Single Spin Asymmetries in Charged Pion Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized ³He Target

X. Qian, ^{1,2,*} K. Allada, ³ C. Dutta, ³ J. Huang, ⁴ J. Katich, ⁵ Y. Wang, ⁶ Y. Zhang, ⁷ K. Aniol, ⁸ J.R.M. Annand, ⁹ T. Averett, F. Benmokhtar, W. Bertozzi, P.C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, Canan, Canan, D. Bosted, D. Bost G.D. Cates, ¹³ C. Chen, ¹⁴ J.-P. Chen, ¹¹ W. Chen, ¹ K. Chirapatpimol, ¹³ E. Chudakov, ¹¹ E. Cisbani, ^{15, 16} J.C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C.W. de Jager, R. De Leo, X. Deng, 3 A. Deur, ¹¹ H. Ding, ¹³ P. A. M. Dolph, ¹³ D. Dutta, ¹⁸ L. El Fassi, ¹⁹ S. Frullani, ^{15, 16} H. Gao, ¹ F. Garibaldi, ^{15, 16} D. Gaskell, ¹¹ S. Gilad, ⁴ R. Gilman, ^{11, 19} O. Glamazdin, ²⁰ S. Golge, ¹² L. Guo, ²¹ D. Hamilton, ⁹ O. Hansen, ¹¹ D.W. Higinbotham, ¹¹ T. Holmstrom, ²² M. Huang, ¹ H. F. Ibrahim, ²³ M. Iodice, ²⁴ X. Jiang, ^{19,21} G. Jin, ¹³ M.K. Jones, ¹¹ A. Kelleher, ⁵ W. Kim, ²⁵ A. Kolarkar, ³ W. Korsch, ³ J.J. LeRose, ¹¹ X. Li, ²⁶ Y. Li, ²⁶ R. Lindgren, ¹³ N. Liyanage, ¹³ E. Long, ²⁷ H.-J. Lu, ²⁸ D.J. Margaziotis, ⁸ P. Markowitz, ²⁹ S. Marrone, ¹⁷ D. McNulty, ³⁰ Z.-E. Meziani, ³¹ R. Michaels, ¹¹ B. Moffit, ^{4,11} C. Muñoz Camacho, ³² S. Nanda, ¹¹ A. Narayan, ¹⁸ V. Nelyubin, ¹³ B. Norum, ¹³ Y. Oh, ²⁵ M. Osipenko, ³³ D. Parno, ¹⁰ J. C. Peng, ³⁴ S. K. Phillips, ³⁵ M. Posik, ³¹ A. J. R. Puckett, ^{4,21} Y. Qiang, ^{1,11} A. Rakhman, ³⁶ R. D. Ransome, ¹⁹ S. Riordan, ¹³ A. Saha, ¹¹ B. Sawatzky, ^{31,11} E. Schulte, ¹⁹ A. Shahinyan, ³⁷ M. H. Shabestari, ¹³ S. Širca, ³⁸ S. Stepanyan, ²⁵ R. Subedi, ¹³ V. Sulkosky, ^{4,11} L.-G. Tang, ¹⁴ A. Tobias, ¹³ G. M. Urciuoli, ¹⁵ I. Vilardi, ¹⁷ K. Wang, ¹³ B. Wojtsekhowski, ¹¹ X. Yan, ²⁸ H. Yao, ³¹ Y. Ye, ²⁸ Z. Ye, ¹⁴ L. Yuan, ¹⁴ X. Zhan, ⁴ Y.-W. Zhang, ⁷ B. Zhao, ⁵ X. Zheng, ¹³ L. Zhu, ^{34, 14} X. Zhu, ¹ and X. Zong ¹ (The Jefferson Lab Hall A Collaboration) ¹Duke University, Durham, NC 27708 ²Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 ³ University of Kentucky, Lexington, KY 40506 ⁴Massachusetts Institute of Technology, Cambridge, MA 02139

⁵College of William and Mary, Williamsburg, VA 23187 ⁶ University of Illinois at Urbana-Champaign, Urbana, IL 61801 ⁷Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China ⁸ California State University, Los Angeles, Los Angeles, CA 90032 ⁹University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom ¹⁰Carnegie Mellon University, Pittsburgh, PA 15213 ¹¹ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 ¹²Old Dominion University, Norfolk, VA 23529 ¹³ University of Virginia, Charlottesville, VA 22904 ¹⁴ Hampton University, Hampton, VA 23187 ¹⁵INFN, Sezione di Roma, I-00161 Rome, Italy ¹⁶Istituto Superiore di Sanità, I-00161 Rome, Italy ¹⁷INFN, Sezione di Bari and University of Bari, I-70126 Bari, Italy ¹⁸Mississippi State University, MS 39762 ¹⁹ Rutgers, The State University of New Jersey, Piscataway, NJ 08855 ²⁰Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine ²¹Los Alamos National Laboratory, Los Alamos, NM 87545 ²²Longwood University, Farmville, VA 23909 ²³Cairo University, Giza 12613, Egypt ²⁴INFN, Sezione di Roma3, I-00146 Rome, Italy ²⁵Kyungpook National University, Taegu 702-701, Republic of Korea ²⁶China Institute of Atomic Energy, Beijing, People's Republic of China ²⁷Kent State University, Kent, OH 44242 ²⁸ University of Science and Technology of China, Hefei 230026, People's Republic of China ²⁹Florida International University, Miami, FL 33199 ³⁰ University of Massachusetts, Amherst, MA 01003 ³¹ Temple University, Philadelphia, PA 19122 ³² Université Blaise Pascal/IN2P3, F-63177 Aubière, France ³³INFN, Sezione di Genova, I-16146 Genova, Italy ³⁴ University of Illinois, Urbana-Champaign, IL 61801 ³⁵ University of New Hampshire, Durham, NH 03824 ³⁶Syracuse University, Syracuse, NY 13244 ³⁷ Yerevan Physics Institute, Yerevan 375036, Armenia ³⁸ University of Ljubljana, SI-1000 Ljubljana, Slovenia (Dated: June 22, 2011)

We report the first measurement of target single spin asymmetries in the semi-inclusive ${}^{3}\text{He}(e,e'\pi^{\pm})X$ reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0.14 < x < 0.34 with $1.3 < Q^{2} < 2.7$ GeV². The Collins and Sivers moments were extracted from the azimuthal angular dependence of the measured asymmetries. The extracted π^{\pm} Collins moments for ${}^{3}\text{He}$ are consistent with zero, except for the π^{+} moment at x=0.34, which deviates from zero by 2.3σ . While the π^{-} Sivers moments are consistent with zero, the π^{+} Sivers moments favor negative values. The neutron results were extracted using the nucleon effective polarization and the measured cross section ratio of proton to ${}^{3}\text{He}$, and are largely consistent with the predictions of phenomenological fits and quark model calculations.

High-energy lepton-nucleon scattering is a powerful tool to study the partonic structure of the nucleon. While detailed studies of inclusive deep inelastic scattering (DIS) have revealed a great deal of information about the unpolarized (f_1^q) and polarized (g_1^q) parton distribution functions (PDFs) describing the longitudinal momentum and helicity of quarks in the nucleon, understanding of the nucleon's structure is far from being complete [1]. In particular, the study of quark transverse spin phenomena has just begun [2–5]. Recent progress also points to an important role for quark/gluon orbital angular motion in the nucleon's spin structure. Semiinclusive DIS (SIDIS), in which a hadron from the fragmentation of the struck quark is detected in coincidence with the scattered lepton, provides access to transversemomentum-dependent parton distributions (TMDs) [6], which describe the quark structure of the nucleon in all three dimensions of momentum space. The ability of SIDIS reactions to access partonic transverse spin and momentum provides a unique opportunity for the study of orbital angular momentum.

All eight leading-twist TMDs are accessible in SIDIS [6]. The angular dependence of the target spin-dependent asymmetry A in the scattering of an unpolarized lepton beam by a transversely polarized target is given as:

$$A(\phi_h, \phi_S) = \frac{1}{P} \frac{Y_{\phi_h, \phi_S} - Y_{\phi_h, \phi_S + \pi}}{Y_{\phi_h, \phi_S} + Y_{\phi_h, \phi_S + \pi}}$$

$$\approx A_C \sin(\phi_h + \phi_S) + A_S \sin(\phi_h - \phi_S), (1)$$

where P is the target polarization, ϕ_h and ϕ_S are the azimuthal angles of the hadron momentum and the target spin relative to the lepton scattering plane as defined in the Trento convention [7], Y is the normalized yield, and A_C (A_S) is the Collins (Sivers) moment.

The Collins moment probes the convolution of the chiral-odd quark transversity distribution h_1^q [8] and the chiral-odd Collins fragmentation function (FF) [9]. h_1^q describes the transverse polarization of quarks in a transversely polarized nucleon. Because the gluon transversity vanishes, the behavior of the quark transversity is valence-like [10]. The lowest moment of transversity, the tensor charge, provides a test of lattice QCD predictions [11]. Transversity is further constrained by Soffer's inequality [12], $|h_1^q| \leq \frac{1}{2} \left(f_1^q + g_1^q \right)$, which has been shown

to hold under next-to-leading-order QCD evolution [13]. However, a possible violation of Soffer's bound has been suggested [14].

The Sivers moment probes the convolution of the naive T-odd quark Sivers function f_{1T}^{\perp} [15] and the unpolarized FF. f_{1T}^{\perp} represents a correlation between the nucleon spin and the quark transverse momentum, and it corresponds to the imaginary part of the interference between lightcone wave function components differing by one unit of orbital angular momentum [16, 17]. The Sivers function was originally thought to vanish since it is odd under naive time-reversal transformations [9]. A nonzero f_{1T}^{\perp} was later shown to be allowed due to QCD final state interactions (FSI) between the outgoing quark and the target remnant [16]. It was further demonstrated through gauge invariance that the same Sivers function, which originates from a gauge link, would appear in both SIDIS and Drell-Yan single spin asymmetries (SSAs) but with an opposite sign [18, 19].

The HERMES collaboration carried out the first SSA measurement in SIDIS on a transversely polarized proton target using e^{\pm} beams [2]. The COMPASS collaboration performed SIDIS measurements with a muon beam on transversely polarized deuteron [4] and proton [5] targets. Large Collins moments were observed for both π^+ and π^- from the proton, but with opposite sign, indicating that the "unfavored" Collins FF could be as large as the "favored" one [9]. This finding is consistent with the measured asymmetry of inclusive hadron pair production in e^+e^- annihilation from BELLE [20], which directly accessed the product of Collins FFs. The deuteron Collins asymmetries for π^+ and π^- are consistent with zero, but with relatively large uncertainties in the valence quark region (x > 0.1). This observation suggests a cancellation between proton and neutron.

While both the HERMES and COMPASS proton data show significantly positive π^+ Sivers moments, a possible inconsistency exists between the data sets [21]. On the other hand, the proton π^- Sivers moments from both HERMES [22] and COMPASS [5] are consistent with zero, along with the COMPASS deuteron π^+ and π^- Sivers moments. These results could reflect pronounced flavor dependence of the Sivers functions, as indicated by a phenomenological fit [21] of these data.

To shed new light on the flavor structures of the

transversity and Sivers functions, it is important to extend the SSA SIDIS measurement to a neutron target, which is more sensitive to the nucleon's d quark contribution. Since there is no stable free neutron target, polarized 3 He is commonly used as an effective polarized neutron target [23]. The 3 He nucleus, in which the nuclear spin resides predominantly with the neutron, is uniquely advantageous in the extraction of neutron spin information compared to the deuteron (p+n).

In this letter, we present the results of SSA measurements in SIDIS on a transversely polarized 3 He target, performed in Jefferson Lab (JLab) Hall A from Nov. 2008 to Feb. 2009. The electron beam energy was 5.9 GeV with an average current of 12 μA . Scattered electrons with momenta from 0.6–2.5 GeV were detected in the BigBite spectrometer at a central angle of 30° on the beam right side. Coincident charged hadrons were detected in the High Resolution Spectrometer (HRS) [24] at a central angle of 16° on beam left and a central momentum setting of 2.35 GeV. The helicity of the polarized electron beam was flipped at 30 Hz. Unpolarized beam was achieved by summing the two beam helicity states. The residual charge asymmetry was smaller than 100 ppm per 1-hour run.

The 40 cm long polarized ³He [24] cell was filled at room temperature with ~ 8 atms of ³He and ~ 0.13 atms of N₂ to reduce depolarization effects. The ³He nuclei were polarized by Spin Exchange Optical Pumping of a Rb-K mixture. The polarization was monitored by Nuclear Magnetic Resonance (NMR) measurements every 20 minutes as the target spin was automatically flipped through Adiabatic Fast Passage. The NMR measurements were calibrated using the known water NMR signal and cross-checked using the Electron Paramagnetic Resonance method. The average polarization was $55.4\pm2.8\%$. Three pairs of mutually orthogonal Helmholtz coils were used to orient the target polarization vertically and horizontally (determined to better than 0.5° using a compass) in the plane transverse to the beam direction in order to maximize the ϕ_S coverage. The holding magnetic field $(\sim 25 \text{ G})$ remained fixed during spin flips.

The BigBite spectrometer consists of a large-opening dipole magnet in front of a detector stack including three sets of multi-wire drift chambers for charged-particle tracking, a lead-glass calorimeter divided into preshower/shower sections for electron identification and a scintillator plane between the preshower and shower for timing. In this experiment, BigBite was positioned to subtend a solid angle of \sim 64 msr for a 40 cm target. The large out-of-plane angle acceptance of BigBite (\pm 240 mrad) was essential in maximizing the ϕ_h coverage of the experiment, given the small (\sim 6 msr) solid angle acceptance of the hadron arm. The transport matrix of the BigBite magnet was calibrated using a multi-foil carbon target, a sieve slit collimator and $^1\text{H}(e,e')p$ elastic scattering at incident energies of 1.2 and 2.4 GeV. The

achieved angular and momentum resolutions were better than 10 mrad and 1%, respectively. Clean e^- identification was achieved using cuts on the preshower energy E_{ps} and the ratio E/p of the total shower energy to the momentum from optics reconstruction. The π^- contamination was determined from analysis of the E_{ps} spectrum to be less than 2%, consistent with GEANT3 simulations.

The HRS detector package was configured for hadron detection [24]. A 10^4 :1 e^- rejection factor was achieved using a light gas Čerenkov and a lead glass calorimeter, resulting in a negligible e^\pm contamination in the π^\pm sample. Coincidence timing provided more than 15σ pion-proton separation. A 10:1 K^\pm rejection was achieved using the aerogel Čerenkov detector, leaving less than 1% contamination. The $\pm 5\%$ HRS momentum acceptance limited the hadron energy fraction z to a small range about $z\approx 0.5$ (see Table I).

SIDIS events were selected using cuts on the fourmomentum transfer squared $Q^2 > 1 \text{ GeV}^2$, the hadronic final-state invariant mass W > 2.3 GeV, and the mass of undetected final-state particles W' > 1.6 GeV, assuming scattering on a nucleon. The total number of accepted SIDIS events are 254k and 194k for π^+ and π^- , respectively. The data were divided into four bins in the Bjorken scaling variable x. The central kinematics of the four bins after radiative corrections are presented in Table I. SIDIS yields were obtained by normalizing the number of identified SIDIS events by the accumulated beam charge and the data acquisition live time. The data were divided into \sim 2850 pairs of measurements in opposite spin states to extract the raw asymmetries. The false asymmetry due to luminosity fluctuations was confirmed to be less than 4×10^{-4} by measurements of the SSA in inclusive (e, e') scattering with transverse target polarization oriented horizontally, which vanishes due to parity conservation. The raw Collins/Sivers moments were obtained by fitting the asymmetries in 2-D (ϕ_h, ϕ_S) bins according to Eq.(1). This procedure was confirmed by an unbinned maximum-likelihood method. The ³He moments were obtained after correcting the directly measured N_2 dilution ($\sim 10\%$ contribution).

The dominant background in the SIDIS electron sample comes from e^+/e^- pair production. This background (listed in Table I) was directly measured by reversing the polarity of the BigBite magnet to detect e^+ in identical conditions as e^- . The contamination was treated as a dilution effect in the analysis, as the measured asymmetries were consistent with zero for e^+ - π coincidence events, which mirror the pair-produced e^- - π events. Additional experimental uncertainties in the extracted ³He Collins/Sivers moments include: 1) K^\pm contamination in the π^\pm sample, 2) bin-centering, resolution and radiative effects estimated using simulations, 3) the effect of the target collimator, estimated by varying the scattering vertex cut, 4) target density fluctuations, and 5) the false asymmetry due to yield drift caused by radia-

	x	Q^2	y	z	$P_{h\perp}$	W	W'	$f_{pair}^{\pi^+}$	$f_{pair}^{\pi^-}$	$1-f_p^{\pi^+}$	$1-f_p^{\pi^-}$
		GeV^2			GeV	GeV					
(0.156	1.38	0.81	0.50	0.435					$0.212 \pm 0.032 \ (0.027)$	
(0.206	1.76	0.78	0.52	0.38	2.77	1.97	$8.0\pm2.0\%$	$14.0 \pm 2.0\%$	$0.144 \pm 0.031 \ (0.029)$	$0.205 \pm 0.037 \; (0.027)$
(0.265	2.16	0.75	0.54	0.32	2.63	1.84	$2.5 \pm 0.9\%$	$5.0\pm1.8\%$	$0.171 \pm 0.029 \ (0.028)$	$0.287 \pm 0.036 \; (0.024)$
(0.349	2.68	0.70	0.58	0.24	2.43	1.68	$1.0 \pm 0.5\%$	$2.0\pm1.0\%$	$0.107 \pm 0.026 \ (0.030)$	$0.220 \pm 0.032 \ (0.026)$

TABLE I. Central kinematics for the four x bins. The fractional e^- energy loss y, the hadron energy fraction z and the transverse momentum $P_{h\perp}$ are all defined following the notation of Ref. [6]. The pair production background $f_{pair}^{\pi^{\pm}}$ and the proton dilution $1-f_p^{\pi^{\pm}}$ are shown with their total experimental systematic uncertainties. The numbers in parentheses represent the model uncertainties corresponding to unpolarized FSI effects.

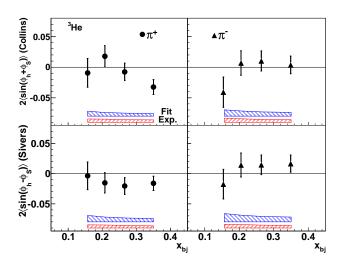


FIG. 1. (Color online) The extracted Collins/Sivers moments on $^3\mathrm{He}$ are shown together with uncertainty bands (see text) for both π^+ and π^- electro-production.

tion damage to the BigBite preshower calorimeter. The quadrature sum of all above contributions is below 25% of the statistical uncertainty in each x bin.

In addition to the experimental systematic uncertainties, there are fitting uncertainties resulting from the neglect of other ϕ_h - and ϕ_S -dependent terms, such as $2\langle\sin(3\phi_h-\phi_S)\rangle$, higher-twist terms including $2\langle\sin\phi_S\rangle$ and $2\langle \sin(2\phi_h - \phi_S) \rangle$, azimuthal modulations of the unpolarized cross section including the Cahn $(2\langle\cos\phi_h\rangle)$ and Boer-Mulders $(2\langle\cos(2\phi_h)\rangle)$ effects [6], and leakage from the longitudinal SSA (A_{UL}) due to the small longitudinal component of the target polarization. effects of these terms were estimated by varying each term within an allowed range derived from the HER-MES data [25, 26], assuming the magnitude of each term for the neutron is similar to that of the proton. The $2\langle\sin\phi_S\rangle$ term gives the largest effect, followed by the $2\langle \sin(3\phi_h - \phi_S)\rangle$ and $2\langle \sin(2\phi_h - \phi_S)\rangle$ terms. The effects of the unpolarized terms and A_{UL} were found to be small by comparison.

A Monte Carlo simulation of the experiment was adapted from the package SIMC used in the analysis of

SIDIS cross section measurements on $^1\mathrm{H}$ and $^2\mathrm{H}$ from JLab Hall C [27] to include models of our target and spectrometers. SIMC was used to estimate the combined effects of acceptance, resolution and radiative corrections on the extraction of the Collins and Sivers moments, and these effects were included in the experimental systematic uncertainties. Additionally, the contamination in identified SIDIS events from decays of diffractively produced ρ mesons was estimated to range from 3-5% (5-10%) for π^+ (π^-) by PYTHIA6.4 [28]. Consistent with the HERMES analysis, no corrections for this background have been applied to our results. The contamination from radiative tails of exclusive electroproduction, estimated by normalizing the MC spectrum to the data in the low-W region, was found to be less than 3%.

The extracted $^3\text{He Collins }A_C\equiv 2\langle\sin(\phi_h+\phi_S)\rangle$ and Sivers $A_S\equiv 2\langle\sin(\phi_h-\phi_S)\rangle$ moments are shown in Fig. 1. The error bars represent statistical uncertainties only. and tabulated in Table. II. The experimental systematic uncertainties combined in quadrature are shown as the band labeled "Exp.". The combined extraction model uncertainties due to neglecting other allowed terms are shown as the band labeled "Fit". The ³He Collins and Sivers moments extracted from our data are all below 5%. The Collins moments are mostly consistent with zero, except the π^+ Collins moment at x=0.34, which deviates from zero by 2.3 σ after combining the statistical and systematic uncertainties in quadrature. The π^+ Sivers moments favor negative values, and the π^- Sivers moments are consistent with zero.

To extract the neutron Collins/Sivers SSAs $(A_n^{C/S})$ from the measured ³He moments $(A_{^{3}\text{He}}^{C/S})$, we used the expression,

$$A_{^{3}\text{He}}^{C/S} = P_n \cdot (1 - f_p) \cdot A_n^{C/S} + P_p f_p \cdot A_p^{C/S}, \quad (2)$$

which was shown to be valid in a calculation by Scopetta [29] including initial-state nuclear effects. Here, $P_n=0.86^{+0.036}_{-0.02}~(P_p=-0.028^{+0.009}_{-0.004})$ is the neutron (proton) effective polarization [30]. The proton dilution $f_p=\frac{2\sigma_p}{\sigma_{^3\mathrm{He}}}$ of $^3\mathrm{He}$ was measured by comparing the yields of unpolarized hydrogen and $^3\mathrm{He}$ targets in the SIDIS kinematics. An additional model uncertainty from FSI was estimated using pion multiplicity data [31] and a Lund string model-

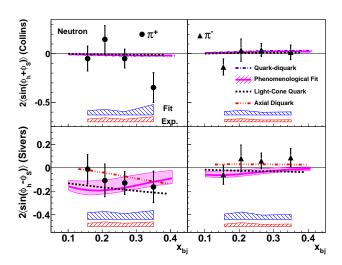


FIG. 2. (Color online) The extracted neutron Collins and Sivers moments with uncertainty bands for both π^+ and π^- electro-production. See text for details.

based calculation of the pion absorption probability [32]. An upper limit of 3.5% on the size of the FSI effect was used to estimate the uncertainty in f_p , shown in Table I, and included in the "Fit" systematic uncertainty. The neutron SSAs due to spin-dependent FSI were estimated to be well below 1% across the entire x range with a simple Glauber rescattering model. Therefore, no corrections was applied.

The resulting neutron Collins/Sivers moments calculated using Eq. (2), with f_p from our data and proton Collins/Sivers moments from Refs. [33–35], are shown in Fig. 2. Corrections from the proton Collins/Sivers moments are less than 0.012. Our Collins moments are compared with the phenomenological fit [34], a light-cone quark model calculation [36, 37] and quarkdiquark model [38, 39] calculations. The phenomenological fit and the model calculations, which assume Soffer's bound [12], predict rather small Collins asymmetries which are mostly consistent with our data. However, the π^+ Collins moment at x=0.34 is suggestive of a noticeably more negative value at the 2σ level. Our data favor negative π^+ Sivers moments, while the π^- moments are close to zero. Such behavior independently supports a negative d quark Sivers function, which has been suggested by the phenomenological fit [33, 35] to HERMES and COMPASS data, a light-cone quark model calculation [40, 41], and an axial diquark model calculation [42]. In addition, the central values of our data are slightly smaller in magnitude than the phenomenological fit.

In summary, we have reported the first measurement of the target SSA in charged pion electroproduction on a transversely polarized 3 He target in the DIS region. Our data provide the best current measurement of the neutron Sivers moments in the valence region (x > 0.1),

and the best neutron Collins moments for x>0.2, which will further improve the extraction of d quark distributions in these regions. This experiment has demonstrated the power of polarized $^3{\rm He}$ as an effective polarized neutron target, and has laid the foundation for future high-precision measurements of neutron TMDs with a newly proposed large acceptance spectrometer SoLID following the JLab 12 GeV upgrade [43] and at an electron-ion collider [44].

We acknowledge the outstanding support of the JLab Hall A technical staff and the Accelerator Division in accomplishing this experiment. This work was supported in part by the U. S. National Science Foundation, and by DOE contract number DE-AC05-06OR23177, under which the Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility.

- * Corresponding author: xqian@caltech.edu
- S. E. Kuhn, J.-P. Chen, and E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009).
- [2] A. Airapetian *et al.*, Phys. Rev. Lett **94**, 012002 (2005).
- [3] A. Airapetian et al., Phys. Lett. B 693, 11 (2010).
- [4] M. Alekseev et al., Phys. Lett. **B673**, 127 (2009).
- [5] M. Alekseev *et al.*, Phys. Lett. **B692**, 240 (2010).
- [6] A. Bacchetta et al., JHEP 02, 093 (2007).
- [7] A. Bacchetta et al., Phys. Rev. D70, 117504 (2004).
- [8] J. P. Ralston and D. E. Soper, Nucl. Phys. B152, 109 (1979).
- [9] J. C. Collins, Nucl. Phys. **B396**, 161 (1993).
- [10] C. Bourrely et al., Phys. Lett. **B420**, 375 (1998).
- [11] M. Gockeler et al., Phys. Lett. B627, 113 (2005).
- [12] J. Soffer, Phys. Rev. Lett. **74**, 1292 (1995).
- [13] W. Vogelsang, Phys. Rev. D57, 1886 (1998).
- [14] J. P. Ralston, (2008), arXiv:0810.0871.
- [15] D. Sivers, Phys. Rev. **D41**, 83 (1990).
- [16] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B530, 99 (2002).
- [17] X. D. Ji, J. P. Ma, and F. Yuan, Nucl. Phys. B652, 383 (2003).
- [18] J. C. Collins, Phys. Lett. **B536**, 43 (2002).
- [19] S. J. Brodsky et al., Nucl. Phys. B642, 344 (2002).
- [20] R. Seidl et al., Phys. Rev. Lett. 96, 232002 (2006).
- [21] M. Anselmino et al., (2010), arXiv:1012.3565.
- [22] A. Airapetian et al., Phys. Rev. Lett. 103, 152002 (2009).
- [23] F. Bissey et al., Phys. Rev. C65, 064317 (2002).
- [24] J. Alcorn et al., Nucl. Instr. and Meth. **A522**, 294 (2004).
- [25] M. Diefenthaler, Ph.D. Desy-thesis-10-032 (2010).
- [26] R. M. Lamb, Ph.D. Thesis, UIUC (2010).
- [27] R. Asaturyan et al., (2011), arXiv:1103.1649.
- 28] T. Sjöstrand, S. Mrenna, and P. Skands, JHEP 05, 026 (2006).
- [29] S. Scopetta, Phys. Rev. D75, 054005 (2007).
- [30] X. Zheng et al., Phys. Rev. C70, 065207 (2004).
- [31] A. Airapetian *et al.*, Nucl. Phys. **B780**, 1 (2007).
- [32] A. Accardi, V. Muccifora, and H.-J. Pirner, Nucl. Phys. A720, 131 (2003).
- [33] M. Anselmino et al., Phys. Rev. **D72**, 094007 (2005).
- [34] M. Anselmino et al., Phys. Rev. **D75**, 054032 (2007).

	x_{bj}	Collins Moment	Collins Moment	Sivers Moment	Sivers Moment
		π^+	π^-	π^+	π^-
³ He	0.156	$-0.009\pm0.023\pm0.005$ (0.008)	$-0.041\pm0.025\pm0.007$ (0.010)	$-0.004\pm0.023\pm0.005$ (0.011)	$-0.017\pm0.025\pm0.006$ (0.014)
				$-0.015\pm0.017\pm0.005$ (0.008)	
3 He	0.265	$-0.008\pm0.014\pm0.004$ (0.005)	$0.010\pm0.016\pm0.005$ (0.007)	$-0.021\pm0.014\pm0.004\ (0.006)$	$0.015\pm0.016\pm0.005\ (0.009)$
3 He	0.349	$-0.033\pm0.012\pm0.004$ (0.004)	$0.004 \pm 0.014 \pm 0.004 \ (0.006)$	$-0.016\pm0.012\pm0.003$ (0.006)	$0.017 \pm 0.014 \pm 0.004 \ (0.008)$
				$-0.011\pm0.125\pm0.028$ (0.059)	
				$-0.108\pm0.138\pm0.039$ (0.068)	
				$-0.129\pm0.096\pm0.028$ (0.049)	
n	0.349	$-0.348\pm0.153\pm0.051$ (0.109)	$0.015 \pm 0.076 \pm 0.021 \ (0.032)$	$-0.163\pm0.133\pm0.039$ (0.076)	$0.087 \pm 0.077 \pm 0.022 \ (0.044)$

TABLE II. Tabulated results. Format follows "central value" \pm "statistical uncertainty" \pm "experimental systematic uncertainty" ("model systematic uncertainties").

- $[35] \ {\rm M.\ Anselmino}\ et\ al.,\ (2008),\ {\rm arXiv:} 0812.4366.$
- [36] S. Boffi et al., Phys. Rev. D79, 094012 (2009).
- [37] B. Pasquini, S. Cazzaniga, and S. Boffi, Phys. Rev. D78, 034025 (2008).
- [38] J. She and B. Q. Ma, Phys. Rev. **D83**, 037502 (2011).
- [39] B. Q. Ma, I. Schmidt, and J. J. Yang, Phys. Rev. **D65**,

034010 (2002).

- [40] S. Arnold et al., (2008), arXiv:0805.2137.
- [41] B. Pasquini and P. Schweitzer, (2011), arXiv:1103.5977.
- [42] L. P. Gamberg, G. R. Goldstein, and M. Schlegel, Phys. Rev. D77, 094016 (2008).
- [43] H. Gao et al., Eur. Phys. J. Plus 126, 2 (2011).
- [44] M. Anselmino et al., Eur. Phys. J. A47, 35 (2011).