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Abstract. We use our non-conformal holographic bottom-up model for QCD

described in [1] to further study the effect of the QCD trace anomaly on the energy

loss of both light and heavy quarks in a strongly coupled plasma. We compute the

nuclear modification factor RAA for bottom and charm quarks in an expanding plasma

with Glauber initial conditions. We find that the maximum stopping distance of light

quarks in a non-conformal plasma scales with the energy with a temperature (and

energy) dependent effective power.
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1. Introduction

In [1] we presented a non-conformal holographic bottom-up model that captures some

of the phenomenological properties of QCD at finite temperature. In this model,

asymptotic freedom is replaced by conformal invariance above a certain UV scale. The

main idea is to break the conformal invariance of N = 4 SYM field theory from the

original AdS/CFT correspondence [2] in order to study effects from the QCD trace

anomaly and its thermodynamical consequences as closely as possible. Our model is

based on a bottom-up approach to this problem (for an alternative, top-down approach,

see e.g. [3]) where we consider an effective, 5-dimensional gravity theory coupled to a

scalar field [4]. The potential for the scalar field V (φ) breaks conformal invariance in

the infrared and it is engineered to holographically reproduce some thermodynamical

properties of finite-temperature QCD [5] that have been computed on the lattice [6].

The space-time geometry is asymptotically AdS5, which is translated into conformal

invariance of the dual field theory in the UV.

2. Heavy quark energy loss and RAA

A heavy quark of mass mQ is dual to a string in the bulk which stretches from the

bottom of a D4-brane located at a radial coordinate rm ∼ 1/mQ (in coordinates where
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the boundary is at r = 0) to the black brane horizon at rH [7]. Using the trailing

string ansatz, we can study the heavy quark energy loss [8] in our model at various

temperatures and momenta, and significant deviations from the results in the conformal

limit have been observed around Tc [1].

Here we use this setup to compute the nuclear modification factor RAA of charm and

bottom quarks (for similar calculations in a conformal plasma see [9]). We use Glauber

initial conditions where the number density of binary collisions TAA and the participant

nucleon density ρpart are obtained from a Woods-Saxon nuclear distribution. A jet

produced at a point ~x⊥ in the transverse plane and moving in the azimuthal direction

φ “sees” at time t the temperature T (~x⊥, φ, t) ∝ [ρpart (~x⊥ + (t− ti)ê(φ)) /t]1/3, where

ti is the initial jet production time, which we chose to be 1 fm/c. To compute RAA

as a function of pT,f , the final momentum of the quenched jet, one must know its

corresponding initial momentum pT,i(pT,f , ~x⊥, φ). To obtain that, one must, for a given

~x⊥ and φ, solve the differential equation dp(t)
dt

=
[
dE
dx

]
(p(t), T (~x⊥, φ, t)), where

[
dE
dx

]
(p, T )

is the energy loss as a (numerical) function of momentum and temperature obtained from

our model. This equation is solved with the condition p(tf ) ≡ pT,f , where the final time

tf is defined by a standard freeze-out condition, T (~x⊥, φ, tf ) = Tfo, where we chose

Tfo = 150 MeV. The initial momentum is then obtained as pT,i = p(ti). Finally, one

must average over the azimuthal directions φ and the transverse production points ~x⊥:

RQ
AA(pT,f ) =

∫
d2~x⊥

TAA(~x⊥)

Nbin

2π∫
0

dφ

2π

dσQ
dydpT

(pT,i)
dσQ
dydpT

(pT,f )

dpT,i
dpT,f

(1)

where Nbin is the total number of binary collisions and
dσQ
dydpT

are distribution functions

obtained from the FONLL production cross sections [10].

We computed RAA for heavy quarks at RHIC and LHC energies with the initial

temperatures at the center of the plasma of 265 MeV and 357 MeV and nucleon-nucleon

inelastic cross-sections σNN = 4.2 and 6.3 fm2 [11], respectively (Fig. 1, left plot). For

bottom quarks, RAA flattens out already at pT ∼ 10 GeV, which is a consequence of

the asymptotic conformal invariance of our model. Also, note that the values of RAA

for RHIC and LHC are very similar. In fact, even though the maximum temperature

at LHC is higher than at RHIC, the spectral indices at RHIC are steeper than at LHC

and, thus, the heavy quark RAA does not change much when one increases
√
s by one

order of magnitude.

For charm quarks RAA is relatively small, which is simply due to the fact that the

trailing string energy loss in any holographic model decreases monotonically with mass.

However, one should be careful when using the trailing string ansatz in this case since

already for T ∼ 290 MeV, rH ≈ rm for the charm quark, which implies that the trailing

string ansatz is not applicable in this case.
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Figure 1. Left: Nuclear modification factor RAA at impact parameter b = 3 fm for charm and bottom

quarks in an expanding plasma as a function of the transverse momentum pT for RHIC (dashed curve) and

LHC (solid curve). Center: Light quark stopping distance ∆x as a function of energy E for different initial

conditions (blue points) and the extracted envelope for the maximum stopping distance (red curve). Right:

Effective stopping power neff for light quarks as a function of energy E for two different temperatures.

3. Light quark energy loss and the maximum stopping distance

For light quarks, the bottom of the D4-brane rm ∼ 1/mQ can approach the black brane

event horizon rH . In this case we follow [12] and study open strings with both endpoints

on the flavor brane, which fall freely towards the black brane. These strings are dual

to dressed qq̄ pairs and the total spatial distance the string endpoint traverses can be

identified with the stopping distance of light quarks in a strongly-coupled plasma.

For a given initial energy of the string, this stopping distance will vary with the

string initial conditions (initial spatial and velocity profile). However, it is still possible

to obtain the maximum stopping distance for a given energy. In fact, it was shown in

[13, 12] that this quantity scales as ∆xAdSmax ∼ E1/3 in a conformal plasma. However, in

our model, this power gets modified and the effective power becomes temperature and

energy-dependent, ∆xmax ∼ Eneff (T,E) (Fig. 1, center and right plots). We see that for

large enough energies this effective power asymptotes to the conformal value of 1/3 and

also that the effective power is closer to the 1/3 limit the further away we are from Tc,

which are both consequences of the asymptotic conformal invariance of our model.

Note, however, that this maximum stopping distance is not a typical stopping

distance of light quarks; it is a rather crude quantity, which might be used as a

phenomenological guideline, but should not be used to obtain the instantaneous energy

loss that enters in, for example, calculations of RAA. Instantaneous energy loss, defined

as the usual Πr
x worldsheet current, becomes a non-trivial quantity in this case since it

is explicitly time-dependent and also depends on the point on the string on which one

evaluates it. As shown in [12], at late times the instantaneous energy loss develops a

Bragg-like peak but its magnitude depends on the point on the string where the energy

loss is evaluated.

Furthermore, the amount of instantaneous energy loss depends heavily on the initial

conditions of the string (which are dual to the initial gauge field configuration associated

with the qq̄ pair). These two problems are the main obstacles that need to be overcome

in order to obtain a consistent description of light quark energy loss that can be used
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in the calculation of observables such as RAA.

4. Conclusions, Outlook, and Acknowledgments

In this proceedings we have extended our previous analysis of heavy quark energy loss in

non-conformal plasmas started in [1] and computed the partonic RAA in an expanding

plasma with Glauber initial conditions. The bottom quark RAA at RHIC decreases

with pT and asymptotes to a value of about 0.2. Charm RAA is predicted to be heavily

suppressed (< 0.1), but one should keep in mind that the trailing string model may not

be applicable to describe charm quarks. According to our calculations, the heavy quark

RAA × pT remains practically unaltered when going from RHIC to LHC energies.

We also showed that the typical effective power in the energy dependence of the

maximum stopping distance of light quarks becomes energy and temperature dependent

in a non-conformal plasma. A consistent treatment of instantaneous energy loss of light

quarks has some practical difficulties and possible solutions are currently being explored

[14].
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