same comparisons for inverse β-decay event rates, rows labeled as NILL and NMLF, we find that in total event
rates the upward shift with respect to NILL is a bit larger than for the fluxes with +(3.7 − 4.7)%, which is due to
the relatively large shift at high energies which is enhanced by the E2

ν energy dependence of the cross section. These
rates shifts are significant at (2.4− 3.0)σ and the reason for the significance being smaller than for the fluxes is again
the larger weight of high energies which do have a larger shift but also larger errors. In total inverse β-decay rates
our agreement with the results of Ref. [6] is excellent and no difference reaches more than 1σ.

In the last column of table IV we provide the “shape significance”, i.e. the square root of the χ2-difference between
the various flux and inverse β-decay rates. For this calculation we assume a free normalization, which is equivalent to
subtracting any rate differences. For the shape difference of fluxes we assume infinite statistics, whereas for the inverse
β-decay shape difference we assume 106 events. We see that shape differences can be large and quite significant at
even more than 5σ. This is, however, based only on the flux errors and does not include further complications like
experimental errors or errors on the isotope composition of the reactor and burn-up. Thus, at this level of analysis it
remains unclear whether an actual neutrino measurement could distinguish between the various flux models.

Apart from the quantitative difference we discussed previously, there are important qualitative differences of our
result with respect to earlier inversions. We present, for the first time, a careful and detailed error analysis of both
the underlying theory of β-decays as well as of the inversion procedure itself. We found that most corrections to
the statistical β-decay shape, like finite size effects, are well understood and the associated errors are only a fraction
of the correction itself, see section II. However, we also found that the treatment of induced currents in β-decay is
subject to considerable theoretical uncertainty. We studied in detail the example of weak magnetism as the largest
contributor and found by comparison with data, the impulse approximation, which is the basis for assuming that the
weak magnetism correction is universal for all beta decays, is apparently only accurate within about 100% for most
nuclei and fails completely for a small subset of large-log ft nuclei. For the analysis presented so far we assumed a
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235U shift 1σ errors [%] σ significance

% total stat theo. bias rate shape

φILL 2.4 0.7 0.1 0.6 0.1 3.7 4.5

NILL 3.7 1.5 0.0 1.5 0.1 2.4 3.7

φMLF 0.4 0.7 0.1 0.6 0.1 0.6 6.0

NMLF 1.2 1.5 0.0 1.5 0.1 0.8 5.4
239Pu shift 1σ errors [%] σ significance

% total stat theo. bias rate shape

φILL 2.9 0.7 0.3 0.6 0.2 3.9 3.2

NILL 4.2 1.5 0.4 1.4 0.2 2.8 3.2

φMLF -0.3a 0.7 0.3 -0.6 -0.2 0.5 4.7

NMLF 1.4 1.5 0.4 1.4 0.2 1.0 4.6
241Pu shift 1σ errors [%] σ significance

% total stat theo. bias rate shape

φILL 3.2 0.8 0.3 0.7 0.2 4.0 2.6

NILL 4.7 1.6 0.2 1.5 0.2 3.0 2.6

φMLF 0.4 0.8 0.3 0.7 0.2 0.5 3.7

NMLF 1.0 1.6 0.2 1.5 0.2 0.7 3.7
a This difference and its sign are driven by the first bin from 1.875 − 2.125 MeV and thus the inverse β-decay rates do not reflect this.

TABLE IV. These tables compare our result in relation to the fluxes from Refs. [7–9] labeled as φILL or the inverse β-decay
event rates NILL. The fluxes and event rates from Ref. [6] are referred to as φMLF and NMLF. For the column labeled rate
we do not include any normalization errors since they are common to the underlying data, for the column labeled shape we
assume a free normalization. The significance in the shape column for event rates assumes 106 inverse β-decay events.

100% error on the weak magnetism corrections, i.e. we neglect the large-log ft nuclei. If we assume that our limited
sample of nuclei were representative for fission fragments this error would be 10 times larger and the sole dominating
contribution to the overall error budget, in which case all flux models would be equivalent within these much larger
error bars. Even if we assume further, that the error bars would remain small, merely adjusting the central value
within this larger range to about 4 times its current value would allow to largely eliminate the upward shift and to
bring both the calculation presented in Ref. [6] and our result into agreement with the previous ILL fluxes. As a
consequence the new found support for sterile neutrinos as presented in Refs. [10, 11] would be weakened considerably.

We also investigated in detail how errors propagate through the inversion procedure and quantified the bias in this
method by using synthetic data sets. It is important to realize that the underlying mathematical problem is ill-posed
and thus we are not dealing with a simple (or complex) fit of a model to data. Therefore, the use of synthetic data
sets as first shown in Ref. [41] is essential to gain insight into error propagation and errors inherent to the method.
The assumption that the statistical errors of the β-spectrum would find a one-to-one correspondence in the resulting
neutrino spectra is not supported by our Monte Carlo simulations. Also, the size of the bias is non-negligible and
would be much larger if we had to use β-spectra binned in 250 keV bins. The combination of bias and statistical
inversion errors from our synthetic data sets yields the total conversion error. We also would like to emphasize that
the β-residuals obtained here are significantly smaller than in Ref. [6] and exceed nowhere the errors of the final result.

In all methods of inversion, input from nuclear databases is required, since the measured β-spectrum can be fit by
a wide range of different branches by adjusting the nuclear charge. The problem is, that nuclear databases tend to be
incomplete and may contain significant errors in level assignments, e.g. the pandemonium effect. There are different
strategies to deal with these shortcomings and in Ref. [6] the attempt was made to address these shortcomings directly
at the database level by collecting the best available experimental data and supplement missing data by appropriate
theoretical models. This resulted in a database which is about 90% complete and the remainder was treated by
inversion, i.e. with virtual branches. This method, if carefully applied, may have the potential to ultimately yield
the most accurate results. Here, we followed a different strategy, which tries to minimize the use of nuclear databases
as much as possible. In our inversion procedure which is solely based on virtual branches, the only place at which
information from nuclear databases enters directly is in the form of the effective nuclear charge Z̄. Since Z̄ is an
average quantity, it is relatively straightforward to estimate the impact of both incompleteness, which we know from
comparing fission yields with the known entries in the database, and of errors in data itself like the pandemonium
effect. It turns out, that Z̄ is amazingly robust with respect to these issues and never exceeds the error contributions
from nuclear theory. Therefore, we reason that even improved databases would barely change our result.
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In combination all our, quantified, error sources lead to total errors which are close to the ones found previously [6].
At high energies our errors are consistently larger, whereas at lower energies they are either slightly smaller for the
case of 235U or slightly larger for the 2 Plutonium isotopes, where “slightly” means of the order 0.5%.

VI. SUMMARY AND CONCLUSION

We present a new inversion of the total β-spectra from fission fragments obtained at ILL [7–9] employing only
virtual β-branches. Our analysis is based on the original data [44], which have finer binning, 50 keV for 235U and
100 keV for 239Pu and 241Pu, compared to the published numbers [7–9], but are otherwise identical. In comparison
to Refs. [7–9] and [6] we treat the theoretical β-spectrum shape to a higher level of accuracy by including several
sub-leading corrections, not previously considered in this context. Specifically, we include a more accurate treatment
of finite size effects, screening and the radiative QED correction for the neutrino, for details see section II. All of these
corrections to a allowed β-spectrum are applied at a branch-by-branch level, which was not done in Refs. [7–9], where
only an average correction was applied. The only point at which nuclear structure information enters this calculation
is in the form of the effective nuclear charge Z̄, which is derived in section III B. Combining all these ingredients we
find the fluxes as listed in tables VII-IX. Our results averaged over all energies are in very good agreement with the
results found in Ref. [6] and confirm the overall 2-3% shift relative to the original inversion [7–9], while at the same
time the β-spectrum residuals are very small, which was not the case in previous analyzes [6].

We put a particular emphasis on evaluating the errors of the final neutrino fluxes. We analyzed the associated
theory errors and found, that only the contributions from induced currents, for which we studied the weak magnetism
term as the leading contribution, have appreciable theory errors. Our overall theory error is similar to the values
previously quoted [6–9], however the origin is different, in our case, it being solely due to the difficulties to estimate
the size of the weak magnetism correction. We also point out, that there are certain nuclei like 14C in which the
weak magnetism correction is anomalously large due to a suppression of the Gamow-Teller matrix element. A small
abundance of nuclei of this kind in fission fragments could enhance the weak magnetism term greatly, see section II.
As a matter of fact, this enhancement could be large enough to account for a large fraction of the flux shift found here
and in Ref. [6] and thus may provide a Standard Model explanation of the reactor anomaly [10] without the need for
sterile neutrinos. While we are not advocating this solution to the reactor anomaly throughout this work, it seems
that Occam’s razor warrants a closer look into this possibility. We provide an estimate of the effects incompleteness
and inevitable inaccuracies of the nuclear structure data have on the determination of the effective nuclear charge Z̄,
see section III B. We evaluate the inversion errors by using synthetic data sets based on cumulative fission yields and
the ENSDF database and use Monte Carlo simulations to “measure” the bias and statistical error. We find, that the
bias generated by our method is quite small, in agreement with earlier results [41]. The statistical errors are sizable
and typically several times larger in the neutrino spectrum than in the underlying β-spectrum, see section III A. The
resulting total errors are similar to previous ones [6] at low energies, however they are larger for the few highest
energy bins. Based on these errors we find averaged over all energies excellent agreement with the results of Ref. [6],
however if we look at the energy dependence we do find significant shape differences, particular at high energies.
These difference should be accessible to measurement, provided a large enough neutrino event sample of the order 106

events can be obtained, see table IV.

As far as the origin of the shift relative to the original results [7–9] is concerned, we find that both the form of the
effective nuclear charge Z̄ and the use of an average correction to the allowed β-shape contribute at a similar level.
There are now two independent and complementary analyzes, which find the same sign and approximate magnitude
of this shift. However, relevant differences between the two analyzes do exist, which can be briefly summarized as:
our analysis uses finer binned input data and consequently has much smaller β-spectrum residuals; we use a more
detailed treatment of corrections to the allowed β-spectrum shape and derive the associated errors from this more
detailed treatment; we compute the inversion errors, both bias and statistical, based on synthetic data sets; finally,
we estimate the errors due to incomplete or incorrect nuclear structure data.

The aforementioned differences make it seem worthwhile to analyze existing reactor data using our results in a spirit
similar to Ref. [10] and to investigate whether an actual neutrino spectrum measurement can distinguish between the
two calculations [48]. The differences tend to be largest at high neutrino energies, where typically also the largest
differences between the neutrino fluxes from the various isotopes are found [45], thus the impact of these new fluxes
and associated errors on neutrino safeguards schemes warrants further study.
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Appendix A: Supporting Data

b1 b2 b3 b4 b5 b6

a−1 0.115 -1.8123 8.2498 -11.223 -14.854 32.086

a0 -0.00062 0.007165 0.01841 -0.53736 1.2691 -1.5467

a1 0.02482 -0.5975 4.84199 -15.3374 23.9774 -12.6534

a2 -0.14038 3.64953 -38.8143 172.137 -346.708 288.787

a3 0.008152 -1.15664 49.9663 -273.711 657.629 -603.703

a4 1.2145 -23.9931 149.972 -471.299 662.191 -305.68

a5 -1.5632 33.4192 -255.133 938.53 -1641.28 1095.36

TABLE V. A reproduction of table 1 of Ref. [15].

Z̃ 1 8 13 16 23 27 29 49 84 92

N(Z̃) 1.000 1.420 1.484 1.497 1.52 1.544 1.561 1.637 1.838 1.907

TABLE VI. A reproduction of table 4.7 of Ref. [16].
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Appendix B: The Fluxes

value 1σ errors

Eν β-res. Nν̄ bias Nν̄ stat. bias err. Z̄ WM norm. total

MeV % % fission−1 MeV−1 % % % % % %

2. 0 −0.3 1.32 0.57 0.055 +0
−0.008

+0.14
−0.2 1.7 1.8

2.25 −0.5 −0.3 1.12 0.63 0.18 +0.0074
0

+0.017
−0.063 1.7 1.8

2.5 −0.6 0.1 9.15× 10-1 0.66 0.21 +0.012
0

+0.076
−0.11 1.7 1.9

2.75 −0.4 −0.1 7.7× 10-1 0.67 0.037 +0.0047
0

+0.21
−0.24 1.7 1.9

3. 0.1 0.2 6.51× 10-1 0.71 0.13 +0
−0.013

+0.35
−0.36 1.8 1.9

3.25 0 −0.1 5.53× 10-1 0.7 0.073 +0
−0.043 0.49 1.8 2.

3.5 0 −0.2 4.54× 10-1 0.74 0.09 +0
−0.083

+0.63
−0.62 1.8 2.

3.75 −0.3 0.4 3.64× 10-1 0.76 0.13 +0
−0.13

+0.77
−0.75 1.8 2.1

4. −0.5 0.3 2.94× 10-1 0.77 0.061 +0
−0.2

+0.91
−0.87 1.8 2.1

4.25 −0.1 −0.3 2.3× 10-1 0.93 0.081 +0
−0.27 1. 1.8 2.3

4.5 0.3 0 1.79× 10-1 1.2 0.11 +0
−0.36

+1.2
−1.1 1.8 2.5

4.75 −0.3 0.4 1.38× 10-1 1.2 0.12 +0
−0.45 1.3 1.8 2.5

5. −0.1 0.4 1.1× 10-1 1.1 0.047 +0
−0.56

+1.5
−1.4 1.8 2.6

5.25 0.2 0.4 8.64× 10-2 0.98 0.039 +0
−0.68

+1.6
−1.5 1.8 2.6

5.5 −0.1 1. 6.46× 10-2 1.1 0.087 +0
−0.81

+1.7
−1.6 1.8 +2.7

−2.8

5.75 0 0.7 5.1× 10-2 1.2 0.081 +0
−0.95

+1.9
−1.8 1.8 +2.9

−3.

6. 0.4 0.3 3.89× 10-2 1.5 0.041 +0
−1.1

+2.
−1.9 1.8 +3.1

−3.2

6.25 −0.2 −0.3 2.87× 10-2 1.6 0.14 +0
−1.3

+2.2
−2. 1.9 +3.3

−3.4

6.5 −0.3 −0.4 2.17× 10-2 1.4 0.11 +0
−1.4

+2.3
−2.1 1.9 +3.3

−3.5

6.75 −0.3 −0.1 1.61× 10-2 1.5 0.078 +0
−1.6

+2.4
−2.3 1.9 +3.4

−3.7

7. 0.1 0.1 1.14× 10-2 1.7 0.22 +0
−1.8

+2.6
−2.4 1.9 +3.6

−3.9

7.25 −0.1 0.1 7.17× 10-3 2.4 0.24 +0
−2.

+2.7
−2.5 1.9 +4.1

−4.5

7.5 0.1 −0.6 4.64× 10-3 2.6 0.39 +0
−2.2

+2.8
−2.7 1.9 +4.3

−4.8

7.75 0.2 −0.7 2.97× 10-3 3.1 0.19 +0
−2.5

+3.
−2.8 1.9 +4.7

−5.2

8. 0.1 −2.5 1.62× 10-3 5.7 0.55 +0
−2.7

+3.1
−2.9 1.9 +6.8

−7.2

TABLE VII. Results for the 235U anti-neutrino spectrum. This spectrum corresponds to 12 h irradiation time. The β-residuals
are given for information only and they do not enter into the computation of the errors. The errors in columns 5 and 6 are fully
uncorrelated, whereas the errors in columns 7 and 8 are fully correlated between bins and isotopes. The errors in column 9 are
fully correlated between bins and isotopes.
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value 1σ errors

Eν β-res. Nν̄ bias Nν̄ stat. bias err. Z̄ WM norm. total

MeV % % fission−1 MeV−1 % % % % % %

2. −0.6 0 1.08 1.7 0.24 +0.055
0

+0.073
−0.11 1.9 2.6

2.25 −0.5 0.2 9.2× 10-1 1.7 0.43 +0.029
0

+0.031
−0.055 2. 2.6

2.5 0 −0.1 7.19× 10-1 1.5 0.27 +0
−0.000029

+0.17
−0.18 2. 2.5

2.75 0.2 −0.2 6.2× 10-1 1.6 0.12 +0
−0.032 0.31 2. 2.6

3. 0.2 0 5.15× 10-1 2. 0.2 +0
−0.068 0.44 2.1 2.9

3.25 0.2 −0.1 3.98× 10-1 2.2 0.12 +0
−0.11

+0.58
−0.56 2.1 3.1

3.5 −0.1 −0.4 3.29× 10-1 2.4 0.0057 +0
−0.15

+0.72
−0.69 2.1 3.3

3.75 0.5 0.1 2.61× 10-1 2.3 0.2 +0
−0.19

+0.86
−0.82 2.2 3.3

4. 0.6 −0.1 1.95× 10-1 2.4 0.2 +0
−0.24

+0.99
−0.95 2.2 3.4

4.25 1.2 −0.5 1.57× 10-1 3.1 0.21 +0
−0.29 1.1 2.2 4.

4.5 1.1 −0.5 1.13× 10-1 4.1 0.33 +0
−0.35

+1.3
−1.2 2.3 4.9

4.75 1.3 0.3 8.33× 10-2 4.2 0.54 +0
−0.4

+1.4
−1.3 2.3 5.

5. 0.3 0.7 6.13× 10-2 3.8 0.16 +0
−0.46 1.5 2.3 4.7

5.25 0.6 0.8 4.83× 10-2 4.2 0.22 +0
−0.53

+1.7
−1.6 2.4 5.1

5.5 −0.7 1.3 3.54× 10-2 4.9 0.004 +0
−0.6

+1.8
−1.7 2.4 5.7

5.75 0.1 0.8 2.92× 10-2 5.5 0.16 +0
−0.67

+2.
−1.8 2.5 6.4

6. −0.4 0.1 1.92× 10-2 7.8 0.28 +0
−0.74

+2.1
−2. 2.5 8.5

6.25 0.2 −0.7 1.28× 10-2 8.7 0.15 +0
−0.82

+2.2
−2.1 2.5 9.4

6.5 −0.9 −0.2 9.98× 10-3 9.1 0.39 +0
−0.9

+2.4
−2.2 2.6 +9.7

−9.8

6.75 2.9 −0.2 7.54× 10-3 9.9 0.12 +0
−0.98

+2.5
−2.3 2.6 11.

7. −4. 0.3 4.98× 10-3 12. 0.33 +0
−1.1

+2.6
−2.5 2.6 13.

7.25 −0.6 −0.1 3.26× 10-3 18. 1.1 +0
−1.2

+2.8
−2.6 2.7 18.

7.5 −0.4 −2.3 1.95× 10-3 22. 0.78 +0
−1.2

+2.9
−2.7 2.7 23.

7.75 −0.2 2. 8.47× 10-4 26. 3.1 +0
−1.3

+3.1
−2.9 2.7 27.

8. −3.1 −4.4 5.87× 10-4 28. 7.7 +0
−1.4

+3.2
−3. 2.8 29.

TABLE VIII. Results for the 239Pu anti-neutrino spectrum. This spectrum corresponds to 36 h irradiation time. The β-
residuals are given for information only and they do not enter into the computation of the errors. The errors in columns 5
and 6 are fully uncorrelated, whereas the errors in columns 7 and 8 are fully correlated between bins and isotopes. The errors
in column 9 are fully correlated between bins and isotopes.
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value 1σ errors

Eν β-res. Nν̄ bias Nν̄ stat. bias err. Z̄ WM norm. total

MeV % % fission−1 MeV−1 % % % % % %

2 0 0.1 1.26 1.7 0.18 +0.16
0

0
−0.18 1.8 2.5

2.25 0 −0.2 1.08 1.6 0.34 +0.13
0

0
−0.12 1.8 2.4

2.5 0.1 0.1 8.94× 10-1 1.4 0.33 +0.079
0

+0.099
−0.23 1.8 2.3

2.75 0 −0.3 7.77× 10-1 1.4 0.2 +0.024
0

+0.24
−0.34 1.8 2.3

3 0 −0.2 6.41× 10-1 1.6 0.12 +0
−0.041

+0.38
−0.46 1.8 2.4

3.25 0 −0.3 5.36× 10-1 1.6 0.15 +0
−0.12

+0.52
−0.57 1.8 2.5

3.5 0 −0.1 4.39× 10-1 1.6 0.22 +0
−0.2

+0.65
−0.68 1.8 2.5

3.75 0 0.1 3.46× 10-1 1.4 0.2 +0
−0.29

+0.79
−0.8 1.8 +2.4

−2.5

4 0 0.2 2.82× 10-1 1.5 0.11 +0
−0.39

+0.93
−0.91 1.8 2.6

4.25 0 −0.3 2.2× 10-1 1.9 0.17 +0
−0.5

+1.1
−1. 1.9 2.9

4.5 0.1 0 1.66× 10-1 2.5 0.29 +0
−0.62

+1.2
−1.1 1.9 +3.3

−3.4

4.75 0 0.9 1.25× 10-1 2.5 0.48 +0
−0.75

+1.3
−1.2 1.9 3.5

5 0.1 1. 9.74× 10-2 2.3 0.033 +0
−0.89

+1.5
−1.4 1.9 +3.3

−3.4

5.25 0 1. 7.47× 10-2 2.3 0.14 +0
−1.

+1.6
−1.5 1.9 +3.4

−3.5

5.5 0 1.6 5.58× 10-2 2.6 0.13 +0
−1.2

+1.8
−1.6 1.9 +3.6

−3.8

5.75 0 0.9 4.11× 10-2 3.2 0.21 +0
−1.4

+1.9
−1.7 1.9 +4.2

−4.3

6 −0.2 0.2 3.05× 10-2 4. 0.09 +0
−1.5

+2.
−1.8 1.9 +4.9

−5.

6.25 0.3 −0.6 1.98× 10-2 4.4 0.33 +0
−1.7

+2.2
−1.9 1.9 +5.3

−5.5

6.5 −0.1 −0.3 1.54× 10-2 4.5 0.43 +0
−1.9

+2.3
−2. 1.9 +5.4

−5.7

6.75 0 −0.1 1.09× 10-2 4.7 0.074 +0
−2.1

+2.5
−2.2 1.9 +5.6

−5.9

7 0 0.6 7.75× 10-3 4.8 0.39 +0
−2.3

+2.6
−2.3 1.9 +5.8

−6.1

7.25 0.1 0.4 4.47× 10-3 6.3 0.36 +0
−2.5

+2.7
−2.4 2. +7.2

−7.5

7.5 −0.3 −1. 2.9× 10-3 7.7 0.3 +0
−2.8

+2.9
−2.5 2. +8.4

−8.8

7.75 0 −0.4 1.78× 10-3 8.3 0.063 +0
−3.

+3.
−2.6 2. +9.1

−9.4

8 0.7 −3.5 1.06× 10-3 12. 0.63 +0
−3.3

+3.2
−2.7 2. +12.

−13.

TABLE IX. Results for the 241Pu anti-neutrino spectrum. This spectrum corresponds to 43 h irradiation time. The β-residuals
are given for information only and they do not enter into the computation of the errors. The errors in columns 5 and 6 are fully
uncorrelated, whereas the errors in columns 7 and 8 are fully correlated between bins and isotopes. The errors in column 9 are
fully correlated between bins and isotopes.
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